
HAL Id: hal-00924646
https://hal.science/hal-00924646

Preprint submitted on 7 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Collaborative Framework for Non-Linear Integer
Arithmetic Reasoning in Alt-Ergo

Sylvain Conchon, Mohamed Iguernelala, Alain Mebsout

To cite this version:
Sylvain Conchon, Mohamed Iguernelala, Alain Mebsout. A Collaborative Framework for Non-Linear
Integer Arithmetic Reasoning in Alt-Ergo. 2013. �hal-00924646�

https://hal.science/hal-00924646
https://hal.archives-ouvertes.fr

A Collaborative Framework for Non-Linear Integer

Arithmetic Reasoning in Alt-Ergo
Sylvain Conchon∗ Mohamed Iguernelala∗,∗∗ Alain Mebsout∗

∗LRI, Université Paris-Sud, Orsay F-91405
∗∗OCamlPro SAS, Gif-sur-Yvette F-91190

Abstract—In this paper, we describe a collaborative framework
for reasoning modulo simple properties of non-linear integer
arithmetic. This framework relies on the AC(X) combination
method and on interval calculus. The first component is used
to handle equalities of linear integer arithmetic and associativity
and commutativity properties of non-linear multiplication. The
interval calculus component is used — in addition to standard lin-
ear operations over inequalities — to refine bounds of non-linear
terms and to inform the SAT solver about judicious case-splits
on bounded intervals. The framework has been implemented in
the Alt-Ergo theorem prover. We show its effectiveness on a set
of formulas generated from deductive program verification.

I. INTRODUCTION

Verification conditions that are produced by tools such as
Boogie [3], Frama-C [7], Why3 [9], or SPARK Hi-Lite [26]
sometimes contain formulas involving non-linear integer arith-
metic. Non-linear operators (e.g. multiplication, Euclidean
division, modulo) are usually generated from loop invariants
or program specifications. For example, the verification of the
following annotated C program computing the integer square
root with the Newton method generates a proof obligation:

∀n, p, r ∈ Z. n > 0 ∧ p = n ∧ r =
n+ 1

2
=⇒ r =

p+ n
p

2

/*@ requires n > 0;
ensures \result * \result <= n;

*/
int isqrt (int n) {
int p = n;
int r = (n + 1) / 2;
/*@ loop invariant

r > 0 && r = (p + n / p) / 2 */
while (r != p) {
p = r;
r = (r + n / r) / 2;

}
return p;

}

While simple from a mathematical point of view, this is

enough to block SMT solvers that are used as back-ends in

these program verification frameworks. For instance, state-of-

the art SMT solvers such as Z3 [17], CVC3 [6], CVC4 [4]

and Yices [18] fail to prove the entirety of proof obligations

from the previous example.

The particularity of these formulas is that they refer to

unbounded mathematical integers and contain a combination

of symbols from several theories (uninterpreted function sym-

bols, arrays, records, enumerations, etc). Additionally, they are

drowned among a context with hundreds of axioms describing

values and operations of the programming language in first-

order logic (data type representations, memory model, pointer

arithmetic, etc).

Non-linear arithmetic over the reals (NRA) was shown

to be decidable by Tarski [37]. Among the numerous deci-

sion procedures for NRA, cylindrical algebraic decomposition

(CAD) [12] and Gröbner bases [27] are examples of com-

plete methods. There also exist incomplete methods based on

interval constraint propagation (ICP) [20], [38] and virtual

substitutions (VS) [39] that are much more efficient in practice.

These methods are implemented in different dedicated solvers

like QEPCAD [11] and RAHD [34] or in general purpose

SMT solvers like Z3 [17] which uses a combination of ICP

and VS. NRA is still an active field of research in the SMT

community [25].

Gödel showed that non-linear arithmetic over integers (NIA)

is an undecidable problem [22]. While there exists a large

panel of work on NRA, only very few incomplete methods

exist for NIA. The most wildly used methods rely on a form

of linearization or booleanization for bounded integers. Some

approaches are based on bit-blasting [1], [35] which destroys

high-level arithmetic constructs and are only applicable for

integer variables living in limited ranges. Other techniques use

encodings to SMT(BV) (bit-vectors) [2] or to SMT(LIA) [10],

[21] with lazy bounding and refinements. These methods only

handle bounded integers and work by exhibiting models in

satisfiable instances but are not very well suited to prove

unsatisfiability. An other related field of research concerns dio-

phantine (in)equations, a restricted form of non-linear integer

constraints [36]. While this problem has also been shown to be

undecidable [32], there exist some complete algorithms when

the degree of polynomials is bounded [15].

Following the remark that only a handful of simple non-

linear arithmetic constraints arise in program verification, we

propose a method that is incomplete but pragmatic. In reality,

most of these proof obligations could be discharged by a

small and adequate set of axioms for NIA (associativity,

commutativity of non-linear multiplication, distributivity, etc).

However, when added to an already large context, such axioms

overwhelm SMT solvers and render their use impractical. Our

approach aims at making efficient use of these NIA axioms

by a built-in treatment in the solver core. Our contributions

are as follows:

• An algorithm for non-linear integer arithmetic reasoning

(illustrated in Section II); this algorithm relies on the

extension and collaboration of the AC(X) framework [13]

and interval calculus [8] to handle NIA axioms in a built-

in way. AC(X) is instantiated with linear integer arith-

metic (LIA) to handle equalities of LIA and associativity

and commutativity properties of non linear multiplication.

