Sylvain Conchon

Amit Goel

Sava Krstić

Alain Mebsout

Fatiha Zaïdi

Invariants for Finite Instances and Beyond

Verification of safety properties of concurrent programs with an arbitrary numbers of processes is an old challenge. In particular, complex parameterized protocols like FLASH are still out of the scope of state-of-the-art model checkers. In this paper, we describe a new algorithm, called BRAB, that is able to automatically infer invariants strong enough to prove a protocol like FLASH. BRAB computes over-approximations of backward reachable states that are checked to be unreachable in a finite instance of the system. These approximations (candidate invariants) are then model checked together with the original safety properties. Completeness of the approach is ensured by a mechanism for backtracking on spurious traces introduced by too coarse approximations.

I. INTRODUCTION

Nowadays, modern computing systems are often relying on multi-core or distributed architectures. Inherently, the verification of mutual exclusion or cache coherence properties for such systems is very challenging. Consider for instance that, in the Stanford FLASH multiprocessor architecture, the transition system describing the cache coherence protocol has already more than 67 million states when just four processors are in competition [START_REF] Chou | A simple method for parameterized verification of cache coherence protocols[END_REF].

A standard way of verifying a transition system is to enumerate the entire state space [START_REF]25 Years of Model Checking: History, Achievements, Perspectives[END_REF], [START_REF] Holzmann | Design and validation of computer protocols[END_REF] (modulo reduction and compaction techniques). However, on large problems, efficient enumerative model checkers reach their limits in both time and memory consumption. For instance, Murϕ fails to prove the safety of FLASH for five processes with a timeout limit of 24 hours and 20 GB of memory.

An alternative is to verify a parameterized version of the system. Model checking of such systems is an old and well studied problem [START_REF] Apt | Limits for automatic verification of finitestate concurrent systems[END_REF], [START_REF] Clarke | Reasoning about networks with many identical finite-state processes[END_REF], [START_REF] German | Reasoning about systems with many processes[END_REF]. Yet, all automatic techniques that allow properties to be verified for any number of processes do not scale very well. For instance, state-of-the-art parametric model checkers hit their limit on academic problems: most tools need several minutes to prove the safety of the parameterized protocol given by German [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF], although this protocol only has 28,000 reachable states for four processes. Some approaches are known to scale on large problems: compositional and abstraction model checking techniques [START_REF] Clarke | Compositional model checking[END_REF] have been used to prove a parameterized version of FLASH [START_REF] Mcmillan | Parameterized verification of the FLASH cache coherence protocol by compositional model checking[END_REF], [START_REF] Talupur | Going with the flow: Parameterized verification using message flows[END_REF]. However, they all require human experts to provide hand-crafted invariants. Designing algorithms to find automatically good quality invariants is still a challenge and an active research area [START_REF] Cohen | Local proofs for global safety properties[END_REF], [START_REF] Grinchtein | Inferring network invariants automatically[END_REF], [START_REF] Lahiri | Constructing quantified invariants via predicate abstraction[END_REF], [START_REF] Mcmillan | Quantified invariant generation using an interpolating saturation prover[END_REF], [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF].

In this paper, we propose a novel algorithm that infers invariants capable of proving complex protocols. Our contributions are as follows:

• The BRAB algorithm (illustrated in Section II). It first computes a set M of reachable states using a forward exploration for a finite instance of the system with a fixed number of processes. Then, it performs a backward reachability analysis of the parameterized system. At each loop iteration, BRAB computes an over-approximation of backward reachable states and checks that it represents states that are not in M. All these approximations, which can be seen as candidate invariants, are model checked together with the original safety properties. To ensure completeness, BRAB backtracks when it encounters a spurious trace introduced by a too coarse approximation. The strength of our method resides in two aspects. First, model checking approximations together makes it possible for the proof of an approximation to use part of the proof of another one. A second key insight is that finite instances (even small) are generally good oracles for guiding the choice of approximations as they can be seen as a concentrated knowledge of the system.

