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SUMMARY

In this article, we present a numerical method to deal with fluid-solid interactions and simulate particle-fluid
systems as encountered in soils. This method is based on a coupling between two methods, now widely
used in mechanics of granular media and fluid dynamics respectively: the discrete element (DE) method and
the lattice Boltzmann (LB) method. The DE method is employed to model interactions between particles,
whereas the LB method is used to describe an interstitial Newtonian fluid flow. The coupling presented here
is a full one in the sense that particle motions act on fluid flow and reciprocally. This article presents in
details each of the two methods and the principle of the coupling scheme. Determination of hydrodynamic
forces and torques is also detailed, and the treatment of boundaries is explained. The coupled method is
finally illustrated on a simple example of piping erosion, which puts in evidence that the combined LB-DE
scheme constitutes a promising tool to study coupled problems in geomechanics.

KEY WORDS: particle-fluid system; lattice Boltzmann method; discrete element method; fluid flow; soil
piping erosion; hole erosion test

1. INTRODUCTION

The discrete element (DE) method [1] is now widely used for the investigation of the constitutive
mechanical behavior of granular media such as soils, dealing, for instance, with questions about
nonassociative flow rule [2, 3], shear band development [4, 5], and failure [6]. Although the
computation cost constitutes a limit for the DE method, it has also been applied for the study of
engineering problems (e.g., soil-inclusion interactions [7] or rock impacts on embankments [8]).

A challenging point nowadays is to extend the application of the DE method to multiphysic issues.
Concerning the framework of the fluid-solid interactions, the main efforts aim, on one hand, to take
into account interparticle capillary forces in partially saturated granular media [9, 10], and on the
other hand, to describe the fluid dynamics in the pore space of soils and to establish a full mechanical
coupling between the solid and the fluid phases.

Concerning this latter improvement, several attempts have been made where different scales were
considered for the description of the fluid dynamics. On one hand, the fluid flow can be described
at the scale of a cell including several solid particles [11]; hence, the computational cost is reduced
because the fluid dynamics is not resolved in each pore. However, because the method gives only
access to an average flow over a subset of particles, the computation of drag forces acting on each
solid particle requires strong hypotheses or semiempirical relations [11]. On the other hand, other
approaches aim to describe the fluid flow at a scale smaller than the pore or particle size [12]. The
objective was therefore to limit as much as possible the hypotheses made on the fluid flow and on the
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hydrodynamic forces acting on grains. In this latter case, the computation cost can rapidly become
prohibitive.

The solid-fluid coupled method developed and presented in this article is designed to analyze and
to improve the understanding of soil erosion. More particularly, the main objective is to investigate,
at the scale of soil grains or aggregates, the relevant parameters involved in the phenomenon
of solid particle detachment from the granular skeleton, under a water seepage. In this context,
hydrodynamic forces acting on solid particles have to be accurately computed with limited empirical
assumptions. One has therefore to properly describe the fluid flow through the interparticle space.

One of the main difficulties in modeling the fluid flow within the pore space of a granular
assembly is to deal with the complex moving boundaries, constituted by the deformable solid
granular skeleton. Such moving boundaries can be quite easily taken into account with the lattice
Boltzmann (LB) method [13], constituting an important advantage of this method over other
computational fluid dynamics (CFD) methods. Moreover, as for the DE method, the numerical
implementation of the LB method is quite straightforward. Finally, because the LB method is
versatile and can be adapted to model multiphase, free surface, thermal or reactive flows, the
treatment of a wide range of future developments and applications is possible. Previous research
works have presented such a coupling between the LB method and particle methods, mainly for the
case of dilute suspension [14, 15, 16] and generally without detailing all the aspects and difficulties
encountered in the implementation of a coupled LB-DE method scheme.

This article aims at presenting and describing the necessary details that should be taken into
account to achieve an efficient coupling between the DE and the LB methods. For the sake of
simplicity, the developments are here limited to a two-dimensional case. However, all the aspects
of the method can be directly generalized to the three-dimensional case. In the first section of this
article, the principle of the LB method is presented, with a special emphasis put on the definition
of the boundary conditions and on their adaptation to deal with moving solid particles. The second
section is devoted to the DE method, to point out the features of this method conditioning the solid-
fluid coupling, with, afterward, an emphasis on the numerical issues likely to be encountered when
achieving the full coupling between the LB and DE methods. To highlight the potentiality of the
proposed coupled method, we present in a final section an application concerning piping erosion in
a granular assembly similar to the laboratory hole erosion test (HET) [17].

In the different sections, the term particle can refer to several objects. In the DE method, a particle
is a solid object interacting with other ones through contact forces. In the LB method, a particle is
a microscopic entity carrying state information about the fluid system. These latter particles are
submitted to statistical physical interactions. The differences between the two types of particles
should always be kept in mind for a good understanding of further explanations.

2. LATTICE BOLTZMANN (LB) METHOD

The LB method is based on Boltzmann’s equation [18], derived from the gas kinetic theory. In this
work, Boltzmann introduced a binary collision operator to describe the time and spatial evolution of
a distribution function of particles. Later, Enskog and Chapman [19, 20] showed direct links between
the Boltzmann equation [18] and the Navier-Stokes equations, using a more complex collision
operator to deal with multiple collisions. In 1954, a simplified collision operator, called BGK, was
introduced by Bhatnagar-Gross-Krook [21]. The BGK operator is based on a time relaxation of the
distribution function of particles toward an equilibrium function to describe particle collisions.

Besides, in 1973, the first lattice gas cellular automata (LGCA) model was introduced by Hardy
and coworkers [22, 23]. The basic idea of the LGCA models is to simulate the macroscopic behavior
of a fluid flow with a very simplified model of the microscopic interactions between particles, where
time, space, and particle velocities are discretized. The principle of the LGCA model consists of
two sequential steps: collision and propagation. The collision step makes the direction of particle
velocities change, whereas the propagation step lets particles move to the nearest node in the
direction of its velocity. Links between LGCA and Boltzmann equation were established [24, 25]
and lead to the introduction of the lattice Boltzmann equation (LBE) [26]. The traditional LB model
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Figure 1. Discrete velocity directions in the D2Q9 model.

was then born by adopting the BGK collision operator [27, 28], which can lead to Navier-Stokes
equations using the Chapman-Enskog expansion [13, 29]. Later, He and Luo [30] directly derived
the LBE from the Boltzmann equation. This a priori derivation placed the LBE on a rigorous
theoretical foundation with no use of the lattice gas automata.
We describe in this section the application of the BGK approximation of the LBE and the
implementation of boundary conditions (fluid pressure or velocity conditions, no-slip condition on
moving particles) for its coupling with the DE method.

