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ABSTRACT

The choice of the distance measure between time-series

representations can be decisive to achieve good classifi-

cation results in many content-based information retrieval

applications. In the field of Music Information Retrieval,

two-dimensional representations of the music signal are

ubiquitous. Such representations are useful to display pat-

terns of evidence that are not clearly revealed directly in the

time domain. Among these representations, self-similarity

matrices have become common representations for visual-

izing the time structure of an audio signal. In the context of

organizing recordings, recent work has shown that, given

a collection of recordings, it is possible to to group perfor-

mances of the same musical work based on the pairwise

similarity between structural representations of the audio

signal. In this work, we introduce the use of the Campana-

Keogh distance, a video compression-based measure, to

compare musical items based on their structure. Through

extensive experiments, we show that the use of this dis-

tance measure outperforms the results of previous work us-

ing similar approaches but other distance measures. Along

with quantitative results, detailed examples are provided to

to illustrate the benefits of using the newly proposed dis-

tance measure.

1. INTRODUCTION

Within the last few years, time-series methods and algo-

rithms have attracted the interest of many research com-

munities such as Data Mining and Information Retrieval.

Indeed, processes of interest generally change over time,

and the study of how these changes occur is a central issue

to fully understand such processes.

The choice of the distance measure between time-series

representations can be decisive to achieve good classifi-

cation results in many content-based information retrieval

applications. Two distance measures commonly used in

time-series analysis are the Euclidean distance (ED) and

the Dynamic Time Warping distance (DTW). The DTW
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can be understood as an extension of the ED, able to pro-

vide nonlinear time scaling invariance, popularly known as

warping [3]. Those simple and well-known distances have

been successfully applied to various kinds of problems and

have proven to be very hard to beat [9].

Some time-series features are not evident in the time

domain. There is a large number of research papers that

propose methods to explore alternative representations of

time-series, such as autocorrelation [1] and shapelets [20],

in order to clarify specific features.

In the hot context of organization and retrieval of large

collections of music, the notion of similarity between mu-

sic recordings is of great importance for many applica-

tions such as music summarization [8] or cover song re-

trieval [11]. In general, the similarity between two record-

ings is measured by comparing their respective time-series.

Music audio signals are highly structured at different

time-scales (bar, phrase-level, sections, etc.) and exhibit

repetitive segments, e.g. the so-called ABA sonata form

(exposition - development - recapitulation) in classical mu-

sic. Since their introduction in the domain of audio in

1999 [12], self-similarity matrices (SSMs) have become

common representations for visualizing the time structure

of an audio signal in terms of self-similarity and repeti-

tions. Such two-dimensional representations are obtained

by computing the pairwise similarity of an audio feature

sequence (such as mel-frequency cepstral coefficients [21]

or chromas [2]), and allow putting in evidence patterns that

are not clearly revealed directly in the time domain. For

instance, repeated patterns in the audio will appear as di-

agonal stripes in the SSM. For more details and a review

about music structure, we refer the reader to [24].

Among the various applications based on cross-retrieval

tasks, we are interested in this work in the problem of,

given a piece of music as a query, to automatically retrieve

from a given collection all performances (various interpre-

tations) of the query. We focus on classical music. Two in-

terpretations of the same piece will have a similar musical

content, but they may differ in many ways. Besides articu-

lation, phrasing and ornamentation, the global tempo may

be different from one performance to another. Local tempo

variations such as ritardandi may also exist. Moreover,

other factors such as the recording conditions, the loud-

ness or the instrumentation may result in huge dynamical

and spectral deviations between the two interpretations.



Despite these variations, recent work has shown that it

is possible to accurately measure the structural similarity

between two recordings by computing the pairwise sim-

ilarity between their self-similarity matrices, without ex-

tracting explicitly the underlying audio structure. In [16],

this approach is applied to the cover song detection prob-

lem. In [22], this approach is used to build a retrieval sys-

tem that searches a database for the musical piece that best

matches a given symbolic structural query. Of particular

interest to the present article are two closely related previ-

ous work that show that it is possible robustly group audio

performances of the same musical work by using a dis-

tance that measures the pairwise similarity between their

respective structural representations [4, 14].