• A formalization of BRAB for a generic symbolic framework where sets of states are represented by logical formulas (Section III). We only require preand post-images to be computable and the decidability of backward reachability. Under these conditions, we prove soundness, completeness and termination of our algorithm. Such a generic presentation allows BRAB to be implemented in different frameworks.

• An implementation of BRAB in the framework of array-based transition systems (Section IV). This is a syntactically restricted class of parametrized transition systems with states represented as arrays indexed by an arbitrary number of processes [START_REF] Ghilardi | Backward reachability of array-based systems by SMT solving: Termination and invariant synthesis[END_REF]. Our implementation is available in the Cubicle model checker [START_REF] Conchon | Cubicle: A Parallel SMT-based Model Checker for Parameterized Systems[END_REF].

• A comparison of our approach with state-of-the-art parameterized and enumerative model checkers on a set of significant problems (Section V). This comparison effort demonstrates that our method is promising.

To our knowledge, Cubicle (with BRAB) is the first tool that proves automatically the safety of FLASH.

II. INVARIANTS FOR FINITE INSTANCES AND BEYOND

We illustrate our method on a simplified version of the directory based cache coherence protocol proposed by German [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF]. The protocol consists of a global directory which maintains the consistency of a shared memory between a parameterized number of cache clients. The status of each cache i is indicated by a variable Cache[i] which can be in one of the three states: (E)xclusive (read and write accesses), (S)hared (read access only) or (I)nvalid (no access to the memory). Clients send requests to the directory when cache misses occur: rs for a shared access (read miss), re for an exclusive access (write miss). The directory has four variables: a boolean flag Exg indicates whether a client has an exclusive access to the main memory, a boolean array Shr, such that Shr[i] is true when a client i is granted (read or write) access to the memory, Cmd stores the current request (ǫ stands for the absence of request), and Ptr contains the emitter of the current request.

The initial states of the protocol are represented by the following logical formula ∀i.

Cache[i] = I ∧ ¬Shr[i] ∧ ¬Exg ∧ Cmd = ǫ
stating that the cache of each process is invalid, no access has been given and there is no request to be processed. We give in Figure 1 a high-level view of the evolution of a single cache. Solid arrows show the evolution of the cache following its own requests whereas, dashed arrows depict transitions resulting from a request of another client. For example, a cache moves from state I to S when a read miss occurs and the directory grants it a shared access, while recording it in the array Shr[i] := true. Similarly, when a write miss occurs in another cache, the directory invalidates all clients recorded in Shr before granting an exclusive access. This has the effect of moving caches from states E or S to state I.

The formal description of the protocol is given by the transition system in Figure 2. Following notations in [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF], we describe each transition by a logical formula relating the values of state variables before and after the transition. We denote by X ′ the value of the variable X after the execution of the transition. For instance, transition t 1 should read as: if there exists a process i whose cache is invalid and there is no command to be processed, then update variable Ptr to i and set variable Cmd to rs. This protocol ensures that when a cache client is in an exclusive state then no other process has (read or write) access to the memory. Proving this safety property amounts

t 1 : ∃i. Cache[i] = I ∧ Cmd = ǫ ∧ Ptr ′ = i ∧ Cmd ′ = rs t 2 : ∃i. Cache[i] = E ∧ Cmd = ǫ ∧ Ptr ′ = i ∧ Cmd ′ = re t 3 : ∃i. Shr[i] ∧ Cmd = re ∧ ¬Exg ′ ∧ Cache ′ [i] = I ∧ ¬Shr ′ [i] t 4 : ∃i. Shr[i] ∧ Cmd = rs ∧ Exg ∧ ¬Exg ′ ∧ Cache ′ [i] = S t 5 : ∃i. Ptr = i ∧ Cmd = rs ∧ ¬Exg ∧ Cmd ′ = ǫ ∧ Shr ′ [i] ∧ Cache ′ [i] = S t 6 : ∃i. Ptr = i ∧ Cmd = re ∧ ¬Exg ∧ ∀j. ¬Shr[j] Cmd ′ = ǫ ∧ Exg ′ ∧ Shr ′ [i] ∧ Cache ′ [i] = E
Fig. 2: German-ish transition system to checking that states that satisfy the following formula Θ are not reachable:

Θ : ∃i, j. i = j ∧ Cache[i] = E ∧ Cache[j] = I
Finite Instance. We consider a finite instance of the protocol with two caches. We give in Figure 3 (left graph) the beginning of a forward exploration starting from the state (circled node) obtained by instantiating the initial formula with two distinct processes #1 and #2. Each edge label t(# i) stands for the instance of a transition t with process # i .

Backward Reachability. We then run a backward reachability analysis for the parameterized system. Starting from Θ (octagon node), we iteratively compute its pre-images (circle nodes) for all transitions. Pre-images that are subsumed by already visited nodes (dotted edges) are not expanded anymore. This process ends either when a formula in a node intersects the initial formula or when there is no more pre-image to compute.

To improve this standard backward analysis, we try to prune the search space by finding over-approximations of preimages. Since the set of possibilities is very large, we restrict the choice to formulas that represent unreachable states in the finite instance, and which are syntactic sub-formulas of preimages.

If it succeeds to extract an appropriate candidate, the newly found approximation (rectangles connected with a bold dashed arrow) replaces the original formula. To illustrate this we show a partial graph of BRAB's execution on the right of Figure 3.

Starting from the unsafe formula ∃i = j. Cache[i] = E ∧ Cache[j] = I, the pre-image by transition t 5 returns the node ∃i = j. ¬Exg ∧ Cmd = rs ∧ Ptr = j ∧ Cache[i] = E. This node could be approximated by ¬Exg ∧ Cmd = rs. But on closer inspection, ¬Exg ∧ Cmd = rs is already reachable on the left graph of Figure 3 as it is satisfied by a concrete state of the finite instance (double-headed arrow with |=) so it is undoubtedly not a good approximation. On the contrary

|= |= ¬Exg Cmd = ǫ Cache[#1] = I Cache[#2] = I ¬Shr[#1] ¬Shr[#2] ¬Exg Cmd = re Ptr = #2 Cache[#1] = I Cache[#2] = I ¬Shr[#1] ¬Shr[#2] ¬Exg Cmd = re Ptr = #1 Cache[#1] = I Cache[#2] = I ¬Shr[#1] ¬Shr[#2] ¬Exg Cmd = rs Ptr = #2 Cache[#1] = I Cache[#2] = I ¬Shr[#1] ¬Shr[#2] ¬Exg Cmd = rs Ptr = #1 Cache[#1] = I Cache[#2] = I ¬Shr[#1] ¬Shr[#2] Exg Cmd = ǫ Ptr = #2 Cache[#1] = I Cache[#2] = E ¬Shr[#1] Shr[#2] Exg Cmd = ǫ Ptr = #1 Cache[#1] = E Cache[#2] = I Shr[#1] ¬Shr[#2] ¬Exg Cmd = ǫ Ptr = #2 Cache[#1] = I Cache[#2] = S ¬Shr[#1] Shr[#2] Exg Cmd = rs Ptr = #2 Cache[#1] = E Cache[#2] = I Shr[#1] ¬Shr[#2] t2(#2) t2(#1) t1(#2) t1(#1) t6(#2) t6(#1) t5(#2) t5(#1) t2(#1) t1(#1) t2(#2) t1(#2) t2(#2) t2(#1) t1(#1) ∃i = j. Cache[i] = E Cache[j] = I ∃i = j. Exg Cmd = rs Cache[i] = E Shr[j] ∃i = j. ¬Exg Cmd = rs Ptr = j Cache[i] = E ∃i = j. ¬Exg Cmd = rs Ptr = j Cache[i] = E Cache[i] = E ∃i = j. Exg Cmd = rs Cache[i] = E Shr[j] ∃i = j. Cmd = re Cache[i] = E Shr[j] ∃i. ¬Exg ∃i. Cmd = rs Cache[i] = E ¬Exg Cmd = rs ∃i = j. Shr[j] Cache[i] = E pre(t4(j)) pre(t5(j)) pre(t6(i))
pre(t5(j)) pre(t4(j)) pre(t3(j))