2.1. Principle of the LB method

In the LB method, the whole domain (solid and fluid) is discretized using a regular lattice.
Here, we employ the widely used two-dimensional D2Q9 model [28] based on the Face Centered
HyperCube model of D’Humières et al. [31]. The fluid particles located at each node of a square
lattice are allowed to move only along eight directions, toward their eight nearest neighbors. As
illustrated in Figure 1, these displacements can occur with nine different discrete velocities ei with
i = 0, 1, 2 . . . 8, where the case i = 0 corresponds to still particles. According to i, the velocity
vectors in the D2Q9 model are given by [32, 33, 34, 13]

~ei =



(0, 0) if i = 0

C
(

cos
(
π(i−1)

2

)
, sin

(
π(i−1)

2

))
for i = 1, . . . , 4

√
2C
(

cos
(
π(2i−9)

4

)
, sin

(
π(2i−9)

4

))
for i = 5, . . . , 8

(1)

where C = h/dt is the lattice velocity, with dt as the time step and h as the lattice spacing. For
each direction of every node of the lattice, a particle distribution function or density function fi
is associated. fi(~x, t) defines the proportion of particles, moving with velocity ~ei, along the ith
direction of the node located at position ~x at time t.

2.1.1. Collision step.
An LB algorithm is an iterative process over time. Each time step can be divided into two essential

steps, namely, collision and propagation. During the collision phase, each particle distribution
function fi evolves toward an equilibrium distribution function feqi . For a Newtonian fluid, the
equilibrium functions are given by [28]

feqi = wiρ

(
1 +

3

C2
~ei.~v +

9

2C4
(~ei.~v)2 − 3

2C2
~v.~v

)
for i = 0, . . . , 8 (2)

where w0 = 4/9, w1,2,3,4 = 1/9 and w5,6,7,8 = 1/36 [28]. ~v and ρ are respectively the
macroscopic fluid velocity and density of the considered node.
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In the rest of this article, overlined characters refer to dimensionless variable. Using ρ̄ = ρ/ρ0,
~̄v = ~v/C and ~̄ei = ~ei/C, we can write

¯feqi =
feqi
ρ0

= wiρ̄

(
1 + 3~̄ei.~̄v +

9

2
(~̄ei.~̄v)2 − 3

2
~̄v.~̄v

)
for i = 0, . . . , 8 (3)

where ρ0 is the fluid density.
As said previously, this relaxation is performed here with the single-relaxation BGK model [21]:

fi(~x, t
+) = fi(~x, t)−

1

τ
[fi(~x, t)− feqi (~x, t)] (4)

The right side of Equation (4) is usually called the post-collision term fi(~x, t
+). t+ is an intermediate

time just following the collision process (t < t+ < t+ dt). The parameter τ is a dimensionless
relaxation time. τ is related to the kinematic viscosity of the fluid ν, the lattice velocity C, and the
lattice spacing h through the following relation:

ν =
1

3

(
τ − 1

2

)
Ch (5)

Practically, for given values of fluid viscosity and parameter τ , dt is defined according to the
chosen lattice spacing by

dt =
1

3ν

(
τ − 1

2

)
h2 (6)

Macroscopic fluid properties like density ρ and velocity ~v can be retrieved at each node by

ρ =

8∑
i=0

fi (7)

~v =
1

ρ

8∑
i=0

fi~ei (8)

To determine the fluid pressure p, the fluid is assumed to be slightly compressible. We use the
following state equation p = c2sρ, where cs is the sound celerity and is defined in the D2Q9 model
as cs = C√

3
.

Macroscopic quantities converge to the solution of the incompressible Navier-Stokes equation
with order M2, where M is the computational Mach number defined by

M =
vmax
C

, (9)

where vmax is the highest velocity in the flow. To ensure good result accuracy, it is therefore required
that

M � 1. (10)

Practically, it is convenient to use a value of M 6 0.1, which leads at worst to a value of 1% for
M2, which is representative of the compressibility error.

2.1.2. Propagation step.
The collision step, presented previously, consists in computing the right-hand side of Equation (4).

After this step, the propagation phase aims at propagating the post-collision distribution functions
fi(~x, t

+) over the lattice grid. This step can be represented by the following equation:

fi(~x+ ~eidt, t+ dt) = fi(~x, t
+) (11)
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In Equation (11), for a node located at ~x, ~x+ ~eidt is the position of the nearest neighbor node along
the ith direction.
During one time step of the LB algorithm, the two successive collision and propagation phases
permit the particle distribution functions to tend toward equilibrium functions, which depend on
both the density and the velocity at the node, before they are propagated along each direction. Then,
new values of the equilibrium functions are calculated with respect to the new velocity and density
at each node, and a new time step begins. Initially, every particle distribution functions fi are set
equal to their equilibrium function with the fluid at rest for all nodes (i.e., including distribution
functions involved at fluid and solid boundary nodes as they will be defined in Section 2.2.1).

2.1.3. Setting parameters of the LB method.
As seen previously, the LB method comes with the definition of three parameters: h, τ and

dt. These parameters are linked together as well as to the fluid viscosity through Equation (6).
Thus, they have to be chosen in balance between the desired fluid viscosity, the numerical solution
accuracy, and the computational cost. More precisely, the lattice spacing h has a direct impact on
the central processing unit (CPU) time used for each step of the LB algorithm. For this reason, h has
not to be too small. Nevertheless, the spatial discretization error is directly related to h. The time
step dt affects the total number of time step required to reach the end of a simulation. However, in
the same time, dt has to be relatively small to minimize time discretization error. The last, and not
the least parameter, is the relaxation time τ . τ is the time scale of molecular collisions between fluid
particles and is linked to ν, h, and dt through Equation (5). Therefore, for a given fluid viscosity,
these three parameters have to be set in balance with the spatial discretization and the minimization
of the compressibility error and with a reasonable computation time. Practically, we independently
choose τ and h and derived dt through Equation (6). The choice of adequate values for h and τ
constitutes the major issue, but unfortunately, there is no a priori way to estimate them. A test-
correction procedure can be used until the compressibility criterion (Equation (10)) is satisfied, and
an accurate solution is obtained. The only restriction on τ value comes from Equation (5). Indeed,
Equation (5) implies that τ > 0.5, but no upper limit, derived from LB theory, exists. Then, τ can be
set to any desired value, even greater than unity [35, 36, 37]. Smaller values of τ imply smaller time
steps and therefore increase computational cost. As discussed in Ref. [37], results are acceptable for
τ < 1.5, especially with the boundary conditions used here (see the following section).