In order to compare two-dimensional objects directly,

it is appropriate to use a distance measure specific to this

purpose. An example of that is the Campana-Keogh (CK-

1) distance [7], which uses the video compression as the

basis for estimating the dissimilarity between two images.

In this paper, we introduce the use of CK-1 to retrieve

music recordings based on its structural similarity to an au-

dio query. We show that the use of this distance measure

outperforms the results of previous work using similar ap-

proaches but other measures.

2. STRUCTURAL SIMILARITY

As mentioned above, there are at least two studies that

have successfully explored the possibility to retrieve mu-

sic recordings according to their structural similarity to an

audio query. In this work, we introduce the use of the CK-1

measure as an efficient distance that can be used to accom-

plish this task using self-similarity arrays.

This section describes each step of the proposed ap-

proach. We consider the following retrieval scenario. Given

a query recording and a collection of music recordings that

contains various performances of the same piece as the

query, along with recordings of different compositions, we

aim at retrieving all the performances of the query music

piece. To this end, we define the training and retrieve steps

by the Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Training phase

Require: v = A collection of music recordings

for i = 1→ length(v) do
s← SSM(v[i])
Stores s as image (bitmap)

end for

Algorithm 2 Retrieve phase

Require: q = A query recording

S = The collection of SSM extracted in the training phase

s← SSM(q)
D ← []
for i = 1→ length(S) do

d← dck1(s, S[i])
D ← concatenation(D, d)

end for
L← sort(D)
return L

2.1 Feature Extraction

The first step consists in extracting a set of features that

provides relevant information about the musical structure.

Among the various clues that humans use to determine

the structure of a music piece, the harmonic progression

is very important [6]. Since their introduction in 1999,

the Pitch Class Profiles [13] or chroma features [25] be-

came common features for describing the harmonic con-

tent of music. The chroma features are, in general, 12-

dimensional vectors that represent the spectral energy of

the pitch classes of the chromatic scale. They have been

successfully used for various content-based retrieval tasks,

especially in previous work on music similarity [4, 14].

Following these approaches, we extract a sequence of

chroma features, as well as two variants of chroma-like

features: the Chroma Energy Normalized Statistics (CENS)

and the Chroma DCT-Reduced log Pitch (CRP). CENS

features involve an additional temporal smoothing and down-

sampling step, leading to an increased robustness of the

features to local tempo changes. CRP features boost the

degree of timbre-invariance. We refer the reader to [23]

for more details. For chromagram computation, we used

the Matlab chroma toolbox 1 . All feature vectors are nor-

malized to have unit norm.

2.2 Self-Similarity Matrix and Recurrence Plots

In order to analyze the music structure, we used a self-

similarity matrix (SSM), defined by Equation 1.

S(i, j) = d(~x(i), ~x(j)), i, j ∈ 1 · · ·N (1)

where N is the length of the signal, ~x(i) and ~x(j) are

the feature vectors at positions i and j of the signal, respec-

tively, and d(·, ·) is a similarity measure. In this work, we

used the cosine distance defined by Equation 2.

d(~x(i), ~x(j)) =
< ~x(i), ~x(j) >

||~x(i)|| · ||~x(j)||
(2)

A well-known variation of the SSM is called Recur-

rence Plot (RP) [10], that introduces three parameters to

the SSM: an embedding dimension m, a time delay τ and

a closeness threshold ǫ. The general idea is that each vec-

tor ~x is augmented by m observations evenly spaced in τ
units of time. Therefore, we end up with a matrix X(i) ∈
ℜm×k, composed by ~x(i), ~x(i+ τ), . . . , ~x(i+ (m− 1)τ).
A RP can be formally defined according to Equation 3.

Ri,j = Θ(ǫ− d(X(i)−X(j))), X(i) ∈ ℜm×k
,

i, j = 1..N −m
(3)

where ǫ is a closeness threshold and Θ is the Heaviside

function (i.e. Θ(z) = 0 if z < 0 and Θ(z) = 1 otherwise).

For a better understanding of these parameters and the use

of closeness threshold, we recommend the reading of [15].

