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Joint Bayesian Estimation of Close Subspaces

from Noisy Measurements
Olivier Besson, Senior Member, IEEE, Nicolas Dobigeon, Member, IEEE, and

Jean-Yves Tourneret, Senior Member, IEEE

Abstract—In this letter, we consider two sets of observations de-

fined as subspace signals embedded in noise and we wish to analyze

the distance between these two subspaces. The latter entails evalu-
ating the angles between the subspaces, an issue reminiscent of the

well-known Procrustes problem. A Bayesian approach is investi-

gated where the subspaces of interest are considered as random
with a joint prior distribution (namely a Bingham distribution),

which allows the closeness of the two subspaces to be parameter-

ized. Within this framework, the minimum mean-square distance
estimator of both subspaces is formulated and implemented via a

Gibbs sampler. A simpler scheme based on alternative maximum a

posteriori estimation is also presented. The new schemes are shown
to provide more accurate estimates of the angles between the sub-

spaces, compared to singular value decomposition based indepen-

dent estimation of the two subspaces.

Index Terms—Bingham distribution, Procrustes problem, sub-
space estimation.

I. PROBLEM STATEMENT

M ODELING signals of interest as belonging to a linear

subspace is arguably one of the most encountered ap-

proach in engineering applications [1]–[3]. Estimation of such

signals in additive white noise is usually conducted via the sin-

gular value decomposition which has proven to be very suc-

cessful in numerous problems, including spectral analysis or

direction finding. In this letter, we consider a situation where

two independent noisy observations of a subspace signal are

available but, due to miscalibration or a change in the observed

process, the subspace of interest is slightly different from one

observation to the other. More precisely, assume that we ob-

serve two matrices and given by

(1)

where the orthogonal matrices ( ) span

the subspace where the signals of interest lie, stands for the

matrix of coordinates of the noise-free data within the range

space of , and denotes an additive white Gaussian

noise. Herein, we are interested in recovering the subspaces ,
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but, maybe more importantly, to have an indication of the

“difference” between these two subspaces. The natural distance

between and is given by where are

the principal angles between and , which can be ob-

tained from the singular value decomposition (SVD)

. This problem is somehow remi-

niscent of the orthogonal matrix Procrustes problem [4, p. 601]

where one seeks an orthogonal matrix that brings close to

by solving . The solution is well

known to be . The problem here is slightly different

as we only have access to , and not to the subspaces them-

selves. Moreover, we would like to exploit the fact that and

are close subspaces. In order to embed this knowledge, a

Bayesian framework is formulated where and are treated

as random matrices with a joint distribution, as detailed now.

Let us state our assumptions and our approach to estimating

, and subsequently the principal angles , .

Assuming that the columns of and are independent and

identically Gaussian distributed with

known, the likelihood function of is given by

(2)

where means proportional to and stands for the expo-

nential of the trace of the matrix between braces. As for , we

assume that no knowledge about it is available so that its prior

distribution is given by . Note that this is an improper

prior but, as will be shown shortly, marginalizing with respect

to results in a proper distribution. Indeed,

(3)

Let us now turn to our assumption regarding and . We

assume that is uniformly distributed on the Stiefel manifold

[5] and that , conditioned on , follows a Bingham distri-

bution [5], [6] with parameter matrix , i.e.,

(4)

where and is an hyper-

geometric function of matrix argument [5]. It is known that

depends only on the non-zero eigenvalues of :

hence in (4) depends on only. The latter rules

the prior distribution of the angles between and :

the larger the closer and [7].



II. SUBSPACE ESTIMATION

Our objective is, given the likelihood function in (3) and the

prior in (4), to estimate , and then deduce the principal

angles between them. Towards this end, let us first write the joint

posterior distribution of and as

(5)

In the sequel we let . The posterior density of

only is thus

(6)

The minimum mean-square distance (MMSD) estimator of

is defined as [7]

(7)

where is the statistical mean and stands for the

principal eigenvectors of the matrix between braces. From in-

spection of , the above integral in (7) does not

seem to be tractable. Therefore, we turn toMarkov chainMonte-

Carlo (MCMC) simulation methods to approximate it [8]. How-

ever, the distribution in (6) is not obvious to sample. On the con-

trary, the conditional distribution of belongs to

a known family. Indeed, from (5) one has

(8)

which is recognized as a Bingham distribution, i.e.,

(9)

This leads us to consider a Gibbs sampling scheme which uses

(9) to draw samples asymptotically distributed according to

. An efficient scheme to draw random matrices

from a Bingham distribution can be found in [9]. Our Gibbs

sampling scheme is summarized in Table I

Once a set of matrices and has been gener-

ated, the MMSD estimator of can be approximated as

(10)

TABLE I
GIBBS SAMPLER FOR ESTIMATION OF AND

TABLE II
ITERATIVE MAP ESTIMATION OF AND

We should point out that the scheme of Table I is computa-

tionally intensive, due to the need to generate matrices from a

Bingham distribution, and that it may be prohibitive in large-

scale problems when is large. In such cases, one might turn

to simpler estimators.