2.2. Boundary conditions on obstacles and system borders

The two-step scheme collision-propagation presented previously constitutes the basis of the LB
method. Nevertheless, specific treatments need to be achieved for both system boundaries and
moving solid obstacles.

2.2.1. Boundary conditions on solid obstacles.
Solid particles, or any other sort of obstacles, can be handled with the LB method by positioning

them on the lattice. The nodes belonging to an obstacle which are the closest ones to its external
surface are called solid boundary nodes (SB nodes). All the fluid nodes located outside of the
obstacle, with at least one direction pointing toward an SB node, are called fluid boundary nodes
(FB nodes). All other nodes act as fluid nodes and will be named like this. A link between an SB
and an FB node is named a boundary link. For example, Figure 2 illustrates the distinction between
SB and FB nodes for a solid circular obstacle. The simplest scheme to calculate momentum transfer
between an SB and an FB node is the bounce-back boundary condition on the boundary links. With
this method, the effective solid boundary is assumed to be located at the middle of the boundary
links as presented in Figure 2. More accurate boundary representation can also be implemented
[38, 39], but such improvements are not used in the present article. The bounce-back scheme has
been validated by comparing the velocity profiles obtained respectively with our LB method and
with the commercial CFD software FLUENT for a fluid flowing in a channel around a fixed cylinder
(Figure 3).
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The LB simulations were run for different resolutions d/h of the lattice, where d is the cylinder
diameter. Figure 3 illustrates that a good agreement can be obtained for d/h > 10.

In this work, we choose to use the mid-plane bounce-back scheme in a first approximation for the
sake of simplicity and to limit the computation cost.

Fluid particles cannot cross the solid border line that limits the outer solid domain. Therefore,
particle distribution functions coming from boundary nodes (SB or FB) are reflected along a
boundary link. For a stationary solid surface, the distribution functions at t+ dt on a boundary
link σ coming from direction i (see Figure 4) are given by

f−σi(~xFB , t+ dt) = fσi(~xFB , t
+)

fσi(~xSB , t+ dt) = f−σi(~xSB , t
+)

(12)

In Equation (12), −i simply denotes the opposite direction of i.
When the solid boundary is moving, the surface velocity needs to be taken into account in the

bounce-back rule to ensure the no-slip boundary condition on the solid surface. This is achieved by
using the modified bounce-back rule [32]:

f−σi(~xFB , t+ dt) = fσi(~xFB , t
+)− 2αi ~Vb.~ei

fσi(~xSB , t+ dt) = f−σi(~xSB , t
+) + 2αi ~Vb.~ei

(13)

with ~xSB = ~xFB + ~eσidt, where αi is defined by αi = 3wiρ/C
2 and ~Vb is the boundary velocity at

the middle of the boundary link σ:
~Vb = ~Vc + ~w ∧ ~rc (14)

with

• ~Vc and ~w as the translational and angular velocities respectively at the center of mass of the
solid obstacle,

• ~rc as the vector joining the center of mass ~xc of the solid obstacle to the middle of the boundary
link:

Figure 2. A solid circular obstacle mapped on the LB lattice with the different node species.

~rc = ~xFB + ~eσi
dt

2
− ~xc (15)

2.2.2. Boundary conditions on system boundaries.
In the LB method, pressure or velocity boundary conditions cannot be directly imposed. As

pressure and velocities are derived from the distribution functions fi, distribution functions have
to be defined to match the desired boundary condition. We consider here a rectangular channel as
presented in Figure 5. In this work, we use boundary conditions similar to those defined by Zou and
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Figure 3. Velocity profiles of water flow around a circular obstacle. The evolution of velocity is presented
along two perpendicular axes passing through the disk center (see insert). Three LB simulation results are
presented for different values of d/h, where d is the diameter of the solid disk. Velocity profiles obtained

with the commercial software FLUENT are also represented.

He [40]. These conditions are based on the idea of the bounce-back scheme of the nonequilibrium
part of the particle distribution functions. The channel presented in Figure 5 requires defining eight
sets of distribution functions denoted respectively from a to g.

We consider first a node at the inlet of the system (case a in Figure 5). After the propagation step,
f2, f3, f4, f6, f7 are known and f1, f5, f8 need to be determined to impose the boundary condition.
We assume that the bounce-back rule is still correct for the nonequilibrium part of the particle
distribution function normal to the boundary. Thus, f1 − feq1 = f3 − feq3 . Using the expression of
equilibrium distribution functions given by Equation (3), it comes with dimensionless variables for
the sake of simplicity:

~e−σi

~eσi

~xFB

~xSB = ~xFB + ~eσidt

Figure 4. A boundary link σ. The solid boundary seen by the LB method and the real solid boundary are
represented respectively with solid lines and dashed curve.

f̄1 = f̄3 +
2

3
ρ̄v̄x (16)
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Figure 5. Schematic drawing of the rectangular channel used in our simulations. Eight sets (a, b, c, d, e, f, g
and h) of particle distribution functions have to be defined to impose boundary conditions on the four sides
of the channel. Inlet and outlet pressure conditions are respectively applied to cases a and b, contrary to

cases c, d, e, f, g, and h, where no flow condition is imposed.