The interval calculus component is used — in addition

to standard linear operations over inequalities — to

propagate bounds of non-linear terms and to inform the

SAT solver about judicious case-splits on finite domains.

• A formalization of this algorithm with a precise descrip-

tion of the cooperation mechanisms in Section III.

• An implementation of this cooperative framework in the

SMT solver Alt-Ergo. This implementation uses ground

AC-completion and an efficient simplex-based algorithm

for LIA interval inference.

• A set of benchmarks generated by program verification

tools, to show that our method is competitive.

II. A COLLABORATIVE FRAMEWORK

This section illustrates our collaborative algorithm on the

following conjunction of literals, represented as a set for

convenience.


















v ∗ t = 3, v ∗ w = 5,

−(y ∗ y ∗ y) + 3 · w − 5 · t ≤ −10,

0 ≤ x ≤ 5, 2 · z ∗ (x/y) + 3 · x = 4,

3 · (x/y) ∗ x ≤ 0



















This formula is typical of the kind we want to check for

satisfiability. The symbol ∗ denotes non-linear multiplication,

the operator · represents linear multiplication (i.e. repeated

addition) and the symbol / is the Euclidean division. In this

example v, w, x, y, z and t are uninterpreted integer constants.

To handle such a formula, our method mainly relies on the

collaboration of three components. Figure 1 shows the simpli-

fied architecture of this arithmetic framework in Alt-Ergo.

SAT solver

AC completion bounds inference

linear inequalities FM-Simplex

AC(LIA) framework Interval calculus

s = t s ≤ t

Figure 1: Simplified overview of Alt-Ergo’s arithmetic reason-

ing framework

The first component – on the left hand-side of the figure

– is a completion-like algorithm AC(LIA) to reason mod-

ulo associativity and commutativity properties of non-linear

multiplication, as well as its distributivity over addition. The

AC(LIA) framework consists of a modular extension of ground

AC completion with a decision procedure that reasons modulo

equalities of linear integer arithmetic. This component builds

and maintains a convergent term rewriting system modulo

equalities of LIA and the AC properties of the ∗ symbol.

The second component – on the right of the figure – is

an interval calculus algorithm used to compute bounds of

(non-linear) terms. First, the initial NIA problem is relaxed

to LIA by abstracting non-linear sub-terms and a simplex-

based algorithm (FM-Simplex) is used to infer bounds on

the abstracted linear problem. Second, axioms of NIA are

internally applied by intervals propagation.

The third module is a SAT solver that dispatches equalities

to AC(LIA) and inequalities to interval calculus. The SAT also

performs case-split analysis over finite domains (i.e. bounded

intervals) computed by interval calculus.

The proof of unsatisfiability of the example is carried out

as follows in our collaborative framework:

• using the AC properties of the * symbol and a straightfor-

ward critical pairs computation, the AC(LIA) procedure

deduces that 3 ∗ w = 5 ∗ t follows from the first and the

second equalities. Since 3 ∗w and 5 ∗ t are linear terms,

the equality simplifies to 3 · w = 5 · t;
• using the deduction above, the third equality simplifies to

−(y ∗ y ∗ y) ≤ −10. Then, the interval calculus deduces

that y ≥ 3;

• now, using y ≥ 3 and 0 ≤ x ≤ 5, the interval calculus

component refines the bounds of x/y to the integer

interval [0; 1]. At this point, we have to perform a case-

split analysis to conclude;

• if x/y = 0, the term z ∗ (x/y) becomes linear and

simplifies to 0. Thus, the fifth hypothesis normalizes to

3 · x = 4. The linear integer arithmetic solver, provided

by LIA, says that the equality has no solution in Z;

• when x/y = 1, the last hypothesis becomes 3 · x ≥ 0.

Together with the fourth assumption, this implies x = 0.

However, the interval calculus component deduces that

this equality contradicts the last case-split x/y = 1.

III. FORMAL DESCRIPTION

In this section, we formally define the collaborative frame-

work described in Figure 1. We start by the SAT solver

module, which is a standard CDCL solver modulo theory [33],

and show how it integrates the cooperation of the AC(LIA) and

interval calculus modules.

A. SAT Module

We assume the usual syntactic and semantic notions of

first-order logic. In particular, we denote by M |= F the

logical entailment relation between formulas. For convenience,

conjunctions are represented by sets of formulas. We also

assume a background theory T .

When Mode = search:

SUCCESS
M |= F

return SAT
DECIDE

l is undefined in M l (or ¬l) ∈ F

M := l :: M

PROPAGATE
C ∨ l ∈ F M |= ¬C l undef in M

M := lC∨l :: M
MODEL-BASED CASE-SPLIT

{l} ∪M is T -sat

M := l :: M

T -PROPAGATE
{l1, . . . , ln,¬l} is T -unsat {l1, . . . , ln} ⊆ M l undef in M

M := l¬l1∨...¬ln∨l :: M

CONFLICT
C ∈ F M |= ¬C

R := C; Mode := resolution
T -CONFLICT

{l1, . . . , ln} ⊆ M {l1, . . . , ln} is T -unsat

R := ¬l1 ∨ . . .¬ln; Mode := resolution

When Mode = resolution:

FAIL
R is the empty clause

return UNSAT
RESOLVE

R = C ∨ ¬l lD∨l ∈ M

R := C ∨D

BACKJUMP
R = C ∨ l M = M1 :: l′ :: M2 M2 |= ¬C l is undefined in M2

M := lC∨l :: M2; Mode := search

Figure 2: CDCL solver modulo theory

The state of our SAT module is defined by four global

variables M , F , R and Mode where

• F is a set of clauses

• M is a partial model, represented by a stack of literals;

we use the notation M1 :: M2 for the concatenation of

stacks M1 and M2 (for convenience, l :: M denotes a

stack with l at its top);

• R is a conflict clause

• Mode is variable equal to search or resolution

Literals in M are of two forms: we distinguish between

decision literals l, and implied literals lC annotated with an

explanation clause C. When convenient, we treat M as a set of

literals (in that case, we ignore subscripts of implied literals).