In short, RP is a thresholded version of the SSM, so that

the SSM is transformed into a binary matrix. The general

1 http://www.mpi-inf.mpg.de/resources/MIR/chromatoolbox/



idea of using the parameter ǫ is to discard spurious differ-

ences among observations that may hinder the visualiza-

tion of relevant events. However, we note that setting such

a parameter is not an intuitive task, and one frequently has

to rely on adhoc techniques to do so. As we will discuss in

Section 5, our experiments show that the use of SSM and

CK-1 distance can outperform the results obtained in the

literature with RP and Normalized Compression Distance.

2.3 Compression Distances

The CK-1 distance [7] is based on the concept of Kol-

mogorov complexity, proposed to quantify the randomness

of discrete sequences. The Kolmogorov complexity K(x)
of an object x is given by the size of the smallest program

capable to output x on a universal computer, such as a Tur-

ing machine [19]. Intuitively, K(x) is the minimal quantity

of information required to generate a string x with a pro-

gram. Similarly, the Kolmogorov conditional complexity

K(x|y) is the size of the smallest program to generate the

sequence x, given a sequence y as auxiliary input.

These concepts are the basis to a metric called Infor-

mation Distance, that is universal, in the sense that it sub-

sumes other measures [5]. Although Information Distance

has attractive theoretical properties, it is uncomputable in

the general case. Therefore, several research papers have

proposed approximations to this distance using compres-

sion algorithms [17, 18].

A widely used distance based on Kolmogorov complex-

ity is the Normalized Compression Distance (NCD) [18],

that uses standard compression algorithms to estimate the

Kolmogorov complexity. Let C(x) and C(y) be the sizes

of sequences x and y after they have been compressed, and

C(xy) the compression size of the concatenation of both

sequences. The NCD is defined by Equation 4.

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
(4)

NCD has shown to provide good similarity estimates

for various applications in discrete domain, such as strings

of DNA and natural language. NCD typically uses lossless

compression algorithms, which are well-suited for discrete

data. In short, lossless compression relies in finding exact

recurring sequences in data. However, images are com-

posed by real-valued pixels and exact repeating patterns

are rare. Another relevant issue is that generally the used

compression algorithms work over data sequences and are

not able to make use of spatial patterns present in images.

To overcome these limitations, the CK-1 distance makes

use of video compression algorithms. More specifically, it

uses the MPEG-1 compressor. Such an algorithm explores

recurring patterns within a frame and/or between consec-

utive frames to compress the video. When two consecu-

tive frames are composed of similar images, the inter frame

compression step should be able to exploit this structure to

produce a smaller file size, which is therefore interpreted

as significant similarity. As digital video is an important

commercial application, many efforts have been made to

achieve high compression rates in video encoding, mak-

ing it a good approximation of the Kolmogorov conditional

complexity.

In order to calculate a distance between two images, x
and y, we can create a fictional video with one frame for

each image. Thus, CK-1 is defined by Equation 5.

dck1(x, y) =
C(x|y) + C(y|x)

C(x|x) + C(y|y)
− 1 (5)

where C(x|y) is the size of a two-frame MPEG-1 video

composed by images y and x, in this order.

3. RELATED WORK

In [4], the author proposes an approach to retrieve music

using an intermediate representation of musical structure,

without any explicit determination of such structure. The

approach uses RP as representation of music structure and

NCD as similarity measure between two plots. The pa-

per performs a large-scale evaluation of the proposed ap-

proach, including an exploration carried out to find the best

parameter configuration, a comparison of front-end fea-

tures, embedding and recurrence analysis strategies. Sup-

ported by such a large experimental evaluation, the author

provides evidence of the effectiveness of the approach.

Subsequently, a similar method was proposed in [14],

using the Euclidean distance. Due to the simplicity of such

distance, the proposed method resulted in a more efficient

approach. However, temporal variations may cause recur-

rence shifts and the Euclidean distance is very sensitive to

patterns translations. To overcome this limitation, the au-

thors used a technique to smooth the resulting plot. The re-

sults, obtained on a dataset slightly different from [4] (with

a smaller number of recordings) also proved effective.