By projecting Equation (8) on the two space directions, we can write

{
f̄1 + f̄5 + f̄8 = ρ̄v̄x + f̄3 + f̄6 + f̄7

f̄5 − f̄8 = ρ̄v̄y +
(
−f̄2 + f̄4 − f̄6 + f̄7

) (17)

Then, combining Equations (17) and (16) leads to


f̄1 = f̄3 + 2

3 ρ̄v̄x

f̄5 = f̄7 − 1/2(f̄2 − f̄4) + 1/6ρ̄v̄x + 1/2ρ̄v̄y

f̄8 = f̄6 + 1/2(f̄2 − f̄4) + 1/6ρ̄v̄x − 1/2ρ̄v̄y

(18)

The same procedure can be used for the cases b, c and d of Figure 5. The relations used to determine
the unknown particle distribution functions in these cases are given in appendix. Due to a different
number of unknown distribution functions on the corner nodes (cases e, f, g and h), a specific
procedure is needed. For example, let us take the bottom left corner node (case e). At this node, f3,
f4 and f7 are known after the propagation step, but f1, f2, f5, f6 and f8 need to be determined.
Using the bounce-back rule for the nonequilibrium part, we find that

f̄1 = f̄3 + ( ¯feq1 − ¯feq3 ) = f̄3 + 2
3 ρ̄v̄x

f̄2 = f̄4 + ( ¯feq2 − ¯feq4 ) = f̄4 + 2
3 ρ̄v̄y

(19)

8



In addition, by developing Equations (7) and (8), we have
f̄5 − f̄6 + f̄8 = ρ̄v̄x − (f̄1 − f̄3 − f̄7)

f̄5 + f̄6 − f̄8 = ρ̄v̄y − (f̄2 − f̄7 − f̄4)

f̄6 + f̄8 = ρ̄− (f̄0 + f̄1 + f̄2 + f̄3 + f̄4 + f̄5 + f̄7)

(20)

Then, by combining Equation (19) with Equation (20), we obtain the expressions of f̄5, f̄6 and f̄8:
f̄5 = f̄7 + 1/6ρ̄(v̄x + v̄y)

f̄6 = 1/2[ρ̄(1− v̄x − 2/3v̄y)− f̄0 − 2(f̄3 + f̄4 + f̄7)]

f̄8 = 1/2[ρ̄(1− 2/3v̄x − v̄y)− f̄0 − 2(f̄3 + f̄4 + f̄7)]

(21)

Here, again, the same procedure can be applied to cases f, g and h of Figure 5. All the relationships
between distribution functions are listed in appendix for the D2Q9 model.

From a practical point of view, to apply the boundary condition defined by Equation (18) for the
case a at the inlet of the channel, ρ̄, v̄x and v̄y have to be fixed. If a pressure condition pin is imposed,
the inlet density ρin is deduced from the relation pin = c2sρin. For convenience, we define vy = 0.
Using Equation (7) it comes

f̄1 + f̄5 + f̄8 = ρ̄in − (f̄0 + f̄2 + f̄3 + f̄4 + f̄6 + f̄7) (22)

by combining with Equation (17) with ρ̄ = ρ̄in, we obtain the velocity at the inlet:

v̄x = 1− f̄0 + f̄2 + f̄4 + 2(f̄3 + f̄6 + f̄7)

ρ̄in
(23)

The same procedure can be applied to impose velocity boundary conditions. In such a case,
considering the inlet (case a), v̄x and v̄y are known at the inlet. Then, the pressure (density) needs to
be determined first prior to the determination of f̄1, f̄5 and f̄8 (f̄2, f̄3, f̄4, f̄6 and f̄7 are known after
streaming). Using Equation (23), ρ̄in can be determined with

ρ̄in =
1

1− v̄x
[
f̄0 + f̄2 + f̄4 + 2

(
f̄3 + f̄6 + f̄7

)]
(24)

Then, the determination of unknown distribution functions is similar to the one used for pressure
boundary conditions from Equation (18). A similar reasoning can be done for every channel
boundary, and we will present in Section 5 an example of use of such boundary conditions applied
to a channel flow. The treatment of boundary nodes, including those on the corner, will be detailed.

3. DISCRETE ELEMENT (DE) METHOD

To model solid particle interactions, we use the YADE open source software [41, 42] based on the
DE method, as introduced by Cundall and Strack [1]. Particles move according to Newton’s law, and
two particles in contact are allowed to slightly overlap among each other. Contact interaction forces
are computed for each couple of particles in contact according to a cohesive frictional interaction
law.

In the direction normal to the tangent contact plane, the interaction law is elastic and characterized
by the normal stiffness kn:

Fn = kn δn (25)

where Fn is the normal contact force and δn is the overlap between the couple of particles in contact.
Due to the introduction of a normal cohesion Cn at contact, tensile normal forces are allowed for
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Fn > Cn (compressive forces Fn are counted positively, then Cn takes usually negative values). If
Fn < Cn, failure occurs and the contact is lost.

In the direction included in the tangent contact plane, the interaction law is elastic-plastic and
follows the Coulomb friction law. In the elastic regime, ks represents the shear stiffness:

∆Fs = −ks ∆us (26)

where ∆Fs is the shear force increment and ∆us is the increment of the tangential relative
displacement of the particles at contact. Tangential sliding occurs if

|Fs| > Fn tan(Φ) + Cs (27)

with Φ is the contact friction angle and Cs is the shear cohesion. When sliding occurs, normal Cn
and shear Cs cohesions are set to zero. Consequently, the contact becomes then purely frictional.
It means that sliding occurs for Fs > Fn tan(Φ) and contact is lost for Fn 6 0, as presented in
Figure 6.

Fs

Cs

Fn

Cn

Φ

Φ

sliding and

ohesion broken: Cn = Cs = 0

ontat lost

Figure 6. Cohesive contact law used in the DE method.

At each time step of the DE method, updated position and velocity of each solid particle
are deduced from the explicit time integration of Newton’s second law, taking into account the
interparticle contact force ~Fc and the hydrodynamic force ~Fh acting on the considered particle (see
Section 4 for the definition of ~Fh):

~Fc + ~Fh = m~̈xc (28)

where m is the mass of the solid particle and ~xc is its position. Rotation of particles is computed in
the same way by integrating the equation:

~Tc + ~Th = J ~̇w (29)

where ~Tc is the torque resulting from the interparticle forces, ~Th is the hydrodynamic torque, J is
the moment of inertia (for circular or spherical solid particles), and ~w is the angular velocity.