The SAT algorithm is abstractly defined by the non-

deterministic state transition system in Figure 2. Following

[30], each transition rule is given in a guard/action form.

Actions of a rule are enabled only when its guards hold.

We distinguish between two kinds of actions: state variable

assignments, and return statements.

Following standard CDCL solvers, our SAT engine has

two distinct behaviors: a search mode (Mode = search) and

a resolution mode (Mode = resolution). For the sake of

simplicity, we split the set of rules according to the content of

variable Mode.

When Mode = search. The SAT solver terminates by return-

ing SAT if M is a model for F (rule SUCCESS). Rule DECIDE

makes a new decision and push the new decision literal l on

top of M . Boolean constraint propagation is done by rule

PROPAGATE. Rule MODEL-BASED CASE-SPLIT implements

a case split similar to the model-based combination described

in [16]. It allows a new decision literal l to be added on

top of M when there exists a model M for the theory T
coherent with the literals in M . Similarly to PROPAGATE, rule

T-PROPAGATE performs constraint propagation at the theory

level. Rule CONFLICT detects a conflict at the boolean level,

assigns variable R with the conflict clause C and switches to

the resolution mode. Similarly, T-CONFLICT detects a conflict

at the theory level.

When Mode = resolution. The SAT solver terminates by

returning UNSAT if R contains the empty clause ⊥ (rule

FAIL). Rule RESOLVE performs a resolution step between the

clause in R and the explanation clause of an implied literal

in M . Finally, rule BACKJUMP performs non-chronological

backtracking and switches back to the search mode.

Note that only three rules, MODEL-BASED CASE-SPLIT,

T-PROPAGATE and T-CONFLICT, have an interaction with the

theory modules. We describe in the next two sections how

the literals in M are handled by the interval calculus and the

AC(LIA) modules, and postpone to Section IV the concrete

implementation of model-based case-splits.

Configurations of the theory modules are of the form

〈 M | I | R 〉 where

• M is a set of equations, inequations and disequations

between terms in normal form with respect to LIA;

• I is a map from arithmetic terms (affine forms Σiλiti)
to disjoint unions of intervals;

• R is a rewriting system, i.e. a set of oriented equalities

For deciding if a set of literals M is T -satisfiable, we run

the theory modules starting from the initial configuration

〈 M | ∅ | ∅ 〉.

B. AC(LIA) Module

We describe the AC(LIA) module by the set of inference

rules of in Figure 3. These rules can be applied in any order.

This module assumes given a canonizer and a solver for LIA.

DBOTTOM
〈 M ∪ { s 6= s } | I | R 〉

return UNSAT
BOTTOM

〈 M ∪ { s = t } | I | R 〉
return UNSAT

solve(s, t) = ⊥

ORIENT
〈 M ∪ { s = t } | I | R 〉

〈 M | I | R ∪ solve(s, t) 〉 solve(s, t) 6= ⊥ SIMPLIFY
〈 M ∪ { s ⊲⊳ t } | I | R 〉
〈 M ∪ { s′ ⊲⊳ t } | I | R 〉 s R s′

COMPOSE
〈 M | I | R ∪ { l → r } 〉
〈 M | I | R ∪ { l → r′ } 〉 r R r′

COLLAPSE
〈 M | I | R ∪ { g → d, l → r } 〉

〈 M ∪ { l′ = r } | I | R ∪ { g → d } 〉

{

l g→d l′

g ≺ l ∨ (g ≃ l ∧ d ≺ r)

DEDUCE
〈 M | I | R 〉

〈 M ∪ headCP(R) | I | R 〉

Figure 3: Inference rules for AC(LIA)

Its canonizer is a function canLIA that computes a unique

normal form for every term such that s =LIA t iff canLIA(s) =
canLIA(t). A solver for LIA is a function solveLIA that, given

an equation s = t, where s and t are LIA terms, either returns

a special value ⊥ when s = t is inconsistent modulo LIA, or

an equivalent substitution.

Our AC(LIA) algorithm is based on the integration of

canLIA and solveLIA in ground AC-completion.

In order to deal with NIA terms, and in particular to cope

with the AC properties of the non-linear multiplication symbol,

we adapt the LIA canonizer to go through non-linear symbols.

Following the technique described in [29], we define a global

canonizer can by combining canLIA with the canonizer for

AC defined in [24] and formally proved in [14]. For instance,

can((2 · (x ∗ y) + (y ∗ x))/x) gives the term (3 · (x ∗ y))/x.

Using the same technique, we define a wrapper solve to

handle NIA equations by interpreting non-linear terms as black

boxes. See [29] for a more thorough definition of canonizers

and solvers, and [13] for specific requirements in this setting.

In order to integrate can in ground AC completion, we adapt

the notion of ground AC-rewriting to cope with canonizers.