Fig. 3: BRAB on the German-ish protocol no instances of ∃i. ¬Exg ∧ Cache[i] = E is reachable on the finite system of Figure 3. This approximation is inserted in the backward reachability loop which continues as usual.

As we can see on the graph Figure 3, the sub-graphs of some approximations intersect. These sub-graphs depict the proof of unreachability for each approximation, this means that proofs are factorized, hence the benefit of inserting them during the main search. For example, part of the pre-image of the first approximation is subsumed by the second approximation (and vice-versa).

Naturally approximations can introduce spurious traces. When one is exposed, BRAB restarts from scratch the construction of the reachability graph, while remembering this approximation to avoid exploring the same spurious behaviours. For example, if we had built the finite model using only one process variable, nothing would prevent the algorithm from considering the bad approximation ∃i.Cmd = rs∧Cache[i] = E

In our example, with a finite model with two processes, no approximation introduces an error trace and the system is proved safe. As a consequence, each node in the graph is unreachable and its negation is an invariant of the system. In particular, approximations yield the following non-trivial invariants (the last one is not shown on the graph):

I 1 : ∀i, j. i = j ∧ Cache[i] = E =⇒ ¬Shr[j] I 2 : ∀i. Cache[i] = E =⇒ Exg I 3 : ∀i. Cache[i] = I =⇒ Shr[i]

III. FORMALIZING THE BRAB ALGORITHM

A. Notations and Preliminaries

We assume the usual syntactic and semantic notions of first-order logic. In particular, we use the symbol |= for the logical entailment relation between sets of formulas. For convenience, disjunctions are represented by sets of formulas.

We adopt a symbolic framework for specification of parameterized systems where states are described by a fixed set of state variables Q. Each variable x ∈ Q is defined over a finite or infinite domain D x . This domain may be unspecified, in which case we call it a parameter of the system. We assume that in this framework (sets of) system states can be described by formulas in a decidable fragment of the first-order logic.

A parameterized system S is defined by a pair (I, T) where I is a formula describing the initial states of the system and T is a set of (possibly quantified) formulas, called transitions, relating states of S. For a state formula ϕ and a transition τ ∈ T , let pre(τ, ϕ) be the formula describing the set of states from which a state satisfying ϕ can be reached in one τ -step. The pre-image closure of ϕ, denoted by PRE * (ϕ), is defined as follows

       PRE 0 (ϕ) ϕ PRE n (ϕ) {pre(τ, ψ) | ψ ∈ PRE n-1 (ϕ), τ ∈ T } PRE * (ϕ) k∈N PRE k (ϕ) and the pre-image of a set of formulas V is defined by PRE * (V) =
ϕ∈V PRE * (ϕ). We also write PRE(ϕ) for PRE 1 (ϕ). Similarly, we define the post-image post(τ, ϕ) of ϕ with respect to τ as the set of states that are reachable from ϕ in one step by taking the transition τ . The definition of POST * is given by the equations for PRE * , with post in place of pre. For our purpose, we assume PRE to be effectively computable and POST to be effectively computable on finite instances.

Definition 1. A set of formulas V is said to be reachable iff POST * (I) ∧ V is satisfiable, or equivalently, PRE * (V) ∧ I satisfiable. It is unreachable otherwise. Definition 2.
An invariant of a system is any property that holds in all reachable states of the system.