4. EXPERIMENTAL SETUP

We conducted a broad experimental evaluation to assess

the effectiveness of the proposed method for music retrieval.

In order to evaluate and fairly compare our method to pre-

vious work, we used the same data sets, and the same fea-

ture extraction parameter variation used in [4]. In addition,

we conducted experiments with a technique similar to that

presented in [14], applying the binarization and blur meth-

ods over the SSM.

4.1 Data Sets

In our evaluation phase, we used two datasets of the clas-

sical repertoire, kindly provided by the author of [4]:

• The first dataset, referred in this paper as 123tracks,

is composed by 123 recordings of 19 different works

from the classical and romantic period. Among these

tracks, 56 are played on piano and the remaining 67

are symphonic movements. In total there are 59 dif-

ferent conductors in this dataset;

• The second dataset, referred in this paper as Mazurkas,



consists in 2919 2 recordings of 49 Chopin’s mazurkas

for piano. These were recorded by 135 different pi-

anists.

4.2 Parameter Configuration

The CK-1 distance measure is parameter-free, as well as

the procedure to create the SSMs. However, CK-1 has a

small caveat, it requires that all images must have the same

dimensions. Since the dimensions of the SSM are propor-

tional to the recordings durations, which are variable, it is

necessary to resize the feature sequences to a fixed dimen-

sion d before extracting the SSM. In our experiments, this

is achieved by a resampling procedure, resulting in five dif-

ferent feature dimensions, d ∈ {300, 500, 700, 900, 1100}.

For each chroma-based feature, Chroma, CENS and CRP,

we used seven different analysis window lengths, resulting

in seven feature rates, f ∈ {0.333, 0.5, 1, 1.25, 2.5, 5, 10}
features/second.

To facilitate the reading and writing of parameter con-

figurations, we adopted the notation Featf=F ;d=D, where

Feat ∈ {Chroma,CENS,CRP} and F and D are the

values of feature frequency (f ) and the feature vector di-

mension (d), respectively.

4.3 Evaluation

All the experiments in this work were evaluated using mean

average precision (MAP). Consider a collection C consist-

ing of M items, and a subset Q ⊂ C containing n differ-

ent performances of the same music piece. Given a query

qi ∈ Q, we build a ranked list by arranging the results in

ascending order according to the calculated distance be-

tween all the pieces in the collection and the query qi. The

Average Precision (AP) is defined by Equation 6.

AP (qi) =
1

n

M∑

r=1

P (r)Ω(r) (6)

where r is the rank in the ordered list, and

P (r) =
1

r

r∑

i=1

Ω(i) (7)

and Ω(r) is 0 if the work r is relevant and 1 otherwise.

Finally, the MAP is defined by the mean of all AP values.

5. RESULTS

5.1 Results on the 123tracks dataset

We start presenting the results obtained with SSM and CK-

1 distance on the 123tracks dataset. Tables 1, 2 and 3 report

MAP results obtained by the proposed method, varying pa-

rameters to calculate the SSMs using Chroma, CENS and

CRP, respectively. Non-parametric paired Friedman and

Dunnet post-hoc tests were applied to compare the statisti-

cal difference between the results. Yellow-shaded cells are

statistically equivalent to the best result in each table.

2 This is the number of recordings presented in the official description
of the dataset. However, there are pieces that are not available, and we

Table 1. MAP results obtained with Chroma features
Feature Feature dimension (d)
rate (f) 300 500 700 900 1100

10 0.914 0.915 0.904 0.900 0.897
5 0.918 0.910 0.902 0.894 0.896

2.5 0.930 0.922 0.898 0.890 0.885
1.25 0.927 0.923 0.903 0.893 0.887

1 0.929 0.928 0.913 0.903 0.889
0.5 0.930 0.928 0.917 0.907 0.890

0.33 0.930 0.927 0.918 0.907 0.888

Table 2. MAP results obtained with CENS features
Feature Feature dimension (d)
rate (f) 300 500 700 900 1100