The stability of the explicit scheme for the time integration holds if the time step of the DE method
dtDE is sufficiently small to describe the wave propagation in the mass-spring system constituted by
the solid granular assembly. Hence, the critical time step dt crDE is related to the period of oscillation
of this assembly. For a single one-dimensional mass-spring oscillator of mass m and stiffness k,
the period of oscillation and thus dt crDE are equal to 2π

√
m/k. In YADE, dt crDE is computed from

a generalization of this definition for all the degrees of freedom of the particles, in rotation and in
translation [43, 44]. A ratio of 10 between dtDE and dt crDE is usually enough to avoid any instability
of the numerical method.

4. COUPLING BETWEEN LB AND DE METHODS

The coupling between the LB and DE methods requires the exchange of information from one
method to the other. Hydrodynamic forces and torques are deduced from the LB computation and
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used in the DE cycle to compute new positions and velocities of solid particles, which in turn define
the new boundary conditions for the fluid dynamic problem. This has to be done by taking care of
the fact that each method is characterized by a different time discretization. Issues concerning the
computation of hydrodynamic forces, numerical time step adjustment, and modification of the fluid
domain due to new particle positions (resulting in the affectation of new lattice nodes in the fluid
phase) are discussed hereafter.

4.1. Forces acting on solid obstacles

The fluid force acting on an obstacle can be evaluated from the momentum exchange between fluid
and solid particle surface [32, 34, 38] along two opposite propagation directions. If we consider a
boundary link σ with direction i pointing from an FB node to an SB node (see Figure 4), using
Equation (13), the momentum exchange ~Π is

~Π(~x, t+ 1
2dt) = ~eσifσi(~x, t

+)− ~e−σif−σi(~x, t+ dt)

= ~eσi [fσi(~x, t
+) + f−σi(~x, t+ dt)]

= 2 ~eσi

[
fσi(~x, t

+)− αi ~Vb.~ei
] (30)

Then, the corresponding force and torque are respectively

~Fσ(~x, t+
1

2
dt) = 2

Ω

dt

[
fσi(~x, t

+)− αi ~Vb.~ei
]
~eσi (31)

~Tσ(~x, t+
1

2
dt) = ~rc × ~Fσ(~x, t+

1

2
dt) (32)

where Ω is the cell lattice volume in three dimensions or the cell lattice surface in two dimensions.
The total hydrodynamic force and torque exerted on the solid particle are obtained by summing
Equations (31) and (32) over all the boundary links of the particle:

~Fh(t+
1

2
dt) =

∑
σ

~Fσ(~x, t+
1

2
dt) (33)

~Th(t+
1

2
dt) =

∑
σ

~Tσ(~x, t+
1

2
dt) (34)

4.2. Numerical coupling

The idea behind the coupling of the DE and LB methods is a subcycling scheme. Indeed, generally,
the DE time step dtDE (fixed with respect to a critical time step, see Section 3) is smaller than the LB
time step dt. Consequently, to ensure the correspondence between the two physical times simulated
by each method respectively, an integer number of DE loops should be included in a single LB
cycle. Because it is easier to adjust dtDE than dt (depending on the viscosity, the relaxation time
and the space discretization, through Equation (6)), the DE time step dtDE is reduced to a new value
dt′DE such as

dt′DE =
dt

n
, (35)

where n is the nearest integer greater or equal to dt/dtDE. It has been chosen here to reduce the
DE time step to be sure to satisfy automatically the critical time step. Thus, in one computational
step of the LB method, n substeps of time integration with the DE method are performed. During
this subcycling, the hydrodynamic forces and torques remain unchanged. As the time step of the
LB method is larger than the DE time step, it means that the LB method can describe physical
phenomena characterized by a lower frequency than those that could be described with the DE
method. Similarly, the highest frequency of the solid-fluid interaction described by such a coupling
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should depend essentially on the time step of the LB method. Although further investigations are
required to understand clearly how large n can be without altering LB-DE coupling, we choose n
values smaller than 10. This condition gives another important constraint on the determination of an
appropriate value of the relaxation time τ (as discussed in Section 2.1.3).

To be time consistent, hydrodynamic forces and torques applied on obstacles are obtained by an
average over two consecutive time steps of the LB method:

~Fh(t) =
1

2

[
~Fh(t+

1

2
dt) + ~Fh(t− 1

2
dt)

]
(36)

~Th(t) =
1

2

[
~Th(t+

1

2
dt) + ~Th(t− 1

2
dt)

]
(37)

The DE method software YADE is a modular program that lets the user add some features with
plug-ins. We have developed a plug-in to resolve fluid flow with the LB method and to perform a
full coupling with the DE method implemented in YADE. Due to the fact that our plug-in execution
is driven by that DE loop, our LB plug-in is activated every n DE time steps to fulfill the subcycling
condition. In addition, from a given time t, the execution of the LB time step and the set of n DE
time steps are performed sequentially. First, the LB plug-in is run for one time step to compute
the fluid flow at t+ dt. Consequently, hydrodynamic forces and torques at time t can be deduced
from Equations (36) and (37). Then, the DE method is run for n time steps to compute the positions
of solid particles at t+ dt. Hydrodynamic forces and torques, previously computed, are applied to
solid particles in addition to the intergranular contact forces at every DE time step, during these n
steps.

Due to the movement of solid particles on the LB lattice, lattice nodes initially covered by solid
particles may become fluid nodes during simulation. To avoid the creation of new distribution
functions when new fluid nodes are uncovered [45], all nodes are initialized at the simulation start-
up, even those included in solid particles. Thus, a solid particle consists of a nutshell of mass and
inertia, equal to the mass and inertia of the whole solid particle, filled with fluid of same density
as the bulk fluid. The presence of inner fluid guarantees mass conservation locally [46, 47] and
counterbalances error in force and torque calculations. Therefore, no errors are induced by this
method [48].

5. APPLICATION TO PIPING EROSION

5.1. Piping erosion and HET

The HET [17, 49, 50] is used in civil engineering to characterize erodability of soils with respect to
piping erosion. A cylindrical compacted soil sample, drilled along its axis, is placed in a channel.
This channel is saturated with water, and a pressure gradient is applied between the inlet and the
outlet (see Figure 7). Due to hydraulic loading, soil particles can be detached and transported
through the soil pipe.

