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Abstract

Reflective architectures are a powerful solution for code

browsing, debugging or in-language process handling. How-

ever, these reflective architectures show some limitations in

edge cases of self-modification and self-monitoring. Mod-

ifying the modifier process or monitoring the monitor pro-

cess in a reflective system alters the system itself, leading to

the impossibility to perform some of those tasks properly. In

this paper we analyze the problems of reflective architectures

in the context of image based object-oriented languages and

solve them by providing a first-class representation of an im-

age: a virtualized image.

We present Oz, our virtual image solution. In Oz, a virtual

image is represented by an object space. Through an object

space, an image can manipulate the internal structure and

control the execution of other images. An Oz object space

allows one to introspect and modify execution information

such as processes, contexts, existing classes and objects. We

show how Oz solves the edge cases of reflective architectures

by adding a third participant, and thus, removing the self-

modification and self-observation constraints.

1. Introduction

In a Smalltalk environment, an image is a memory dump

(snapshot) of all the objects of the system, and in particular

all of the classes and methods at the moment of the dump. An

image acts as a cache with preloaded packages and initial-
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ized objects. When the system is launched it takes an image

as input and executes it from the place where the program

counter was saved on previous save.

Smalltalk images are defined using a self-describing re-

flective architecture. Fully reflective architectures such as

the one of CLOS [BGW93, Rho08] or Smalltalk [GR89]

provide a simple and yet really powerful solution to de-

velop tools such as full IDEs, code browsers, refactoring

engines and debuggers [Riv96, Duc99]. Reification of the

stack in addition to all the structural language elements al-

lows one to manipulate program control flow as exempli-

fied with modern web application frameworks such as Sea-

side [DLR07, GKVDHF01]. Indeed, a reflective system can

be understood, changed and evolved using its own con-

cepts and features. In addition, reflection is based on the no-

tion of causal connection between the system and its meta-

level [Mae87].

However, reflective architectures present some limita-

tions. The causal connections and meta-circularities makes

difficult to change core parts of the system[DSD08]. For

example, the array iteration method Array»do: is used by

both user applications (the base level) and system infrastruc-

ture such as the compiler or debugger (the meta level). This

method presents a causal connection in the sense that it is

used by the tools in the process of changing/recompiling

itself. Because of this causal connection, breaking such a

method impacts not only in the final user code, but also on

the libraries and tools that are essential in the system, caus-

ing the system to crash.

Reflective architectures also suffer from the observer ef-

fect when doing analysis on the system. That is for example,

observing its own running processes and their execution, or

its consumed memory alters the observed element. Iterating

the memory to count the amount of instances of a class, can

create more objects in the iteration process. The manipula-



tion of processes can be done only from an active process

and thus, there is no possibility to activate directly a process

from the language.

To avoid this effect, the execution of these reflective op-

erations is normally delegated to the virtual machine (VM).

The virtual machine executes code atomically for the im-

age’s point of view. However, modifying the virtual machine

to introduce new features is a tedious task, and there are not

many developers experts in the area.

In this paper we propose to leverage this problems by

creating an image meta-level. Our proposal is to move the

control of this reflective operations from the virtual machine

to another image. That is, an image will contain another

image, and be able to reason about and act upon it. We call

this image virtualization.

Contributions. The contribution of this paper is the in-

troduction of Smalltalk Virtual Images to ease image anal-

ysis and evolution that is usually challenging in a reflec-

tive system (cf. Section 2). We describe Oz, an object

space [CPDD09] based solution that we implemented on top

of Pharo providing Smalltalk image virtualization (cf. Sec-

tion 3). We also document the implementation details of both

the language library and the virtual machine extensions we

wrote (cf. Section 4). Then, we present some exemplar appli-

cations of this concept demonstrating that it solves the initial

challenges (cf. Section 5). Finally, we discuss the solution

and related work before concluding (cf. Section 6).

2. Reflective Architectures: Recurring

Problems and State of the Art Solutions

Programming and evolving Pharo’s core, several limitations

and problems appear because of its reflective architecture. In

the following subsections we illustrate some of these recur-

ring problems, and describe their state of the art solutions.

2.1 Case 1: System Self-brain Surgery

Modifying Pharo’s core parts from the system itself is a crit-

ical task. Core parts of a reflective system are in use while

trying to modify them, generating an effect also known as

self-brain surgery [CPDD09]. Doing so wrongly can put the

system into an irrecoverable state since it may impact on el-

ements that the system uses at the same time for running and

applying the modifications. For example, that happens when

changing methods such as Object»at: or Array»at:, adding new

instance variables to core classes such as Process or Class, or

even modifying tools like the debugger or browser. Introduc-

ing a bug at these places may make the system unusable, for-

bid the possibility to rollback the change and force a restart

resulting in the loss of all the changes made.

Another issue while doing self-brain surgery on a system

is that large system modifications cannot be performed in

an atomic way. They should be split into several smaller

changes, each of which may be critical on its own. Moreover,

those changes also require to be applied in a specific order to

be safe. Respecting a safe order constrains the development

process, and therefore, restricts the developers working on

the core of the system.

A typical case of self-brain surgery in Pharo is the modifi-

cation of the debugger. The system automatically opens the

debugger when an error occurs. The user performs actions

with it like changing a method, evaluating an expression or

even skip the error and proceed. However, making a mistake

when rewriting a debugger’s method may cause an irrecover-

able infinite recursion. Indeed, an error launches the debug-

ger, the trial for launching the debugger fails because of its

bugged method, this debugger’s failure leads to try to launch

another debugger, and so on. Because of this infinite recur-

sion, the user never gets the control back and cannot solve

the original problem.

Many different problems may arise when doing self-brain

surgery and for each of them, many ad-hoc solutions or

workarounds have been proposed. For example, instead of

modifying directly the debugger, a developer may make a

copy of it to work on. Then, the system debugger can be used

to debug and test the one in development. Once finished, the

new debugger can replace the original.