From rewriting point of view, a canonizer behaves like a

convergent rewriting system: it gives an effective way of

computing normal forms. Thus, a natural way for integrating

can in ground AC-completion is to extend normalized rewrit-

ing [31] by replacing normalization with canonization.

Canonized rewriting A term s rewrites to a canonical term

t by the rule l → r, denoted by s l→r t, if and only if s
rewrites to t′ by l → r modulo AC and can(t′) = t.

In order to ensure termination of AC(LIA), we assume

(following the AC(X) framework [13]) the global canonizer

can and the wrapper solve are compatible with a given total

ground AC-reduction ordering �.

The first rule DBOTTOM returns UNSAT when M contains

trivial inconsistent disequations. Similarly, rule BOTTOM is

used to detect trivial inconsistent equations by calling solve.

Equations are turned into rewriting rules by ORIENT which

adapts the orientation mechanism of ground AC-completion.

Given an equation s = t, ORIENT adds the substitution

returned by solve(s = t) to R. This rule only applies when

solve returns a solution for an equation.

All remaining rules are similar to those of ground AC-

completion, except that we replace the AC-rewriting relation

by our canonized rewriting relation . In SIMPLIFY, the

rewriting system R is used to reduce either side of literals

s ⊲⊳ t, where ⊲⊳ stands for =, 6= or ≤. Similarly, COMPOSE

reduces right hand sides of rewriting rules. Given a rule l → r,

COLLAPSE either reduces l at an inner position, or replaces l
by a term smaller than r. In both cases, the reduction of l to

l′ may influence the orientation of the rule l′ → r which is

added to M as an equation in order to be re-oriented. Finally,

DEDUCE adds equational consequences of rewriting rules to

M . For instance, if R contains two rules of the form a∗b → s
and a ∗ c → t, then the term a ∗ (b ∗ c) can either be reduced

modulo AC to s∗c or to the term t∗b. The equation s∗c = t∗b,
called critical pair, is thus necessary for ensuring convergence

of R. Critical pairs of a set of rewriting rules are computed

by the following function (where aµ stands for the maximal

term (w.r.t. size) enjoying the assertion):

headCP(R) =







b ∗ r′ = b′ ∗ r

∣

∣

∣

∣

∣

∣

l → r ∈ R, l′ → r′ ∈ R
∃ aµ. l =

AC
aµ ∗ b

∧ l′ =
AC

aµ ∗ b′







C. Interval Calculus Module

Notations. We write Ja; bK for the integer interval bounded by

a, b ∈ Z. We also write] − ∞; aK for {x ∈ Z | x ≤ a}
and Ja; +∞[for {x ∈ Z | x ≥ a}. We use a simple bracket

notation 〈.〉 in place of J.K,].K, J.[or].[. Interval multiplication

by k ∈ Z is k · 〈a; b〉 = 〈min(k · a, k · b);max(k · a, k · b)〉.
Interval translation by k ∈ Z is 〈a; b〉+ k = 〈a+ k; b+ k〉.

Our inference calculus is described by the set of inference

rules in Figure 4.

The first rule INCONSISTENT-BOUNDS returns UNSAT if

the map I contains a binding t 7→ 〈c1; c2〉 where the interval

〈c1; c2〉 is reduced to the empty set. Rule IMPLIED-EQUALITY

re-injects bindings of the form t 7→ Jc ; cK as equalities t = c

INCONSISTENT-BOUNDS
〈 M | I ∪ {t → 〈c1; c2〉 ∪D} | R 〉

⊥ c1 > c2

IMPLIED-EQUALITY
〈 M | I ∪ {t → Jc; cK} | R 〉
〈 {t = c} ∪M | I | R 〉 t 6 ∗

R
c and (t = c) 6∈ M

LIA-BOUNDS
〈 M | I | R 〉

〈 M | Fm-Simplex(M) ∪ I | R 〉 Fm-Simplex(M) ∪ I 6= I

NIA-SATURATION
〈 M | I | R 〉

〈 M | apply_nia(I) | R 〉 NORMALIZE
〈 M | I | R 〉

〈 M | norm(I, R) | R 〉 norm(I, R) 6= I

Figure 4: Inference rules for the interval calculus

in M for future consideration by AC(LIA). In rule LIA-

BOUNDS, bindings of I are populated by bounds computed

by the Fm-Simplex algorithm (described below). Union of

bindings is defined in a standard way: two bindings t 7→ D
and t 7→ D′ with the same key t are merged into t 7→ D∩D′.

Intervals in I are then refined by applying of a set of non-

linear interval arithmetic axioms by rule NIA-SATURATION

(a non-exhaustive list of these axioms is given below). In

rule NORMALIZE, terms p that are keys of the map I are

normalized so that a · p has the same normal form as p for all

a ∈ Z. At the same time norm normalizes the monomials of p
with respect to the rewriting system R to ensure that intervals

are maintained modulo equality.

The function Fm-Simplex takes as input a set of literals M .

We note Iq =
⋃

i Li ≤ 0 the subset of M that are inequations.

Fm-Simplex returns refined intervals for the initial affine

forms Li of Iq. Non-linear terms of Iq are abstracted as simple

variables and I is initialized with terms and sub-terms of M
(to]−∞; +∞[). To compute these intervals Fm-Simplex uses

an efficient Simplex-based implementation [8]. This algorithm

attempts to compute constant positive linear combinations
∑

λiLi (where λi ∈ Q+) that simulates particular projections

of the Fourier-Motzkin [19], [28] algorithm. These combina-

tions are then used to infer bounds as shown in below.