Classically, the interpretation of results from an HET experiment [17] is based on the erosion law
suggested by Shields [51]:

ε̇ = kd (τh − τc) if τh > τc, (38)

where ε̇ is the rate of eroded mass per unit pipe area, kd is the erosion coefficient, τh is the fluid shear
stress, and τc is a critical shear stress. To deduce the erosion parameters (kd and τc) from such an
experiment, the erosion rate ε̇ and the shear stress τh have to be estimated. However, generally, the
evolution of the eroded mass is not followed during the experiment time†. Consequently, the change

†In recent research works, the experimental setup has been improved to achieve a direct measurement of the erosion rate
[49].

12



�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

I

N

L

E

T

L

E

T

O

U

T

x

y

l

dh

l/10 l/10

L = l/3

lh = 8l/10

Figure 7. Schematic drawing of the numerical model. Hatched regions correspond to the locations of the
cohesive material after drilling of the granular assembly.

in times of the soil pipe diameter is deduced from the initial and final diameters, then the erosion
rate is estimated from the rate of the pipe diameter growth. The fluid shear stress is computed from
the fluid force summation on the boundaries of the pipe of radius R at time t. In the case of a
two-dimensional pipe (case studied hereafter) of height dh and length lh, this latter expression reads

τ ′h =
dh∆P

2lh
, (39)

where ∆P is the pressure gradient between the inlet and the outlet of the apparatus.
In this section, a two-dimensional simulation of piping erosion inspired by HET is presented

using the developed LB-DE method previously presented. The objective is to verify if the linear
relation between the erosion rate and the fluid shear stress can be described by the coupled model.

5.2. Piping erosion modeling with the coupled LB-DE model

To create the numerical model, a packing of cohesive frictional disks is generated and compacted
(by enlarging disk diameters) in a rectangular box of length l, as illustrated in Figure 7. This packing
is made of monosized grains of diameter dwith a size dispersion of 30% and a mean diameter dmean.
The cohesive frictional contact law, used in this work, is the one presented previously in Figure 6.
The granular packing is drilled by removing grains, which are not in the hatched regions of Figure 7,
and the left and right walls are removed. This system can be seen as a simplified model of HET
initial configuration with a hole of diameter dh and without taking gravity into account. Finally, the
system is spatially discretized with a square lattice to set up the LB algorithm and to let the voids
fill up with water. In all the simulations, we use the parameters listed in Table I. Therefore, in these
simulations, the mean number of node along a particle radius is dmean/h ≈ 17. Because of the two-
dimensional description adopted here, there is no water flow between two particles in contact and
consequently through the bulk of the granular assembly in the hatched regions (Figure 7). This point
is certainly the main limitation with respect to a three-dimensional model. However, this hypothesis
seems reasonable in such a case of piping erosion, where water flow through the bulk of the soil is
generally negligible with respect to the water flow in the pipe.

Geometry DE Method LB Method
l = 0.03 m and L = l/3 Cn/d = Cs/d = 0.253 N m−1 Nx = 1003, Ny = 335
dmean = 5.06× 10−4 m Φ = 20 ◦ ν = 1× 10−6 m2 s−1

dh = 0.2× l/3 kn/d = 150× 106 N m−2 ρ0 = 1 000 kg m−3

lh = 0.8× l ks/kn = 0.4 dt = 1.807× 10−4 s, n = 3, τ = 1.1

Table I. Table of parameters used in our simulations. Nx and Ny are respectively the number of nodes along
the x and y directions.

To initiate fluid flow throughout the pipe, a pressure gradient is imposed between the inlet and
the outlet of the system:

∆P = pin − pout = c2sρ0(ρ̄in − ρ̄out) (40)
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with ρ̄out = 1. Results presented in this article will be expressed in terms of hydraulic gradient
i = ∆P/(ρ0glh) = 10∆P/(ρ0g8l), where g = 9.81 m.s−2 is the gravitational acceleration. To apply
the pressure gradient, we use pressure boundary conditions as described in Section 2.2.2. On the
inlet and the outlet, we suppose that vy = 0. Then vx is set according to Equation (23). For the
bottom and upper fixed walls, velocity boundary conditions (vx = vy = 0) are imposed. ρ̄ value is
fixed according to Equation (24). Here, corner nodes are nodes belonging to fixed walls; therefore,
they are initialized in a similar way to wall nodes (vx = 0 and vy = 0). Nevertheless, on corner
nodes, the locally available information is insufficient for the evaluation of the density. In such a
case, it is common to take the density of corner nodes equal to the one of the nearest node [40]. For
each corner node, we set ρ equal to the density of the nearest node, which belongs to the same wall.
The series of snapshots presented in Figure 8 are taken from one simulation run for i = 12.7× 10−4.
Figure 8 shows that particles are detached under the hydraulic loading. Then, detached particles are

Figure 8. Series of snapshot from a simulation of piping erosion with the coupled LB-DE method for
i = 12.7 × 10−4. Color gradient is proportional to fluid velocity.

transported by the flow toward the channel outlet. We denote Rmax the largest radius of the particles.
If a particle mass center comes closer than a distance Rmax to the channel output, the particle is
simply removed from the simulation domain, and it is then considered as being an eroded one.
When removing one particle, no specific treatment is needed to deal with the resulting fluid nodes
because they were already treated as fluid nodes when they belonged to the solid particle. The status
of the solid SB and fluid FB boundary nodes, on each side of the solid particle perimeter, is simply
switched to classical fluid nodes.
During a simulation, we record the evolution of the eroded particle mass Me(t) and define the ratio
Me(t)/M0, where M0 is the total mass of the initial granular assembly.