The current Pharo distribution includes within its libraries

an emergency evaluator to solve some self-brain surgery

cases. Whenever an error occurs and the normal graphical

user interface cannot be displayed because of that error, the

control falls back to the emergency evaluator. The emer-

gency evaluator is a simple tool with almost no graphical

dependencies used to evaluate expressions and revert the last

method submission. However, it depends on the compiler,

the event machinery and the collection library, and thus,

breaking any of those dependencies makes the emergency

evaluator unusable.

Finally, bootstrapping a system [PDF+on] or recreating

it from scratch solves partially the problems of self-brain

surgery. These processes create new images in an atomic

way, overcoming many of the self-brain surgery limitations.

However, the development process in that case gets inter-

rupted: the surgery fixes should be introduced inside the

specification of the image, the new image containing the fix

is built from scratch, the current working image has to be

discarded, and the development should be continued in the

new image. Ongoing changes during former development,

which reside in the old image, should be either ported to the

new image or discarded.

Requirement. A solution for self-brain surgery problems

should include the possibility to apply atomic changes in

the system, keep the development process as interactive as

possible and scope the impact of side-effects.

2.2 Case 2: Uncontrolled Computations

From time to time a Pharo image can become unresponsive.

This problem may be caused by a bug in the processes

priority configuration i.e., a never ending process with high



priority does never give chance to run to other processes, and

thus, the user cannot regain control to modify it because the

user interface process is blocked. Currently, the only existing

solution to regain control in such situations is the usage of

the interrupt key. The interrupt key is a key combination that

when pressed forces the running image to pause one of its

processes.

On the one hand, when the virtual machine detects this

situation, it signals a semaphore that should awake a handler

process inside the image to handle this situation. On the

other hand, the current implementation of the interrupt key

in Pharo uses the input event process to detect if the given

key is pressed. This process runs at a fixed priority of 60 (of

a total of 80).

The current state of the art of interrupting presents the

two following problems:

Interruption runs on the same level as other processes.

When the interruption succeeds, it activates a process

that is supposed to suspend the problematic process and

give back the control to the user. However, the activa-

tion of this interruption process suspends the problematic

process placing it in its corresponding suspended queue,

making it undistinguishable from other processes. Then,

the interrupting process must guess which was the pro-

cess that was interrupted.

Bad process configurations induce starvation. Since the

event handling process, which implements interruption,

runs at a priority of 60, processes with higher priority

may never be interrupted. Then, higher priority processes

can avoid interruption and make lower processes starve.

One solution to this problem is changing the configura-

tion of the interruption process to make it run in the high-

est priority. However, there may be cases in which the

process configuration needs a process with higher prior-

ity than the input event process.

Requirement. There is a need for a solution allowing the

non intrusive and non constrained control over processes

execution.

2.3 Case 3: System Recovery

Working in an image based environment implies that our

subject of work are the objects inside it instead of source

code files. Every change in the system is expressed in terms

of side-effects which are directly applied on its objects.

Direct object manipulation provides as main advantage an

immediate feedback to the user of the system.

However, manipulating the same image over and over

again may leave it in a corrupt state, emerging when an im-

age does suddenly not start. In such cases, all the informa-

tion related to previous work sessions stays stored in a bi-

nary format inside the image file, including both application

data (living domain objects) and code (methods and classes

written during development). The recovery of all this infor-

mation from a failing image is a tedious task, without a con-

clusive solution.

A typical example of corrupting an image is the wrong

manipulation of the Pharo startup mechanism. The Pharo

startup mechanism is implemented in the language itself. At

startup time the system iterates the startup list and sends

the startUp: message to each of the objects it holds. Each

object in the startup list handle their own startup. The startup

runs before giving control to the user. Language libraries

can access and configure the startup list, providing a flexible

and easily extensible configuration mechanism. However,

the accessibility of this feature leads to misuse and errors.

Resources initialized on startup can provoke irrecoverable

errors if not well handled. For example, resources using low

level code may cause the current operating system process

crash and quit. Under this kind of errors, the image quits on

startup without providing the user a way to recover the work

he did in previous sessions.

The system changes log appears as a first solution for sys-

tem recovery. The changes log is a file storing the opera-

tions performed on the image, including all changes made

to class and methods definitions and executed expressions.

When available, it can be accessed from other images to re-

store the work done. This log allows the user to recover ap-

plication code written between sessions, but not the recovery

of application data stored inside the image.

Another ad-hoc solution that appeared to solve such a

problem is to run the failing image with the virtual machine

in debug mode. When debugging the system through the

virtual machine, the developer must deal with low level code

and work at the bytecode level. In exchange, he can control

completely the execution: failing statements can be skipped,

the image can get finally initialized and the he can obtain

control to fix the bug and recover his work.

Requirement. The system recovery should be a high level

process, easily accessible, and allow both recover applica-

tion code and data.

3. The Oz model for Virtual Images

A virtual Smalltalk image is an image living inside another

Smalltalk image. The container image, the host, observes the

virtual image and has complete control over it. The main

idea is that such tasks difficult to perform due to the reflec-

tive architecture are handled by the host image. We trans-

form the critical "self-brain surgery" tasks into safe "brain

surgery" ones, by delegating them to another Smalltalk im-

age.

Oz is a virtual image model and implementation based

on object spaces [CPDD09]. Casaccio et al. sketched object

spaces to solve self-brain surgery. When doing self-brain

surgery, the image under modification becomes a patient of

a surgeon image. The patient is included inside the surgeon

as an object space. Through this object space, the image gets

manipulated by the surgeon, fixed and finally awoken.



In Oz, an object space is a subsystem of another image.

It is an object graph composed by two main elements: a

full Smalltalk image (cf. Section 3.1) and a "membrane" of

objects controlling that image (cf. Section 3.2). The image

containing an object space is its host, while the object space

is its guest.

Figure 1 shows a host image with two tools (ToolA and

ToolB) interacting with an object space. The object space

is enclosed by the dotted line. It contains a guest image

and a membrane. The host tools interact with the membrane

objects, while the membrane objects manipulate the objects

inside the image.