10 0.926 0.920 0.914 0.911 0.908
5 0.943 0.929 0.923 0.917 0.915

2.5 0.946 0.945 0.941 0.935 0.930
1.25 0.943 0.943 0.937 0.933 0.930

1 0.944 0.944 0.941 0.938 0.936
0.5 0.946 0.944 0.940 0.940 0.942

0.33 0.942 0.940 0.934 0.932 0.932

Since the parameter settings used in these experiments

are the same as those used in [4], the results can be di-

rectly compared. The results obtained with the proposed

method outperformed the results of [4] for all parameter

settings. For instance, the best MAP result obtained with

CK-1 and SSM is 0.946 (CENSf=0.5;d=300). The com-

peting method best result is 0.863 (CRPf=10;d=700), a sig-

nificant difference of almost 9%. We must note that CK-1

and SSM have no internal parameters to be searched for.

Meanwhile, the recurrence plots used in [4] have three pa-

rameters that need to be set. According to the author, after

a computational intensive search in the parameters space

varying the closeness threshold, the time delay and the em-

bedding dimension, the best result obtained was 0.921. We

note that such result is still outperformed by our parameter-

free method.

Although the performance difference is too small in or-

der to claim a statistically significant difference with high

confidence, there are other aspects that should be consid-

ered. The lack of internal parameters makes our method

much simpler to use and having its results replicated by

the research community. Another relevant issue is that

our method is very robust to changes of external param-

eters. A poor parameter choice in the feature extraction

step does not affect the performance significantly. For in-

stance, the worst result obtained by the proposed method is

found a total of 2914 recordings. This condition also applies to previous
work, therefore does not affect the comparison of results.

Table 3. MAP results obtained with CRP features
Feature Feature dimension (d)
rate (f) 300 500 700 900 1100

10 0.930 0.936 0.937 0.932 0.935
5 0.933 0.933 0.937 0.934 0.935

2.5 0.933 0.940 0.936 0.935 0.934
1.25 0.935 0.941 0.935 0.936 0.936

1 0.933 0.936 0.932 0.934 0.937
0.5 0.930 0.937 0.929 0.933 0.932

0.33 0.929 0.937 0.929 0,932 0.931



0.885, using Chromaf=2.5;d=1100, while in [4], the worst

result is 0.225. Such invariability to the parameter setting

is verified by the lack of statistically significant differences

among our best result and our remaining results when we

vary the external parameters. We also obtained an excel-

lent mean performance of 0.926 over all parameter values.

5.2 Further Experiments

We mentioned the fact that the NCD may not be appro-

priate to compare real value matrices. To prove this fact,

we applied the NCD on the SSMs obtained with the best

parameter configuration for Chroma, CENS and CRP, us-

ing the CK-1 distance. We also applied the NCD on the

matrices obtained by setting CRPf=10;d=700, the config-

uration that achieved the best result in [4]. The results of

this experiment are shown in Table 4, as well as the results

obtained using ED in the same configurations.

Table 4. Results obtained by applying NCD and ED on the SSM
in some configurations.

Configuration NCD ED

Chromaf=2.5;d=300 0.322 0.279
CENSf=0.5;d=300 0.382 0.313
CRPf=1.25;d=500 0.276 0.257
CRPf=10;d=700 0.271 0.262

With this simple experiment, it is possible to note that

ED and NCD are not appropriate to compare SSM directly.

However, in [14], it was shown that the ED can be effec-

tively used to retrieve songs by preprocessing the SSM. We

take advantage of such idea to evaluate the use of CK-1

distance in this context.

As we did not have access to the code used in [14], we

just simulated similar experiments by applying threshold

and blur procedures. In other words, we did not apply path

enhancement technique before applying the threshold. Our

goal is not to directly compare the results, because we do

not even have the same dataset. However, we can compare

the use of ED and CK-1 when some preprocessing opera-

tions are applied on the SSMs.

In the binarization step (application of a threshold), we

used the strategy to consider that k% of the closest points

in the SSM represent recurrence. Thus, these points are

transformed into black (0) pixels in the resulting RP. The

remaining become white (1). To evaluate different scenar-

ios, we used three different values for the threshold: k ∈
{10, 25, 50}. Furthermore, we used a two-dimensional

circular averaging filter (Pillbox) to blur the image, using

five different filter sizes: l ∈ {1, 5, 10, 20, 30}. Figure 1

shows different representations of the same recording of

the Chopin’s Prelude Op.28 No.4. Plot (a) represents the

SSM, plot (b) represents the RP (using 25% of the points)

and plots (c & d) the result of applying a blur filter on the

RP with four different sizes.