An alternative and possibly more computationally efficient

approach would entail considering maximum a posteriori

(MAP) estimation. However, the joint MAP estimation of

and from in (5) does not appear

tractable. It is in fact customary in this case to consider iterative

alternate maximization of , i..e, maximize

it first with respect to holding fixed, and then with

respect to holding fixed. Convergence of this method

to the global maximum is yet to be proven, although we did

not experiment problems in our simulations. At each step, the

MAP estimation of one matrix, conditioned on the other one,

is simple as

(11)

Note that (11) is also the MMSD estimator of given

since, if , the MMSD estimator of is simply

[7]. Therefore we propose the scheme of Table II which

we refer to as iterative MAP (iMAP).

Remark 1. (Estimation by Regularization): We have decided

in this work to embed the knowledge that is close to

in a prior distribution. An alternative would be to con-

sider regularized maximum likelihood estimation (MLE). Such

an approach would amount to consider the following optimiza-

tion problem:

(12)



Solving for , and concentrating the criterion, one ends

up with minimizing

(13)

From observation of (5) this is tantamount to maximizing

with the regularization parameter

playing a similar role as . However, there are two differences.

First, in a Bayesian setting can be fixed by looking at the

prior distribution of the angles between and and

making it match our prior knowledge. Second, the Bayesian

framework enables one to consider an MMSD estimator while

the frequentist approach bears much resemblance with a max-

imum a posteriori estimator.

Remark 2. (Alternative Prior Modeling): Instead of con-

sidering a Bingham distribution as prior for a von

Mises-Fisher (vMF) distribution [6] defined as

(14)

might have been used. Under this hypothesis, it is straight-

forward to show that the conditional posterior distribution

is now Bingham von Mises-Fisher (BMF).

The Gibbs sampling scheme needs to be adapted to these new

distributions. However, for a BMF distribution, there does not

exist a closed-form expression for the MAP estimator which

means that the iterative scheme of Algorithm II cannot be

extended.

Remark 3. (Extension to More than 2 Subspaces): Let us con-

sider a situation where data matrices

are available, so that their joint distribution, conditioned on

can be written as

(15)

Let us still assume that is uniformly distributed on the Stiefel

manifold and that for , .

Then the joint posterior distribution of writes

(16)

It ensues that the conditional posterior distribution of is

given by

(17a)

(17b)

Fig. 1. Performance of the estimators versus . and dB.

(a) , (b) , (c), mean and std of , (d), mean

and std of .

The Gibbs sampling scheme of Table I as well as the iterative

MAP algorithm of Table II can be straightforwardly modified

so as to account for this more general setting.



Fig. 2. Performance of the estimators versus . and .

(a) , (b) , (c), mean and std of , (d), mean

and std of .

III. NUMERICAL ILLUSTRATIONS

Let us now give some illustrative examples about the estima-

tors developed above. We consider a scenario with and

. The two algorithms described above (referred to as GS

and iMAP in the figures, respectively) will be compared to a

conventional SVD-based approach where is estimated from

the dominant left singular vectors of the data matrix . For

each algorithm, the angles between and will be estimated

from the singular value decomposition of , where

stand for one of the three estimates mentioned previously. Two

criteria will be used to assess the performance of the estimators.

First, the MSD between and will be used: this gives an

idea of how accurately each subspace individually is estimated.

Next, since the difference between and is of utmost im-

portance, we will also pay attention to the mean and standard

deviation of as these angles characterize how has been

moved apart from .

In all simulations the entries of and were generated as

i.i.d. . The subspaces and were fixed and the true

angles between them are equal to and respectively. Note

that the subspaces and are not generated according to

the prior distributions assumed above. The signal to noise ratio

(SNR) is defined as . For the Bayesian esti-

mators, we set , and . In Fig. 1 we

plot the performance versus , for , while Fig. 2 studies

the performance versus SNR. The following observations can

be made:

• The Bayesian estimates of the individual subspaces out-

perform the SVD-based estimates, especially for a small

number of snapshots or a low SNR. When SNR increases

however, the SVD-based estimates produce accurate esti-

mates of each subspace.

• The SVD-based estimator does not accurately estimate the

angles between and , unless SNR is large. In con-

trast, the Bayesian estimators provide a rather accurate es-

timation of .

• The Gibbs sampler is seen to perform better that the iMAP

estimator, at the price of a larger computational cost how-

ever.
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