We give a standard backward reachability algorithm for this framework, as defined by the function BWD in Algorithm 1. Starting with an empty set V of visited nodes (state formulas/set really) and a queue Q of pending nodes initialized with a formula Θ, BWD iteratively computes the backward reachability graph of PRE * (Θ). The algorithm terminates when a node fails the safety check (consistency with the initial condition -line 6), or when all nodes in Q are subsumed by the nodes in V (line 8).

The decidability of BWD is assumed to be guaranteed in the symbolic framework under consideration. BRAB takes as input a parameterized system (I, T), a formula Θ, and two integers d max and k. In addition to the set V of visited nodes and the work queue Q, our algorithm requires three variables M, B and F, and a couple of maps Kind and From. These variables are used as follows:

• M is a set of reachable states for a finite instance of the system with k processes;

• B is a set of bad (or too coarse) over-approximations;

• F contains the last visited node that fails the safety check during the backward analysis;

• Kind maps formulas to values in {Orig, Appr}. It is used to differentiate formulas in PRE * (Θ) (Orig formulas) from pre-images of over-approximations (Appr formulas);

• From associates pre-images with their original ancestor formula.

The entry point of the algorithm is the function BRAB. It starts by initializing some variables : B is the empty set, Θ is recorded as the initial value of PRE * (Θ) in Kind and From, and M is the set FWD(d max , k) of reachable states constructed by a forward exploration of the reachability graph starting in

I(#1) ∧ • • • ∧ I(#k
) and limited to depth d max . BRAB then enters a verification loop (line 34). It first calls the function BWDA which verifies the safety of Θ in the parameterized case by a backward reachability with approximations. If BWDA returns safe, so does BRAB. Otherwise, F contains the last formula that fails the safety check in BWDA and BRAB returns unsafe if F is a pre-image of Θ. If F is (a pre-image of) an approximation, then BRAB ignores this spurious result, saves the original ancestor of F in B to avoid reproducing the same trace, and continues its verification loop.

BWDA implements a reachability loop similar to Algorithm 1. It only differs at two lines. It saves in F the formula which fails the safety check (line 21). It also calls function Approx in place of PRE (line 25) to find over-approximations of the current node ϕ. The function Approx limits potential candidates to subformulas subsuming ϕ that are not already known to be bad approximations and which represent states that are not in M. If it fails to find such an approximation, Approx returns the pre-image of ϕ. Regarding the correctness of BRAB, the set candidates(ϕ) must be finite (implementation details are given in Section IV). If Approx finds a new approximation ψ, it is tagged with Appr in Kind and From(ψ) is set to ψ. Otherwise, formulas in PRE(ϕ) inherit the information of ϕ in Kind and From.

C. Correctness

The correctness of BRAB relies on the decidability of BWD (assumed in Section III-A) the following loop invariants: (Inv1) V does not contain immediately reachable formulas, i.e. V |= ¬I

(Inv2) PRE * (Θ) is incrementally computed in V and Q, i.e. PRE * (Θ) |= V ∨ PRE * (Q) (Inv3) if Kind(ϕ) = Orig then ϕ ∈ PRE * (Θ)
Theorem 1. If BRAB() returns safe then Θ is unreachable.

Proof: When BRAB returns safe, the loop (line 27) terminates with Q empty. Now, by contradiction, suppose Θ is reachable. By definition PRE * (V) ∧ I is satisfiable. Since Q is empty, by (Inv2) PRE * (Θ) |= V and V ∧ I thus satisfiable too, which contradicts the invariant (Inv1) V |= ¬I.

Theorem 2. If BRAB() returns unsafe then Θ is reachable

Proof: If BRAB returns unsafe, then there exists a formula ϕ such that ϕ ∧ I is satisfiable and Kind(ϕ) = Orig. By (Inv3), we conclude that PRE * (Θ) ∧ I is satisfiable.