Host

ToolA

ToolB

Object Object SpaceSmalltalk ImageCaption:

Guest

Figure 1. A host image contains an object space, repre-

sented as the region enclosed by the dotted line; the object

space contains a guest Smalltalk image with its own object

graph; the membrane is the gray region between the guest

image and the dotted line; the tools inside the host interact

with the objects in the membrane to manipulate the image.

In Oz we extended the object space model to apply self-

brain surgery (cf. Section 3.3) and control rigorously both

communication and execution (cf. Sections 3.4 and 3.5). In

this section we describe the concepts and design principles

guiding our solution for virtual Smalltalk images.

3.1 The Guest Image

The guest image inside an object space, as any other

Smalltalk image, contains its own classes and its own spe-

cial objects such as nil, true, false, processes and contexts. If

we save this image on a filesystem, we can execute it as any

other image. Indeed, it contains all objects that are necessary

to run on its own dedicated virtual machine. Additionally,

the guest image does not need to include any extra libraries

or code for the host to include it. However, an image must

fulfill a contract, as described in Section 3.6.

An object space’s image contains an object graph satis-

fying the transitive closure property. That is, all objects in-

side the image reference only objects inside the same image.

There are no references from the inside of the object space

to its host. This is a key property to allow an image to be

deployed both as an object space or as a standalone image

on a dedicated virtual machine in a transparent way.

The object space enforces the isolation of its enclosed

image in several ways. First, its membrane controls that

no objects from the host are injected into the guest image.

Second, it enforces that both guest and host images do not

share any execution context. Finally, Pharo has no ability to

forge object references [HCC+98] and therefore, the guest

image can only refer to objects that are given to it explicitly,

and not create arbitrary object references.

3.2 The Membrane

The membrane controls and enables the communication be-

tween the host and the guest objects. It encloses and encap-

sulates the guest image. This membrane is made up of ob-

jects which provide meta-operations to reason about and act

upon the guest image. The host’s objects cannot access the

guest image but through the membrane’s objects. The mem-

brane objects are part of the host image and provided as a

library in it.

The membrane contains objects to manipulate both the

guest image as a whole and its inner objects individu-

ally. To manipulate the image as a whole, it provides one

façade [GHJV95] object, the objectSpace. The objectSpace is

a first-class object reifying the object space. Figure 2 shows

the main methods conforming the API of an objectSpace ob-

ject in Oz. To manipulate the individual objects inside the

guest image in a controlled way, the objectSpace object pro-

vides mirrors, as described in Section 3.3.

3.3 Mirrors for Object Manipulation

The manipulation of objects inside the object space image

cannot be achieved with a traditional message send mecha-

nism. In the normal case, when a message send is performed,

the virtual machine takes the selector symbol of the message

and lookups in the class hierarchy method dictionaries of

the receiver until it finds a method with the same (identical)

selector. In our scenario, both host and guest images con-

tain their own Symbol class and symbol table. Then, when

performing a cross image-message send the method lookup

mechanism takes a selector symbol from the host, lookups

into the guest receiver’s hierarchy, and finally fails because

the selector in the guest is (while maybe equals) not identi-

cal to the selector in the host. Also, forcing a cross image-

message send by using a guest’s selector can leak host refer-

ences to the guest: activating a guest method from the host

gives the guest complete access to the host through the this-

Context special variable which reifies the stack on-demand.

To encapsulate and control the basic object manipulation,

the object space façade object provides mirrors [BU04].

Mirrors hide the internal representation of the objects inside

the objectspace and expose reflective behavior. The guest is

not aware of the existence of these mirrors.

A basic object mirror provides the following operations:



"accessing"

nilObject

falseObject

trueObject

specialObjectsArray

classNamed:

classes

compactClassAt:

compactClassAt:ifNone:

globalNamed:

"conversion"

fromLocalByteString:

fromLocalByteSymbol:

fromLocalCharacter:

fromLocalCompiledMethod:

toLocalByteString:

toLocalByteSymbol:

toLocalCharacter:

toLocalCompiledMethod:

"process manipulation"

createProcessWithPriority:doing:

installAsActiveProcess:

transferControl

ObjectSpace

Figure 2. The API of an object space

Field Manipulation. Operations to get and set values in

both instance variables and variables fields of an object,

such as at: and at:put:, or instVarAt: and instVarAt:put:.

Size calculation. Operations to get the size of an object

expressed in the amount of instance variables and amount

of variable fields, such as fixedSize and variableSize.

Class access. Operations to introspect and modify the be-

havior of an object, such as getClass and setClass:.

Special Objects Tests and Conversions. Operations to test

if an object is a primitive1 object such as nil, true or false,

and to convert it to its equivalent in the host image, such

as isNilObject, isSmallInteger or asBoolean.

All objects inside an object space and reachable by ref-

erence can be retrieved by host’s objects through the object

space facade and mirrors. There is no limitation nor restric-

tion for object access. The host manipulates all objects in a

homogeneous way through their mirrors.

Additionally, specific mirrors are provided to manipu-

late objects with a specific format and/or behavior such as

Class, Metaclass, MethodDictionary, CompiledMethod, Method-

Context, and Process.

1 we mean by primitive objects those that represent the simplest elements in

the language

3.4 Controlled Execution

An object space’s execution is fully controllable from the

host. The host can introspect and modify an object space pro-

cesses via mirrors to obtain information such as the method

currently on execution, the values on the stack or the current

program counter. Besides from those reflective operations,

an object space provides also operations to suspend, resume

or terminate existing processes, and to install new ones.

The object space provides fine-grained control on the

guest execution. An object space controls the amount of

CPU used by the guest image. This way, a virtual image can

be customized for scenarios like for example testing, CPU

usage analysis, or old hardware simulation. For example, it

may restrict its processes to run during only 300 millisec-

onds every second for either.

3.5 Controlled Communication

As explained in Section 3.1, an objectspace is an isolated

object graph in the sense that from the guest image there is

no way to reach host objects. However, the opposite relation

is possible: the host can manipulate completely the object

space.

The communication mechanism between host and guest

images is based on the injection of objects into the ob-

ject space. The host may install from simple literal objects

such as strings or numbers, up to more complex objects like

classes, methods. An object space permits to send messages

to objects inside itself by injecting process with the specified

code. Injected processes may have any arbitrary expression.