Before studying dependency of eroded mass on pressure gradient applied, let us consider some
basic results to validate our simulations. Figure 9(a) shows the total hydrodynamic force acting on
the solid phase. It illustrates that the total force along x direction is conserved and equal to L∆P .
In a more rigorous way, the fluid compressibility should be taken into account to retrieve equality
between the total hydrodynamic force and L∆P . Figure 9(b) presents the total mass variation during
the simulation, determined with a summation of density over all nodes. It can be observed that,
during a simulation, the maximum mass variation is about 1.7%. As explained previously, our model
implies that fluid is considered as slightly compressible. Nevertheless, Figure 9(b) puts in evidence
that, thanks to a careful choice of parameters (see Section 2.1.3), the compressibility of the fluid is
negligible, and therefore, that mass conservation is achieved. Figure 10 shows changes ofMe(t)/M0
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Figure 9. (a) Total hydrodynamic force acting on solid obstacles. The two components (along x and y) are
represented. Dashed line represents the product of the pressure gradient ∆P = 0.03 with the channel height

L = 0.01. (b) Total mass inside the channel during a simulation with i = 1.3 × 10−4.

with time for different values of the hydraulic gradient i. The ratio Me(t)/M0 increases with time
to reach unity, which corresponds to the case where all particles are eroded. Moreover, Figure 10
illustrates that erosion rate is higher when hydraulic gradient increases. For the lowest hydraulic
gradient, detachment of particles is not triggered, and the mass of eroded particles is nil all along
the simulation. Using fluid velocity profile along the direction perpendicular to the cylinder axis,
the shear stress τh at the vicinity of the hole boundary can be computed as

τh = νρ0
dVx
dy

(41)

Here, the velocity gradient dVx

dy at the vicinity of the hole boundary is deduced from a velocity
cross profile averaged along the length of the hole. It is then assumed that maximum velocity
gradient, identified on both sides of this averaged velocity profile, results from the presence of
the hole boundaries. Therefore, this latter maximum value of dVx

dy has been chosen to compute the
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Figure 10. Evolution of the ratio Me/M0 with time for different values of the hydraulic gradient i.

shear stress according to Equation (41). τ ′h can be calculated based on hole diameter measurement
as defined in Section 5.1. Contrary to previous experiments performed by Wan and Fell [17], our
simulations let us access to the hole diameter at any time during the piping erosion process. Here,
the mean hole diameter is determined from an averaged cross-section density profile over the whole
packing. Then, τ ′h is calculated using Equation (39). To overcome wall influence when estimating τh
and τ ′h, we do not consider shear stresses when ratio between hole diameter dh and channel height
is greater than 75%.
The way to compute the eroded mass Me, as the cumulative sum of the detached particles reaching
the outlet of the channel, introduces a delay in the detection of the particles effectively eroded,
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which corresponds to the time of transfer from the location of detachment of a particle to the outlet
of the channel. Nevertheless, the characteristic transfer time of detached particles is less than 3% of
the total simulated time to erode the whole granular packing and corresponds to a maximum hole
diameter increase of 5%. Therefore, the computation of the eroded mass as it is done here at a time
t can be assumed as concomitant with the hole diameter and the hydraulic shear stress determined
at this same time t.

Figures 11 and 12 present respectively dependency of ε̇ on shear stresses τh and τ ′h for simulations
of piping erosion with different hydraulic gradients. In both Figures 11 and 12, a least squares linear
adjustment is represented.
It illustrates that the linear erosion law introduced by Shields [51] and used by Wan and Fell [17] can
be fairly retrieved with this coupled LB-DE model in a first approximation. With a more accurate
observation, in particular of Figure 11, the ε̇− τh relation slightly deviates from a linear tendency.
However, this result is not in contradiction with experimental results obtained by Pham [49] for
some soil fabrics, where a slightly nonlinear ε̇− τh relation was exhibited. The erosion coefficient
kd corresponds to the slopes of linear adjustments. We can observe that two different values
of kd were obtained according to the method used in determining the shear stress. The erosion
coefficient obtained with τ ′h (kd = 4.7 s.m−1) is about twice small as the one obtained with τh
(kd = 10.4 s.m−1). The pressure gradient used in Equation (39) to compute τ ′h, is the pressure
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Figure 11. Evolution of erosion rate ε̇ with shear stress τh for four simulations with different hydraulic
gradients.

gradient between the inlet and the outlet of the channel. It has been shown experimentally [52] that
water head losses resulting from the narrowing (at the entrance of the channel) and the enlargement
(at the exit) of the water flow width cannot be neglected. Hence, Marot et al. [52] estimated, for their
HET experiments, that only about 30% of the pressure gradient applied between the inlet and the
outlet of the channel was effectively applied between the entrance and the exit of the soil pipe. Such
water head losses could explain the lower value found for τh than for τ ′h. Nevertheless, the ratio
between the initial pipe diameter dh and the channel diameter L (dh/L = 0.2) is much larger in the
numerical model than for the real classical HET (where the ratio is typically about 0.06) and not any
meaningful pressure drop has been observed at the entrance and exit of the soil pipe. Beyond that
point, the main geometrical difference between this simplified numerical model and classical HET
experiments on soils is the ratio between the typical size of soil particles and the pipe width.

As the diameter of solid particles is here important with respect to the pipe width, first, the
assumption of flat pipe surface does not hold, and second, the influence on water flow of particles
detached and being carried away cannot be neglected. As pipe surface is quite tortuous, the action of
fluid on pipe walls cannot be resumed to a single shear stress in the direction of the main fluid flow
(i.e., the horizontal direction in Figure 7 or 8). In addition, due to the relative important size of solid
particles transported in the pipe, the action of fluid on these particles (involving viscous shear stress
or even important pressure gradient when the pipe is clogged) can be important. Consequently, the
computation of the shear stress τh from Equation (41) can be seen as a rather good estimation of

16



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

shear stress τ
h
’(N m

-2
)

0

0.1

0.2

0.3

0.4

er
o
si

o
n
 r

at
e 

p
er

 u
n
it

 a
re

a 
ε
.

(k
g
 s

-1
m

-2
)

i= 8.3e-4
i=12.5e-4
i=16.6e-4
i=20.8e-4

Figure 12. Evolution of erosion rate ε̇ with shear stress τ ′h for four simulations with different hydraulic
gradients.

the shear stress on the pipe walls, in a plane parallel to the main flow direction. However, this shear
stress is only a partial view of the action of fluid on solid particles constituting the pipe surface
(shear stress in direction perpendicular to the main flow direction can occur). On the other hand,
the estimation of the shear stress τ ′h through Equation (39) is probably overestimated because it
assumes that all the action of fluid on solid takes place on pipe walls along the main flow direction
and discards transported particles. To resume, the estimation of a typical value of hydraulic shear
stress applied on pipe walls is not straightforward (at least in our case), and computation of τh and
τ ′h probably give only boundary values.