Example Consider the following set of affine forms:

C1 :

{

L1 = 2x + y, L2 = −2x + 3y − 5,

L3 = x + z + 1, L4 = x + 5y + z,

L5 = −x − 4y + 3, L6 = 3x − 2y + 2

Eliminating z from C1 is immediate since it only appears

positively:

C2 :

{

L1 = 2x + y, L2 = −2x + 3y − 5,

L5 = −x − 4y + 3, L6 = 3x − 2y + 2

We eliminate the variable x and compute the set C3 below

using the combinations: L7 = L1 + L2, L8 = L1 + 2L5,

L9 = 2L6 + 3L2, L10 = L6 + 3L5

C3 :
{

L7 = 4y − 5, L8 = −7y + 6,
L9 = 5y − 11, L10 = −14y + 11

Finally, the variable y is in turn eliminated thanks to the

following combinations: L11 = 7L7+4L8, L12 = 7L7+2L10,

L13 = 7L9 + 5L8, L14 = 14L9 + 5L10

The iterative process terminates and returns the set

C4 :

{

L11 = −11, L12 = −13,

L13 = −47 L14 = −99

Moreover, unfolding the equalities yields











−11 = L11 = 7L7 + 4L8 = · · · = 11L1 + 7L2 + 8L5

−13 = L12 = 7L7 + 2L10 = · · · = 7L1 + 7L2 + 6L5 + 2L6

−47 = L13 = 7L9 + 5L8 = · · · = 5L1 + 21L2 + 10L5 + 14L6

−99 = L14 = 14L9 + 5L10 = · · · = 42L2 + 15L5 + 33L6

Using the linear combination 11L1+7L2+8L5 = −11, we

can make the deductions −1 ≤ L1, − 11
7 ≤ L2 and − 11

8 ≤ L3

in the rationals. Furthermore, these deductions are refined as

follows in the integers: −1 ≤ L1,
⌈

− 11
7

⌉

= −1 ≤ L2 and
⌈

− 11
8

⌉

= −1 ≤ L3.

More formally, Fm-Simplex tries to compute one particu-

lar constant positive linear combination by solving auxiliary

rational optimization problems of the form:

maximize
∑

i bi λi

subject to
∧

j

∑

i ai,j · λi = 0 ∧
∑

i λi > 0 ∧ ∧

i λi ≥ 0

where Li =
∑

j ai,j · tj + bi

such that:

• if unsatisfiable, there is no constant positive linear combi-

nation of the original inequalities – in this case no bounds

are inferred so Iq is satisfiable;

• if the optimization problem is unbounded, then Iq is

inconsistent;

• otherwise, there exists a negative maximum and a positive

linear combination from which bounds can be refined (as

shown above).

The function apply_nia saturates the map I with axioms

of non-linear arithmetic over intervals [23]. For non-linear

multiplication, ten axioms are integrated in the solver, shown

below:

∀a, b, c, d ∈ Z ∪ {−∞,+∞}, x ∈ 〈a; b〉, y ∈ 〈c; d〉.






































































0 ≤ a ≤ b ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ c; b ∗ d〉
0 ≤ a ≤ b ∧ 0 < c < d =⇒ x ∗ y ∈ 〈b ∗ c; b ∗ d〉
0 ≤ a ≤ b ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ c; a ∗ d〉
a < 0 < b ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ d; b ∗ d〉
a < 0 < b ∧ c < 0 < d =⇒

x ∗ y ∈ 〈min(a ∗ d, b ∗ c);max(a ∗ c, b ∗ d)〉
a < 0 < b ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ c; a ∗ c〉
a ≤ b ≤ 0 ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ d; b ∗ c〉
a ≤ b ≤ 0 ∧ c < 0 < d =⇒ x ∗ y ∈ 〈a ∗ d; a ∗ c〉
a ≤ b ≤ 0 ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ d; a ∗ c〉
a = b = 0 ∨ c = d = 0 =⇒ x ∗ y ∈ J0; 0K

Our implementation also handles non-linear Euclidean divi-

sion of polynomials of the form λP (x̄)/P (x̄) with the axiom:

∀a, b ∈ Z ∪ {−∞,+∞}, P (x̄) ∈ 〈a; b〉, λ ∈ Z.

0 6∈ 〈a; b〉 =⇒ λP (x̄)/P (x̄) ∈ Jλ;λK

The more general form P (x̄)/Q(x̄) is handled when

Q(x̄) > 0 or Q(x̄) < 0. For instance, from x ∈ J0; 5K and

y ∈ J3;+∞[we deduce x/y ∈ J0; 1K.

Intervals are also propagated from non-linear terms to

their sub-terms when applicable. For example, what are the

bounds of x, knowing those of xn? Our main concern with

this technique is to guarantee that our interval arithmetic

computes bounds that remain correct by over-approximating

the intervals. This is particularly apropos in the case of the root

of an interval where results may become irrational numbers.

∀a, b ∈ Z ∪ {−∞,+∞}, xn ∈ 〈a; b〉.






n is odd =⇒ x ∈ 〈UAZ(n
√
a) ; OAZ(

n
√
b)〉

n is even and 0 ≤ a ≤ b =⇒
x ∈ 〈−OAZ(

n
√
b) ; OAZ(

n
√
b)〉

where

UAZ(
n
√
x) = ⌈UAQ(

n
√
x)⌉ and OAZ(

n
√
x) = ⌊OAQ(

n
√
x)⌋

are accurate (under and over) approximations of n
√
x in Z

computed as follows.