The membrane objects can retrieve the result from the pro-

cess’ context once the execution is finished.

The object space membrane ensures that object injection

honors the transitive closure property. On one side, literal

objects from the host are automatically translated to their

representation in the object space. An object space imple-

ments the operations to transform literal objects (numbers,

strings, symbols, some arrays and byte arrays) from and to

its internal representation.

On the other side, non literal objects are actually not

created in the host and injected in the object space. Non

literal objects are directly created in the object space, so the

task of injecting the new object inside a graph is safe.

3.6 A Guest Image Contract

The creation and set up of an object space is done by putting

in place the guest image and setting up the correspond-

ing membrane. The guest image can be created either from

scratch or by loading an existing image file. One way to cre-

ate a guest image from scratch is for example by bootstrap-

ping it given a specification. On the other side, loading an

existing image file consists in putting the object graph from

that image inside the object space.

Once the guest image is available, the host only sees it

as a big object graph, not being able of differentiate the ob-



jects inside it. Then, to be able to manipulate the internals

of the object space, the objectSpace and mirror objects must

be configured with information about the internal represen-

tation of the guest image objects. They need the following

kind of information in order to discover the rest of the guest

image:

Special instances. In order to write some tools, and do

comparisons and testing methods, the object space needs

to know how to reach special instances such as nil, true

and false.

System Dictionary. For the object space give access to

classes, traits and even global variables installed in its

inner image, a description on how to reach them must be

provided.

Processes. It is important, for execution manipulation (cf.

Section 3.4), that the image provides access to its pro-

cess machinery. The accessibility to processes in running,

suspended or even terminated state is vital, while it is

also desirable the access processes in failing state for pro-

cess monitors and debuggers. Direct access to the process

scheduler and the priority lists is also desirable.

Literal Classes Mappings. Communication between host

and guest require the translation of literal objects from

and to the internal representation of the guest image (cf.

Section 3.5). To achieve this, the object space needs to

know the classes and internal format of those objects and

thus, a mapping specifying the transformation must be

provided. For example, the object space should know

which are the classes inside the guest image that cor-

respond to the host ByteString and SmallInteger ones to

transform them if necessary.

Special classes internal representation. In order to ma-

nipulate some special objects in the object space, such as

classes, metaclasses, processes and contexts, the internal

representation should be given. Their internal representa-

tion includes both the amount of instance variables and

variable fields, their size in memory, and their meaning.

For instance, a class object format must include which

are the instance variables containing the class name and

the instance variables list.

4. Oz implementation in the Pharo Platform

We implemented Oz2 in the Pharo 2.0 platform. Our solution

virtualizes Pharo images and provides, as already described,

the ability to fully control their object graph, inject objects

in a safe way and control their execution.

Our implementation includes a language side library re-

sembling the membrane objects and an extension to the

Stack virtual machine. We decided to extended the Stack vir-

tual machine to avoid dealing with the complexity of the Just

2 The code can be found under http://www.smalltalkhub.com/#!/~Guille/

ObjectSpace with licence MIT

In Time (JIT) compiler. The virtual machine extensions, de-

scribed in Sections 4.5 and 4.6, include the addition of three

primitives (load an image into the object memory, transfer

the execution to an object space, and install an image in an

object space as host) and the modification of the function in

charge of the context switch mechanism.

In this section, we explain the details of our solution’s

implementation. We intend this section to document both

the features a programming platform (language and virtual

machine) should provide to build this kind of solution and

the way our solution uses those features.

4.1 Pharo current infrastructure

To implement Oz we had to understand and the Pharo infras-

tructure (virtual machine and libraries), to transform it from

a single-image to a multi-image solution. We describe the

elements that we consider as key to understand our solution.

The special objects array. Pharo virtual machine holds the

state of the image that is currently running into a spe-

cial objects array object. The special objects array is a

simple array object referencing special objects the virtual

machines accesses and manipulates directly. For exam-

ple, it references objects such as the boolean and numeric

classes or the nil, true and false instances. Some elements

inside the special objects array are optional, and there-

fore, may not be found in a Pharo image. We detail the

contents and semantics of the Pharo special objects array

in appendix A.

Concurrency through green threads. In Pharo, only one

kernel (operating system) thread is used to execute code.

Pharo processes are first class objects which share the

same memory space as any other object in the sys-

tem. The virtual machine internally handles and sched-

ules them. Processes scheduled using this approach are

also called green threads . Green threads provide pro-

cess schedulling without native operative system sup-

port while limiting the proper usage of modern multicore

CPUs.

Particularly, the special objects array contains a process

scheduler object and its corresponding process objects,

implementing the green threads.

Single interpreter assumptions. The virtual machine code

makes many assumptions given the fact that the system

is single-image. For example, the interpreter relies on

constants and static variables, forbidding the ability to

run two complete separate virtual machine interpreters

in the same process. In addition, many of the virtual

machine plugins such as the socket plugin handle their

own internal state and store it outside of the image. This

way, plugins state is shared for the whole virtual machine

process, and would also be shared among the virtual

images.

http://www.smalltalkhub.com/#!/~Guille/ObjectSpace
http://www.smalltalkhub.com/#!/~Guille/ObjectSpace


4.2 Oz Memory Layout

We decided to make an object space share the same memory

space (the object memory) used by the host. Then, objects

from both host and guest are mixed in the object memory,

and not necessarily contiguous, as shown in Figure 3. This

decision is funded on minimizing the changes made to the

virtual machine, because of its complex state. Our decision,

while easing the development of our solution, has the fol-

lowing impact on it:

Reuse memory handling mechanisms. We use the same

existing memory infrastructure as when no object spaces

are used. Existing mechanisms for allocating objects or

growing the object memory when a limit is reached can

be reused transparently by our implementation.

Simplify the object reference mechanism. References

from the membrane objects to the guest image objects

are handled as simple object references. No extra support

from the virtual machine was developed in this regard.

Shared garbage collection. Since objects from the host

and guest are mixed in the object memory, and their

boundaries are not clear from the memory point of view,

the garbage collector (GC) is shared between them. Every

GC run must iterate over all their objects, increasing its

time to run.