For the sake of space, we do not present all the results of

our experiments. Briefly, the best results obtained by the

use of distance ED in this context were better than those

obtained in [4], which used the RP-NCD, in most scenar-

ios. However, the results obtained by CK-1 distance in the
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Figure 1. Four different representations of the same recording:
(a) self-similarity matrix; (b) recurrence plot; (c) RP after appli-
cation of a blur filter with size l = 30.

same context were better than ED in all scenarios. The

best results obtained for each distance and each feature are

presented in Table 5.

Table 5. Results obtained after applying a threshold and a blur-
ring effect in the recurrence plots. The value k is the percentage
of black points and l is the size of the blur filter. The symbol ∗ in-
dicates where CK-1 is statistically outperformed ED in the same
parameter configuration.

k (%) l Distance MAP

Chromaf=2.5;d=300

50 1 CK-1 0.941∗
ED 0.816

10 20 CK-1 0.905
ED 0.872

CENSf=0.5;d=300

25 5 CK-1 0.924∗
ED 0.829

25 1 CK-1 0.919
ED 0.910

CRPf=1.25;d=500

25 30 CK-1 0.958∗
ED 0.893

10 30 CK-1 0.953
ED 0.941

5.3 Results on Mazurkas Dataset

We performed experiments on the Mazurkas dataset to val-

idate the results obtained in the previous experiments. We

first chose the parameter configuration CENSf=0.5;d=300

since it obtained the best classification performance in the

123tracks dataset. However, our method achieved a MAP

of 0.611, which we considered unsatisfactory. A more de-

tailed analysis of the SSMs showed that in many cases the

matrices were not able to clearly represent the recording

structure. This was due to the fact that the cosine distance,

used to extract matrices, resulted in short distances in many

cases. Thus, the figure generated by such distances con-

tains very dark colors when applied to a color scale be-

tween 0 and 1.

After analyzing the recordings, we can conclude that

the distances with small values can be directly related to

the frequency in which the features were extracted. A low

feature rate corresponds to a large analysis window, result-

ing in mixing several structurally distinct segments of mu-

sic. Since many pieces in the dataset have a short dura-

tion and numerous structural variations of short duration,

their structure can only be accurately analyzed with higher

frequencies of feature extraction. To prove this fact, we



performed the same experiment using CENSf=1;d=300,

achieving MAP = 0.760, without the need of normal-

izing the SSM, similar to the best result achieved in [4],

MAP = 0.767. The Figure 2 shows an example of the

difference between different feature extraction rates.
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Figure 2. Self-similarity matrices of the same piece, but

different feature rates: (a) 0.5f/s; (b) 1f/s;

Finally, we used the same dataset to test the configura-

tion CRPf=1.25;d=500 after the application of a threshold

(k = 25) and a blur filter (l = 30). This test was performed

since this configuration had the best result on the 123tracks

dataset. The effectiveness of the proposed method on this

setting was proved in this experiment. When analyzing

the structural similarity in this configuration using ED, we

reach the result of MAP = 0.652. However, when we

used the CK-1 measure, we obtained MAP = 0.795. This

result is statistically superior to the results obtained by com-

peting methods in the same dataset.

6. CONCLUSION

This paper proposes a simple and parameter-free approach

to recover music by its structural similarity. The only pa-

rameters involved in our method are those required in the

feature extraction step. We also show that our method is

robust to a poor choice of these parameters, provided the

parameter choices achieve meaningful SSM.

Through a wide experimental evaluation, we show that

our method is superior to the techniques presented in previ-

ous work. Furthermore, CK-1 outperforms other distances

regardless of pre-processing steps are performed in the sig-

nal or structural representation.

We believe that the contribution of this paper is not lim-

ited to the presentation of a new method for retrieving mu-

sic by structural similarity. We hope this work will en-

courage the scientific community to analyze signals from

various domains using visual representations and image-

friendly distance measures.
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