Let AQ(n
√
x) be an accurate approximation in Q of n

√
x and

OAQ(n
√
x) (resp. UAQ(n

√
x)) be an over-approximation (resp.

under-approximation) of n
√
x. We can safely deduce that:

if AQ(
n
√
x)n > x then

OAQ(
n
√
x) = AQ(

n
√
x) and UAQ(

n
√
x) = x/AQ(

n
√
x)n−1

if AQ(
n
√
x)n < x then

UAQ(
n
√
x) = AQ(

n
√
x) and OAQ(

n
√
x) = x/AQ(

n
√
x)n−1

if AQ(
n
√
x)n = x then OAQ(

n
√
x) = UAQ(

n
√
x) = AQ(

n
√
x)

For example, from −y3 ∈] − ∞;−10K we can deduce that

y ∈ J3;+∞[.

Function norm normalizes keys of the map I with the rewriting

system R. Every binding p 7→ D of I is replaced with a

normalized binding to ensure that identities between terms

differing only from a multiplicative factor will be discovered

and that their intervals will be merged. An affine form p has

to be reduced with the rules of R, i.e. p R p′ + c where

p′ is an affine form Σiai · ti. p′ is then normalized by a

multiplicative factor k = a1

|a1|
· ppcm(...,ai,...)
pgcd(...,ai,...)

which guarantees

that coefficients k · ai remain integer numbers and that the

sign of p′ is also normalized with respect to its first coefficient.

p 7→ D is replaced by (and merged in I) the equivalent binding

k · p′ 7→ k · (D − c).
Additionally, if norm encounters a key of the form p/q, the

axiom:

∀q, p ∈ Z. ∃ a unique k ∈ Z. q = (q/p) ∗ p+ k ∧ 0 ≤ k ≤ p

is instantiated by adding the following new bindings to I ,

knowing that this unique k only depends on p and q and is

noted p%q:

q − (q/p) ∗ p− (p%q) 7→ J0; 0K

(p%q) 7→ J0;+∞[

(p%q)− q 7→]−∞; 0K

IV. IMPLEMENTATION

We integrated our collaborative framework in the Alt-Ergo

SMT-solver. The architecture of the current implementation

is very close to description of Figure 1. We describe in this

section some implementation details of the rules given in

Section III. In particular, we explain how the premises of

rules MODEL-BASED CASE-SPLIT, T -PROPAGATE and T -

CONFLICT (in Figure 2) are implemented. Furthermore, we

give our deterministic strategy for applying rules of Figures 3

and 4.

An important feature from an implementation view point,

is that our theory modules should be incremental and back-

trackable. Indeed, the SAT module constructs its partial model

M in an incremental way, and context of successive calls to

theory modules only differ in just a few literals. Additionally,

when the SAT backjumps, theories must recover their previous

states. In Alt-Ergo, theories modules are implemented with

persistent data structures (sets, maps, etc.) thus backtrackabil-

ity is obtained for free.

For now, all components are incremental and backtrackable

except for Fm-Simplex. Each call to Fm-Simplex processes

the literals of M from scratch. To circumvent this issue, we

employ memoization techniques to reuse previously computed

results at the expense of a larger memory footprint.

Concerning the implementation of rule MODEL-BASED

CASE-SPLIT, the difficulty is to discover the case-split literal

l. Alt-Ergo finds such a literal by looking for a binding

t 7→ Jc1; c2K in I such that c2 − c1 ≥ 1. In this case, the

case-split literal is t = c1 . As a heuristic, priority is given to

bindings with the smallest intervals.

In the rule T -CONFLICT, the difficulty is to find the sub-

set {l1, . . . , ln} of M that is T -unsatisfiable. For that, we

have implemented an explanation mechanism that consists in

remembering the set of literals that were involved in each

deduction step (bound inference, adding a rewriting rule, etc.)

of the theory modules. Note that a special attention should be

given to the implementation of this explanation mechanism;

if literals are missing from {l1, . . . , ln}, the SAT solver may

backjump to the wrong decision level.

The additional difficulty of T -PROPAGATE is to find the

implied literal l. We restrict the possible literals to the ones

(or their negation) that appear in F . The key point of the

implementation is that each time the SAT solver assumes a

new literal, we rapidly identify all literals impacted by this

addition. This is implemented thanks to an indirection table

that dispatches literals according to their sub-terms. We extract

all implied literals from the set returned by a look-up in this

table.

We used the following strategy to process an equation using

the inference rules of AC(LIA):

SIMPLIFY
∗

(BOTTOM | (ORIENT (COMPOSE COLLAPSE DEDUCE)∗))

This means that the equation is first simplified as much as

possible. Then, if it is not proven to be trivially unsolvable, it

is solved. Each resulting rule is added to the rewriting system

and then used to “compose” and “collapse” the other rules of

R. Finally, critical pairs are computed and added to M .

Solving an equation can also have an impact in the interval

calculus module. In this case, the following strategy is used

to normalize the map I with respect to R and to call bounds

inference rules.

NORMALIZE LIA-BOUNDS NIA-SATURATION

Similarly, processing an inequality is done as follows:

SIMPLIFY
∗ LIA-BOUNDS NIA-SATURATION

Notice that, INCONSISTENT-BOUNDS (resp. IMPLIED-

EQUALITY) is applied as soon as an interval becomes

inconsistent (resp. reduces to a point).