Observer’s effect on an object space’s memory. Analyz-

ing and controlling an object space’s memory still suffers

from the observer’s effect in our solution: every action

taken by the host on the object space modifies the shared

memory, and therefore alters the process. Because of this,

an object space’s memory cannot be properly analyzed.

4.3 Oz Mirror Implementation

Our implementation of mirrors manipulate the objects inside

an object space by using already existing primitives. There

was no need to implement new primitives in the virtual

machine since the existence of two primitives:

Execute a given method on an object. Given a method,

it is possible to execute it on an object, avoiding

method lookup in the object. In the current virtual ma-

chine, this primitive is implemented in the method re-

ceiver:withArguments:executeMethod: of the Compiled-

Method class. This method receives as arguments the ob-

ject on which the primitive will be executed, an array of

arguments, and the method to execute.

Execute a primitive on an object. It is possible to send

a message to an object, so a primitive is executed on

the receiver. This primitive is implemented in Pharo’s

ProtoObject class as tryPrimitive:withArgs: . It receives

as argument the number of the primitive and an array or

arguments.

Since the primitive tryPrimitive:withArgs: executes the

given primitive on the receiver of the message, and we want

our mirrors to avoid cross image-message sends (cf. Sec-

tion 3.3), we combine both primitives. We use primitive re-

ceiver:withArguments:executeMethod: to execute the primitive

method tryPrimitive:withArgs: on the object from the guest im-

age, avoiding the cross image-message send and executing

directly the primitive on the given object.

CompiledMethod

receiver: aGuestObject

withArguments: { aPrimitiveNumber . anArrayOfArguments }

executeMethod: (ProtoObject >> #tryPrimitive:withArgs:)

Figure 4. Combining the two primitives to execute a primi-

tive on a guest object

Our mirror system contains three main mirrors regarding

the internal representation of objects: a mirror for objects

containing just object references such as Array or OrderedCol-

lection, a mirror for objects with non-reference word fields

such as Float or WordArray and a last one for objects with byte

fields such as ByteArray or ByteString. In addition to them, we

provide specialized mirrors for some kind of objects. The

list of current mirrors we provide is the following: Object-

Mirror, ByteObjectMirror, WordObjectMirror, ClassMirror,

MetaclassMirror, ClassPoolMirror, MethodDictionaryMir-

ror, MethodMirror, ContextMirror, ProcessSchedulerMirror

and ProcessMirror.

4.4 Oz Process Manipulation and Scheduling

Processes inside an object space are first class objects as well

as the ones inside Pharo. They are exposed to the host im-

age as mirrors. Resuming/activating a process consists in re-

moving it from the suspended list in its scheduler and put

it as the active process in its image. Suspending a process

consists in putting the process in the corresponding suspen-

sion list of its process scheduler. The ProcessMirror and the

ProcessSchedulerMirror handle the schedulling in the guest

image and keep the consistency in the object space process

scheduler.

Using Oz, we can also create and install new processes

inside an object space given a code expression. The creation

of a process requires the creation of a compiled method with

the code (bytecode) corresponding to the desired expression

and a method context. The compiled method with the code

to run is obtained by compiling the expression in the host

and creating an object space compiled method. The object

space compiled method is then provided with the compiled

bytecode and its corresponding literals.

4.5 Oz Context Switch between Images

An object space has, as well as the host image, its own spe-

cial objects array. Thus, for consistency, the execution of

a piece of code inside an object space must use the cor-

responding special objects. For example, when evaluating

the expression ’someObject isNil’ inside an object space, the
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Figure 3. Objects from the host and guest are mixed in the object memory. In this figure, after the nil, true and false host

instances, follow the corresponding ones of the guest, which can in order be followed by objects of the host, like the string ‘hi’.

object referenced by the variable someObject must be com-

pared against the nil object of the executing object space. We

modified the virtual machine to be able to perform a con-

text switch between the host image and the object space, and

making it sensitive to the corresponding special objects ar-

ray. We kept the single threaded nature of the vm, so the

context switch between images puts the running image to

sleep and awakens the new one. There are no concurrency

problems between the different images.

Our modified VM has a special reference to the host’s

special objects array. To let an object space run, we imple-

mented a primitive to explicitly give control to the object

space by installing its special objects array. This primitive

puts the current running process to sleep, changes the spe-

cial objects array to the one request, and finally awakens the

process installed as active in the object space. Figure 5 con-

tains the VM code implementing this primitive.

Our implementation also supports the possibility to pro-

vide a controlled window of execution to an object space.

The current VM possesses a heartbeat thread it uses to pro-

voke a context switch every 20 milliseconds. Our imple-

mentation uses the heartbeat mechanism to pause the cur-

rent object space process and give the control back to the

host. We changed the VM function checkForEventsMayCon-

textSwitch: adding the code in Figure 6, to use the behavior

implemented in the primitiveResumeFromASpecialObjectsAr-

ray: primitive.

4.6 Creating an Oz object space

An object space can be created either from scratch or by

loading an existing image. Loading an existing image was

implemented as a virtual machine primitive, because the

image snapshot is actually a memory snapshot and therefore,

easier to handle at VM level. This primitive, implemented

with the code shown in Figure 7, reads the snapshot file,

puts all objects into the object memory, updates the object

references to make them coherent and finally returns the

special objects array of the loaded image.

On the other side, creating an object space from scratch

can be implemented as a bootstrap of the system, following

the process defined in [PDF+on]. The object space provides

the createObjectWithFormat: method to create an object re-

specting the given format but with an anonymous class, so

we can consider it as a "classless" object. This method is

used in the first stage of the bootstrap process, when no

classes are available in the object space image yet, to cre-

ate the nil instance (cf. Figure 8) and the first classes (cf.

Figure 9). Later, when the classes are available, those ob-

jects are set their corresponding ones by using the setClass:

message.

4.7 Oz Image Contract and Membrane Configuration

Section 3.6 states the need for establishing a contract be-

tween an image and the object space in order to build the ob-

ject space membrane. This contract has, in our understand-

ing, two complementary parts: the services an image pro-

vides, and the format to access them.