6. CONCLUSION

In this article, we present a full two-way coupling scheme to deal with fluid-solid interaction
modeling. Principles of the DE method and of the LB method are presented, and a complete
description of the coupling implementation is provided. The coupled LB-DE method is very
powerful and can be used in a wide range of engineering applications, especially when simulations
of fluid-solid interactions at the grain scale are required. We have presented and used the coupling
scheme only in two dimensions. Nevertheless, it can be easily extended to three dimensions for both
the LB and DE parts.
To illustrate the method, we have performed simulations of piping erosion inspired by HET
experiments, where both detachment and transport of particles can be modeled. The erosion
law deduced from these simulations seems to be in agreement with the law verified and used
experimentally. We found that the rate of erosion per unit area is proportional to the shear stress.
Nevertheless, complementary simulations are required to accurately characterize dependency of
erosion coefficient and critical shear stress on grain assembly properties. Such simulations can
also be useful to identify relevant parameters responsible of particle detachment from the granular
assembly.
In our knowledge, this simple example is one of the first attempts to apply the LB-DE method to such
dense cases. Indeed, coupling method using LB method to simulate particle-fluid systems was used
mainly to study suspensions or dilute systems contrary to systems encountered in geomechanics.
This article and its presented application example highlight the abilities and efficiency of the
method, which proves to be a promising tool in soil mechanics and more generally in civil
engineering.
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APPENDIX: BOUNDARY CONDITION RELATIONSHIPS BETWEEN DISTRIBUTION
FUNCTIONS

This appendix presents relations used to determine the unknown distribution functions after the
propagations. As explained in Section 2.2.2 this set of relations is used to impose a specific
boundary condition with the D2Q9 model.

- case a)
- known distributions: f0, f2, f3, f4, f6, f7

- unknown distributions: f̄1 = f̄3 + 2/3 ρ̄v̄x

f̄5 = f̄7 − 1/2 (f̄2 − f̄4) + 1/6 ρ̄v̄x + 1/2 ρ̄v̄y

f̄8 = f̄6 + 1/2 (f̄2 − f̄4) + 1/6 ρ̄v̄x − 1/2 ρ̄v̄y

- case b)
- known distributions: f0, f1, f2, f4, f5, f8

- unknown distributions: f̄3 = f̄1 − 2/3 ρ̄v̄x

f̄7 = f̄5 + 1/2 (f̄2 − f̄4)− 1/6 ρ̄v̄x − 1/2 ρ̄v̄y

f̄6 = f̄8 − 1/2 (f̄2 − f̄4)− 1/6 ρ̄v̄x + 1/2 ρ̄v̄y

- case c)
- known distributions: f0, f1, f2, f3, f5, f6

- unknown distributions: f̄4 = f̄2 − 2/3 ρ̄v̄y

f̄7 = f̄5 + 1/2 (f̄1 − f̄3)− 1/2 ρ̄v̄x − 1/6 ρ̄v̄y

f̄8 = f̄6 − 1/2 (f̄1 − f̄3) + 1/2 ρ̄v̄x − 1/6 ρ̄v̄y

- case d)
- known distributions: f0, f1, f3, f4, f7, f8

- unknown distributions: f̄2 = f̄4 + 2/3 ρ̄v̄y

f̄5 = f̄7 − 1/2 (f̄1 − f̄3) + 1/2 ρ̄v̄x + 1/6 ρ̄v̄y

f̄6 = f̄8 + 1/2 (f̄1 − f̄3)− 1/2 ρ̄v̄x + 1/6 ρ̄v̄y

- case e)
- known distributions: f0, f3, f4, f7

- unknown distributions: f̄1 = f̄3 + 2/3 ρ̄v̄x

f̄2 = f̄4 + 2/3 ρ̄v̄y

f̄5 = f̄7 + 1/6 ρ̄(v̄x + v̄y)

f̄6 = 1/2 [ρ̄(1− v̄x − 2/3 v̄y)− f̄0 − 2(f̄3 + f̄4 + f̄7)]

f̄8 = 1/2 [ρ̄(1− 2/3 v̄x − v̄y)− f̄0 − 2(f̄3 + f̄4 + f̄7)]

- case f)
- known distributions: f0, f1, f2, f5

- unknown distributions: f̄3 = f̄1 − 2/3 ρ̄v̄x

f̄4 = f̄2 − 2/3 ρ̄v̄y

f̄6 = 1/2 [ρ̄(1 + 2/3 v̄x + v̄y)− f̄0 − 2(f̄1 + f̄2 + f̄5)]

f̄7 = f̄5 − 1/6 ρ̄(v̄x + v̄y)

f̄8 = 1/2 [ρ̄(1 + v̄x + 2/3 v̄y)− f̄0 − 2(f̄1 + f̄2 + f̄5)]
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- case g)
- known distributions: f0, f2, f3, f6

- unknown distributions: f̄1 = f̄3 + 2/3 ρ̄v̄x

f̄4 = f̄2 − 2/3 ρ̄v̄y

f̄5 = 1/2 [ρ̄(1− 2/3 v̄x + v̄y)− f̄0 − 2(f̄2 + f̄3 + f̄6)]

f̄7 = 1/2 [ρ̄(1− v̄x + 2/3 v̄y)− f̄0 − 2(f̄2 + f̄3 + f̄6)]

f̄8 = f̄6 + 1/6 ρ̄(v̄x − v̄y)

- case h)
- known distributions: f0, f1, f4, f8

- unknown distributions: f̄2 = f̄4 + 2/3 ρ̄v̄y

f̄3 = f̄1 − 2/3 ρ̄v̄x

f̄5 = 1/2 [ρ̄(1 + v̄x − 2/3 v̄y)− f̄0 − 2(f̄1 + f̄4 + f̄8)]

f̄6 = f̄8 − 1/6 ρ̄(v̄x − v̄y)

f̄7 = 1/2 [ρ̄(1 + 2/3 v̄x − v̄y)− f̄0 − 2(f̄1 + f̄4 + f̄8)]
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