V. EXPERIMENTAL RESULTS

In this section, we evaluate our collaborative framework on

a collection of verification conditions issued from program

verification. The aims of our evaluation is to show that:

• although incomplete, our approach allows us to prove

formulas requiring a simple non-linear integer arithmetic

reasoning;

• our extension does not slow down the Alt-Ergo SMT-

solver when non-linear integer arithmetic reasoning is not

needed.

For the experiments, we have used the current svn revision

of Alt-Ergo and a modified version of it where non-linear

integer arithmetic is deactivated. We also used the latest

versions of some state-of-the-art SMT solvers including CVC3

(version 2.4.1), CVC4 (version 1.2) and Z3 (version 4.3.1).

Our test suite is composed of three benchmarks which already

contain some auxiliary NIA axioms to help provers that don’t

support built-in NIA reasoning:

• the first one is made of 3431 formulas generated from

the SPARK Hi-Lite toolset1. These verification conditions

were only available in Alt-Ergo’s native input language;

1Available on http://libre.adacore.com/tools/spark-gpl-edition/

• the second one contains 80 difficult verification condi-

tions generated from the gallery of programs of Why,

version 2. Formulas in this benchmark were only avail-

able in Alt-Ergo’s native input language;

• the third benchmark is composed of 1920 verification

conditions issued from Why3’s gallery of verified pro-

grams2. These formulas where generated in Alt-Ergo’s

native input language, the SMTLIB-2 language and

CVC3’s native input language.

All measures were obtained on a 64-bit machine with a

quad-core Intel Xeon processor at 3.2 GHz and 24 GB of

memory. Provers were given a time limit of 60 seconds and a

memory limit of 2 GB for each verification condition.

unsat time unk. time

alt-ergo 2285 1017 s 621 5329 s

ae no-nia 2241 1241 s 704 5709 s

Figure 5: Benchmark issued from the SPARK Hi-Lite toolset.

unsat time unk. time

alt-ergo 57 45 s 18 176 s

ae no-nia 34 44 s 40 180 s

Figure 6: Formulas issued from Why’s gallery of programs.

unsat time unk. time

alt-ergo 1842 465 s 19 45 s

ae no-nia 1830 456 s 30 85 s

z3 1528 392 s 1 0.1 s

cvc3 1767 382 s 34 290 s

cvc4 1664 619 s 2 0.1 s

Figure 7: Benchmark issued from Why3’s gallery of programs.

The results of our experiments are reported in Figures 5, 6

and 7. The first column of each table shows the number

of formulas solved by each prover. The second one reports

the corresponding accumulated time. The third and the fourth

columns report the number of formulas for which the provers

returned unknown and the corresponding time, respectively.

From these figures, we remark that Alt-Ergo proves more

formulas when non-linear integer arithmetic is activated.

Moreover, we were surprised to notice on Figure 5 that Alt-

Ergo with NIA is 18% faster than Alt-Ergo without NIA. We

also notice from figures 6 and 7 that the overhead of our non-

linear arithmetic extension is negligible.

These results can be explained because:

• Alt-Ergo has more built-in NIA axioms than what is given

in these benchmarks;

2Available on http://toccata.lri.fr/gallery/why3.en.html

http://libre.adacore.com/tools/spark-gpl-edition/
http://toccata.lri.fr/gallery/why3.en.html

• some of these auxiliary NIA axioms are likely to be ill-

suited for the instantiation mechanism;

• other auxiliary NIA axioms, e.g. associativity and com-

mutativty, will glut the solver with plenty of useless

instances.

In a second step, we tried to evaluate our approach on the

UF-NIA benchmark of SMT-LIB [5]. However, we noticed

that formulas in this benchmark require a non-trivial prepro-

cessing of LET-IN and IF-THEN-ELSE high-level constructs.

Unfortunately, such a capability is not provided by Alt-Ergo

for the moment.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a collaborative approach of

procedures for reasoning in the linear and non-linear fragment

of integer arithmetic. We have implemented this framework

in the Alt-Ergo theorem prover and the first experiments

show that this method is promising. Further improvements

on the combination of interval arithmetic with the rest of

the framework include the incorporation of other NIA axioms

and the extension of the matching algorithm — used when

applying these axioms — modulo AC properties.

REFERENCES

[1] Z. S. Andraus and et al. Automatic abstraction and verification of verilog
models, 2004.

[2] D. Babic and M. Musuvathi. Modular arithmetic decision procedure.
Microsoft Research Redmond, Tech. Rep. TR-2005-114, 2005.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal methods for Components and Objects, pages 364–387. Springer,
2006.

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli. Cvc4. In Proceedings of the

23rd international conference on Computer aided verification, CAV’11,
pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok, D. Deharbe,
B. Dutertre, P. Fontaine, V. Ganesh, A. Griggio, J. Grundy, P. Jackson,
A. Oliveras, S. Krstić, M. Moskal, L. D. Moura, R. Sebastiani, T. D.
Cok, and J. Hoenicke. C.: The smt-lib standard: Version 2.0. Technical
report, 2010.