Image services. In order for the host to manipulate the im-

age inside an object space, the guest image must provide

the required services. Those services are exposed as ob-

jects to the host, and their availability is given by how

reachable they are in the object graph. For example, to

get the list of classes inside an object space or to manipu-

late its processes, its system dictionary and its processor

should, respectively, be reachable in the image’s object

graph.

Given a Pharo image from the current distribution, the

reachability is constrained by its special objects array.

The special objects array is the only object directly ac-

cessible of an image, since an image file contains in its

header an explicit reference to it. So far, we understand

the objects served by an image are the ones in the special

objects array (cf. Section 4.1)

The special objects array contains references to many

of the objects the membrane needs: nil, true, false, the

processor, the numeric classes, the System dictionary,

the compact classes, and some but not all literal classes.

However, some elements in the special objects array are

not mandatory in Pharo (cf. Section 4.1). For example,

the System Dictionary may not available and then, there

is no easy way to find all classes in the system.

The current special objects array in Pharo does not pro-

vide all necessary services. It has to be extended to sup-

port, for example, the recovery of process objects sus-

pended because of an error. These processes currently are

only referenced by graphical debuggers, and thus not eas-

ily reachable from the special objects array.



primitiveResumeFromASpecialObjectsArray:

aSpecialObjectsArray

| oldProc activeContext newProc |

"we put to sleep the current running process"

oldProcess := self activeProcess.

statProcessSwitch := statProcessSwitch + 1.

self push: instructionPointer.

self externalWriteBackHeadFramePointers.

activeContext := self

ensureFrameIsMarried: framePointer

SP: stackPointer.

objectMemory

storePointer: SuspendedContextIndex

ofObject: oldProc

withValue: activeContext.

"we replace the special objects array"

self replaceSpecialObjectsArrayWith: aSpecialObjectsArray.

"we awake the process"

newProc := self activeProcess.

self externalSetStackPageAndPointersForSuspendedCon-

textOfProcess: newProc.

instructionPointer := self popStack

replaceSpecialObjectsArrayWith: newSpecialObjectsArray

objectMemory specialObjectsOop: newSpecialObjectsArray.

objectMemory nilObject:

(objectMemory splObj: NilObject).

objectMemory falseObject:

(objectMemory splObj: FalseObject).

objectMemory trueObject:

(objectMemory splObj: TrueObject).

"Reinitialize VM state to point to the correct nil object"

method := objectMemory nilObject.

messageSelector := objectMemory nilObject.

newMethod := objectMemory nilObject.

lkupClass := objectMemory nilObject.

Figure 5. VM functions written in Slang to transfer control

to a virtualized image

The image format. Given an object in the guest image, its

enclosing object space requires its internal representation

and format to manipulate it correctly. We mean by in-

ternal representation its size, its amount of variable and

fixed slots, the kind of and size of those slots, and in some

cases their meaning.

First, the semantics associated to the special objects array

and its contents should be provided. That is, what does

each index of the array mean.

((hostSpecialObjectArray ~~ objectMemory nilObject)

and:

[objectMemory specialObjectsOop ~~ hostSpecialObjectArray])

ifTrue: [

self primitiveResumeFromASpecialObjectsArray:

hostSpecialObjectArray.

].

Figure 6. Additions to VM function checkForEventsMay-

ContextSwith: written in Slang to give back control to the

host image.

Second, the guest image may differ from the host Pharo

image. Then, the object space needs to make a correlation

between the literal classes inside both host and guest to

transform instances from and to the object space format.

The classes subject to this correlation in our current im-

plementation are ByteString, ByteSymbol, Array, SmallInte-

ger, Character and Association. Such correlation is done

by providing the corresponding transformation methods.

Finally, some mirrors must manipulate the internal state

of special objects, and thus they must know their internal

structure. The membrane configuration must provide the

meaning of the instance variables of such special objects

i.e., the ProcessSchedulerMirror needs the index of the

activeProcess and processList, and the ClassMirror needs

the index of the superclass, method dictionary and name

instance variables.

4.8 Non Implemented Aspects

For the sake of completion, we document in this subsection

the aspects that have not been yet implemented in our solu-

tion.

Our current implementation does not handle properly

the release of resources such as files or network connec-

tions (sockets). In Pharo, the finalization and release of such

resources is made in the language side. Given the single-

threaded nature of our solution, an image running can pro-

voke the garbage collection of any object in the memory

even if they belong to another image, since the object mem-

ory is shared by all images (cf. Section 4.2). However,

garbage collection only activates in the current implementa-

tion the finalization process that belongs to the running im-

age. The finalization processes of other images are ignored.

Then, resources may leak, since they can be garbage col-

lected but not properly finalized and released.

Another yet not implemented aspect regarding resources

are global limitations imposed by the virtual machine. For

example, the virtual machine memory is accounted globally

without distinguish the usage per image; the virtual machine

network plugin accounts and limits the amount of open sock-

ets in a global way. In this sense, an image can use resources

indiscriminately and restricting their use to other images i.e.,



primitiveLoadImage

| headerlength bytesRead newImageStart rootOffset old-

BaseAddress dataSize rootOop fileObject |

"get the reference to the file object"

fileObject := self stackValue: 0.

"Where will we put the new objects"

newImageStart := objectMemory startOfFreeSpace.

"read image header"

self readLongFrom: fileObject.

headerlength := self readLongFrom: fileObject.

dataSize := self readLongFrom: fileObject.

oldBaseAddress := self readLongFrom: fileObject.

rootOffset :=

(self readLongFrom: fileObject) - oldBaseAddress.

"seek into the file the start of the objects"

self seek: headerlength onFile: fileObject.

"grow the heap in the ammount of the image size"

objectMemory growObjectMemory: dataSize.

"read the file into the free part of the memory"

bytesRead := self

fromFile: fileObject

Read: dataSize

Into: newImageStart.

"tell the vm the free space is now after the loaded objects"

objectMemory advanceFreeSpace: dataSize.