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Proceedings of the 19

th International Conference on Computer

Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer

Science, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.
[7] P. Baudin, F. Bobot, R. Bonichon, L. Correnson, P. Cuoq, Z. Dargaye,

J.-C. Filliâtre, P. Herrmann, F. Kirchner, M. Lemerre, C. Marché,
B. Monate, Y. Moy, A. Pacalet, V. Prévosto, J. Signoles, and
B. Yakobowski. Frama-c. http://frama-c.com.

[8] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, A. Mahboubi,
A. Mebsout, and G. Melquiond. A simplex-based extension of fourier-
motzkin for solving linear integer arithmetic. In Automated Reasoning,
pages 67–81. Springer, 2012.

[9] F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich, et al. Why3: Shepherd
your herd of provers. In Boogie 2011: First International Workshop on

Intermediate Verification Languages, pages 53–64, 2011.
[10] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna,

Z. Khasidashvili, A. Palti, and R. Sebastiani. Encoding rtl constructs
for mathsat: a preliminary report. Electron. Notes Theor. Comput. Sci.,
144(2):3–14, Jan. 2006.

[11] C. W. Brown. Qepcad b: A program for computing with semi-algebraic
sets using cads. SIGSAM BULLETIN, 37:97–108, 2003.

[12] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition: a synopsis. SIGSAM Bull., 10(1):10–12, Feb.
1976.

[13] S. Conchon, E. Contejean, and M. Iguernelala. Canonized rewriting and
ground ac completion modulo shostak theories: Design and implemen-
tation. arXiv preprint arXiv:1207.3262, 2012.

[14] E. Contejean. A certified AC matching algorithm. In V. van Oostrom,
editor, 15th International Conference on Rewriting Techniques and

Applications, volume 3091, pages 70–84, Aachen, Germany, June 2004.
[15] E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically

proving termination using polynomial interpretations. Journal of Auto-

mated Reasoning, 34(4):325–363, 2005.
[16] L. M. de Moura and N. Bjørner. Model-based theory combination.

Electr. Notes Theor. Comput. Sci., 198(2):37–49, 2008.
[17] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In Tools

and Algorithms for the Construction and Analysis of Systems, 14th

International Conference, TACAS 2008, Budapest, Hungary, volume
4963, pages 337–340. Springer, 2008.

[18] B. Dutertre and L. D. Moura. The yices smt solver. Technical report,
SRI, 2006.

[19] J.-B. J. Fourier. Reported in: Analyse des travaux de l’Académie Royale
des Sciences, pendant l’année 1824, Partie mathématique, Histoire de
l’Académie Royale des Sciences de l’Institut de France. (7), 1827.

[20] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Modeling and

Computation, 1:209–236, 2007.
[21] M. K. Ganai. Efficient decision procedure for bounded integer non-linear

operations using smt (\ mathcal {LIA}). In Hardware and Software:

Verification and Testing, pages 68–83. Springer, 2009.
[22] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica

und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38(1):173–198, 1931.

[23] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From
principles to implementation. J. ACM, 48:1038–1068, September 2001.

[24] J.-M. Hullot. Associative commutative pattern matching. In Proc. 6th

IJCAI (Vol. I), Tokyo, pages 406–412, Aug. 1979.
[25] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic.

In Automated Reasoning - 6th International Joint Conference, IJCAR

2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of
Lecture Notes in Computer Science, pages 339–354. Springer, 2012.

[26] J. Kanig, E. Schonberg, and C. Dross. Hi-lite: the convergence of
compiler technology and program verification. In B. Brosgol, J. Boleng,
and S. T. Taft, editors, HILT, pages 27–34. ACM, 2012.

[27] D. Kapur. Using gröbner bases to reason about geometry problems. J.

Symb. Comput., 2(4):399–408, 1986.
[28] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic

Point of View. Springer Publishing Company, Incorporated, 1 edition,
2008.

[29] S. Krstić and S. Conchon. Canonization for disjoint unions of theories.
Information and Computation, 199(1-2):87–106, May 2005.

[30] S. Krstic and A. Goel. Architecting solvers for sat modulo theories:
Nelson-oppen with dpll. In Frontiers of Combining Systems, Liverpool,

UK, September 10-12, 2007, Proceedings, volume 4720, pages 1–27.
Springer, 2007.

[31] C. Marché. Normalized rewriting: an alternative to rewriting modulo a
set of equations. 21(3):253–288, 1996.

[32] Y. V. Matiyasevich. Enumerable sets are diophantine. Soviet Mathemat-

ics (Dokladi), 11(2):354–357, 1970.
[33] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract

DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceed-

ings of the 11th International Conference on Logic for Programming,

Artificial Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay,
volume 3452 of Lecture Notes in Computer Science, pages 36–50.
Springer, 2005.

[34] G. O. Passmore. Combined decision procedures for nonlinear arith-
metics, real and complex. 2011.

[35] S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A hybrid sat-based decision
procedure for separation logic with uninterpreted functions. In In Proc.

DAC’03, pages 425–430, 2003.
[36] N. Smart. The Algorithmic Resolution of Diophantine Equations: A

Computational Cookbook. London Mathematical Society Student Texts.
Cambridge University Press, 1998.

[37] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1948.

[38] A. C. Ward and W. Seering. An approach to computational aids for
mechanical design. In Proceedings of the International Conference on

Engineering Design, 1981.
[39] V. Weispfenning. A New Approach to Quantifier Elimination for Real

Algebra. Fakultät für Mathematik und Informatik: MIP. Fak. für Math.
und Informatik, Univ. Passau, 1993.

http://frama-c.com