"update the pointers of the loaded objects"

self

updatePointersForObjectsPreviouslyIn: oldBaseAddress

from: newImageStart

until: newImageStart + dataSize.

"return the special objects array"

rootOop := newImageStart + rootOffset.

self pop: 2 thenPush: rootOop.

Figure 7. Implementation of primitive primitiveLoadImage

that loads an image snapshot into the object memory written

in Slang

if there is a total of 100 sockets and an image opens 70, the

rest of the images in the system have to share the 30 left.

5. Image Virtualization solving the Reflective

Architecture Problems

Virtualizing an image, and therefore obtaining fine grained

control on it from the language has several applications.

theNil := objectSpace createObjectWithFormat: nilFormat.

objectSpace nilObject: theNil.

Figure 8. Bootstrapping an object space: Creating a "class-

less" nil when there are no classes

metaclassMirror := objectSpace

createClassWithFormat: classFormat

forInstancesOfFormat: metaclassFormat.

metaclassClassMirror := objectSpace

createClassWithFormat: metaclassFormat

forInstancesOfFormat: classFormat.

metaclassMirror setClass: metaclassClassMirror.

metaclassClassMirror setClass: metaclassMirror.

Figure 9. Bootstrapping an object space: Creating "class-

less" Metaclass and Metaclass class when there are still no

classes

In this section we describe some applications that solve

common problems, although our solution is not constrained

to them.

5.1 Image Surgery and Emergency Kernel Layer

Oz solves typical image surgery scenarios [CPDD09] such

as the self-modification of the kernel and the recovery of bro-

ken images, described in sections 2.1 and 2.3. Using object

spaces turn self-brain surgery into simple brain surgery, by

introducing the role of the surgeon with a host image. Bro-

ken images can be loaded inside an object space to be subject

of surgery in an atomic way. The host contains high-level

tools such as a browser, an object inspector and a debugger

to manipulate the object space and ease the surgery.

By using virtual images we can also provide a rich and

interactive Emergency Kernel: whenever an error occurs in

the running Pharo system because of self-brain surgery, the

system can give the control to a fallback image. This fallback

image is a full image containing the failing image inside

an object space, and tools to act upon it, so it can perform

surgery to solve the problem. The fallback image is to the

system an Emergency Kernel which compared to the orig-

inal emergency evaluator solution, has no dependencies on

the failing image and therefore avoids its self-brain surgery

problems. After the surgery, the main system can get back

the control and continue running.

5.2 Controlled Interruption

Image virtualization can provide a solution for process in-

terruption (cf. Section 2.2). When an object space is inter-

rupted, its host obtains the control letting the interrupted ob-

ject space untouched. This way, the interruption process has

its two problems solved:



Non intrusive interruption. The state of the object space

when the interruption took place remains unchanged. The

problematic process can be found easily since is not

moved to a suspended list, but remain as active process

in the asleep object space.

Non restricted interruption. Since interruption is handled

by the host image, there are no restrictions on which pro-

cesses can be interrupted by the interrupt key combina-

tion.

5.3 Sandboxing

Oz can be used to sandbox applications by limiting the

scope of side effects and the CPU consumption.

For example, running the some test suites of Pharo lets

the system in a dirty state because of side effects. For ex-

ample, the test case MCWorkingCopyTest unloads the Monti-

celloMocks package and reloads it again as Monticellomocks,

without respecting the original casing. Oz leverages this

problem by isolating the side effects inside the object space.

The host stays unaffected and can analyze the test results

when they finish to run. Finally, the object space under test-

ing can be discarded while the user can continue working

with the host.

6. Discussion and Related Work

In the field of virtualizing reflective object oriented lan-

guages and their runtimes, we did not find so far a work

directly related with our solution. There is, however, work

on isolation related with some parts of it, specially with the

internal low level implementation details.

The memory layout we implemented has, as we stated in

sections 4.2 and 4.8, many advantages regarding the devel-

opment of our solution, but presents also many drawbacks.

Sharing the object memory between different images implies

that there is no need for special support on cross-image ref-

erences, and that the existing memory management in the

virtual machine can be used transparently. However, this so-

lution forbids the host to analyze the object space memory

usage, and has an impact on the GC.

J-Kernel [HCC+98] and Luna [HvE02] present a solution

similar to ours regarding the memory usage. They are Java

solution for isolating object graphs with security purposes.

In them, each object graph is called a protection domain.

All protection domains loaded in a system, and their objects,

share the same memory space.

The J-Kernel enforces the separation between domains

by using the Java type system, the inability of the Java lan-

guage to forge object references, and by providing capability

objects[Lev84, MRC03, Spo00] enabling remote messaging

and controlling the communication. This same separation in

Luna [HvE02] is achieved by the modification of the type

system and the addition in the virtual machine of the remote

reference concept. In our solution, the separation is given by

the same inability to forge object references and the mem-

brane objects that control the communication.

KaffeOS [BHL00] makes an explicit domain separation

in memory by using different memory heaps in the virtual

machine. They enforce domain separation by using memory

write barriers. Cross-domain references become cross-heap

references, and thus, they need special virtual machine sup-

port.

Regarding the threading model (cf. Section 4.5), a Pharo

virtual machine has single threaded execution with green

threads (cf. Section 4.1). In our implementation, their usage

allowed us to reuse the current virtual machine schedulling.

We also use a green thread approach to schedule image

execution. All images are executed in the same single thread,

one at a time. This model simplifies our implementation

because it avoids concurrency problems between host and

guest images.

KaffeOS presents a model where resource accounting is

handled at the level of the virtual machine. Our solution

aims to control and account resources at the language level.

However, our implementation is not complete yet on this

front.

Worlds [WK08] scope side-effects of Javascript programs

by reifying the notion of its state. Our solution takes a similar

approach by reifying images. In our solution, images have

a notion of their own state just like Javascript Worlds, but

include also its manipulation from the outside.

In Kansas [SWU97], Smith et al. present a similar solu-

tion to the emergency kernel (cf. Section 5) for a collabora-

tive environment based on Self [US07]. Smith et al. classify

errors in three different categories: benign errors are the ones

the user can solve by itself by using the typical debugging

tools in the main system, fatal errors are those ones that pre-

vent the system to continue, they lead to a system crash, and

finally, a third category of errors that makes the system un-

usable from itself but does not cause a system crash. These

last errors are trapped and solved in a separate alive envi-

ronment, equals to Kansas, but called Oz, which does not

fully share the same code base as the broken system. Once

the problem is solved, users leave Oz and return to Kansas to

continue their work. While Kansas makes focus on collabo-

rative work, it is not addressed in the paper which level of

isolation exist between Kansas and Oz, and what they share

or not. In our work, both the host and guest images have each

one their own and separate kernel, allowing to safely make

changes into the guest image from the host.

The Squeak interpreter simulator [IKM+97, Mir11] was

born as a project to enable the development of the Squeak

image and virtual machine from Squeak itself. With the in-

terpreter simulator, a Squeak virtual machine is programmed

using Squeak objects. The simulator reifies virtual machine

related concepts such as the object memory, execution stack,

interpreter and process schedulling. Thus, the interpreter

simulator allows to load a smalltalk image inside an object



memory instance and manipulate it freely from the host im-

age. Regarding the internal details, the host virtual machine

interprets the object memory instance as a single byte ob-

ject. The host garbage collector does not traverse the graph

inside the simulator object memory avoiding the problems

of sharing the object memory as in Oz. The interpreter simu-

lator has its own reference to the special objects array inside

its object memory, for what no virtual machine changes are

needed. From the external point of view, the interpreter sim-

ulator does not encapsulate properly the objects inside the

object memory nor provides a high-level API for their ma-

nipulation as the membrane present in Oz.

7. Conclusion and Future Work

This paper explores image virtualization for object oriented

reflective systems such as Smalltalk. We present Oz, an ob-

ject space based solution for image virtualization. Oz object

spaces provides services to control and manipulate Smalltalk

images, without enforcing the inclusion of extra libraries

inside them. In particular, Oz object spaces allow image

surgery and the manipulation of an image’s execution from

the language.

Oz object spaces encapsulate and enclose their inner im-

age by creating a membrane of objects responsible for its

communication and control. The membrane is composed by

a façade object which reifies the object space, and mirrors

that control the communication between the host and single

objects inside the object space. This façade and mirrors hide

the internal details of the object space, such as its internal

representation, memory layout or threading model. This en-

capsulation property may allow to implement alternative Oz

object spaces, polymorphic with the current one. For future

research we would like to explore the object space API for

controlling remote images and how it relates to distributed

images.

Oz presents a green thread scheme of execution. It vir-

tualizes processes and avoids concurrency problems by en-

forcing mutual-exclusion of the execution of different im-

ages. As future work, we want to explore the introduction of

operating system threads to take advantage on the latest mul-

ticore CPUs, take control of them through the objectspace

and account their consumed resources through the language.

For future work, we would like to explore Oz as an infras-

tructure for developing customized Smalltalk kernels and

software analysis.
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A. Appendix: The Special Objects Array

In this appendix the present an overview of the special objects array used by the Pharo platform. We present for each of its

indices: (a) the object to be found, (b) if that object is mandatory for the virtual machine and (c) relevant comments. If the

object is not mandatory for the virtual machine, a nil reference will took the place most certainly.

We emphasize in bold the objects required so far in Oz in order to be able to introspect an image. The availability of literal

classes can be replaced by the availability of the system dictionary and the required class names in the membrane configuration.

Array Index Required in

Pharo Stack

VM core

Object Details

1 x nil

2 x false

3 x true

4 x Scheduler association

5 Bitmap class Required only for graphics.

6 x SmallInteger class

7 x ByteString class

8 x Array class

9 System dictionary Elemental: without it, Oz cannot reach all

classes in the image.

10 x Float class

11 x MethodContext class

12 BlockContext class This class does not exist any more in

Pharo.

13 x Point class

14 LargePositiveInteger class

15 Display class Required only for graphics.

16 x Message class

17 CompiledMethod class Not used by the Virtual Machine

18 Low space semaphore Used to signal low space

19 x Semaphore class.

20 x Character class

21 x doesNotUnderstand: selector

22 x cannotReturn: selector

23 Low space process The Virtual Machine uses this internally.

Not used by the language.

24 x Special selectors array An array of the 32 selectors compiled as

special bytecodes.

25 x Character table An array of the 255 Characters in ascii

order.

26 x mustBeBoolean selector

27 ByteArray class

28 Process class Not used by the Virtual Machine.

29 x Compact classes array An array of up to 31 classes whose in-

stances have compact headers.

30 Delay semaphore Used if schedulling timers only.

31 Interrupt semaphore Used for VM side interruption.

32 Float prototype Not used by the Virtual Machine.

33 LargePositiveInteger prototype Not used by the Virtual Machine.

34 Point prototype Not used by the Virtual Machine.



Array Index Required in

Pharo Stack

VM core

Object Details

35 x cannotInterpret: selector Used in case method dictionary in a class

is nil.

36 MethodContext prototype Not used by the Virtual Machine.

37 x BlockClosure class

38 BlockContext prototype Not used by the Virtual Machine .

39 x External objects array Array of objects referred by external code.

40 Mutex Not used by the Virtual Machine.

41 LinkedList for overlapped calls in CogMT Used by another Virtual Machine imple-

mentation.

42 Finalization Semaphore

43 LargeNegativeInteger class

44 ExternalAddress class Used for FFI calls.

45 ExternalStructure class Used for FFI calls.

46 ExternalData class Used for FFI calls.

47 ExternalFunction class Used for FFI calls.

48 ExternalLibrary class Used for FFI calls.

49 x aboutToReturn:through: selector Used to notify of unwind contexts.

50 x run:with:in: selector For objects as methods usage.

51 Immutability message Not used in Pharo.

52 FFI errors array Not used by the Virtual Machine.

53 Alien class Used for FFI callbacks.

54 invokeCallback:stack:registers:jmpbuf: selec-

tor

Used for FFI callbacks.

55 UnsafeAlien class Used for FFI callbacks.

56 WeakFinalizer class. Used in Weak finalization.
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