Theorem 3. BRAB() always returns safe or unsafe

Proof: Suppose the algorithm 2 does not terminate then whether:

1) BWDA does not terminate, or 2) BRAB does not terminate (1) Since BWDA only differs from BWD by Approx, its termination is assured by the fact that candidates returns a finite set of formuals. (2) The co-domain of From is a subset of Algorithm 2: Backward Reachability with Approximations and Backtracking (BRAB)

Input: a parameterized system (I, T), a formula Θ to be verified, the maximal depth d max for the forward exploration and the number k of processes to be considered for the finite instance of the system Variables:

V A = ϕ∈V f candidates(ϕ) (guaranteed by line 5), where V f is the final set obtained by BWD on Θ. Since V f is finite, A is also finite. The condition ψ ∈ B at line 3 guarantees that approximations added in B at line 36 are always distinct and in A. In other words B cannot grow forever, so BRAB terminates.

Remark Notice that the correctness of BRAB does not depend on the content of M, which thus acts as an oracle.

IV. IMPLEMENTATION

We have implemented BRAB in the logical framework of array-based transition systems that was proposed by Ghilardi and Ranise [START_REF] Ghilardi | Backward reachability of array-based systems by SMT solving: Termination and invariant synthesis[END_REF]. In this framework, states are represented by infinite arrays indexed by processes. This class is useful to model several infinite state systems and allows some topology constraints to be specified on indexes (linear ordering, multisets). Although this framework does not have all the desirable properties of Section III-A for completeness, Theorem 1 is still applicable.

In this framework, unsafe properties are cubes (conjunctions of literals existentially quantified by distinct variables). Safety properties are decidable by backward reachability as soon as a well-quasi ordering can be exhibited on models (configurations). The interested reader is referred to [START_REF] Ghilardi | Backward reachability of array-based systems by SMT solving: Termination and invariant synthesis[END_REF] for further details. We present here the choices we made for this implementation and its practical aspects.

In FWD, the construction of M only relies on the implementation of POST. Computing POST symbolically could be advantageous for some problems but we found out that a forward enumerative exploration worked best (efficiency wise) on our benchmarks. This forces us to abstract away all variables living in unbounded domains and can lead to a model where unreachable states were explored. Since the correctness does not depend on the finite model in any way, its construction can incorporate any state-of-the-art enumerative techniques or methods tailored to bug finding. For instance, its precision could be improved by adding a way of restricting unbounded types (e.g. to handle infinite systems with arithmetic operations). In any case, the only significant quality of the partial model is to be able to disprove the majority of wrong approximations.

In Approx, to ensure termination of BRAB, we restrict candidates(ϕ) to a finite set of strict syntactic subformulas of ϕ. In Cubicle, nodes of the proof graph are cubes, seen as sets of literals, so when looking for an approximation, we successively test all its subsets starting from the coarsest ones, i.e. the ones that represent the largest sets of states. Choosing first the most general approximations will yield stronger invariants. We keep the first that is not disproved by M or the set B. Notice this forbids us to directly approximate an approximation. In some cases, no suitable approximation can be found, and we continue the algorithm as usual. Going further than our implementation of candidates, for instance to consider all formula ψ such that ψ |= ϕ, is possible but is a complicated matter as there exists infinitely many such ψ. In addition, the framework guarantees that pre-images of cubes are computable as disjunctions of cubes.

The efficiency of BRAB relies essentially on two aspects: the choice of approximations and the content of the set M. Indeed, choosing an approximation that is not general enough will delay the convergence of the algorithm and inserting a too general approximation will lead to unnecessary restarts. Similarly, if the exploration of the finite instance is incomplete or too imprecise, some wrong approximation will not be detected before the backward reachability exposes an error trace, resulting in a costly restart. In our implementation, we limit the negative effect of restarts trying to do them as early as possible, by finding wrong approximations sooner. For example, it is a wise choice to give a higher priority in the queue to pre-images of approximations (i.e. ψ such that kind(ψ) = Appr) so as to ensure they will be checked before expanding too much of the original formulas. Instead of restarting the algorithm from scratch, a possible improvement that we did not implement, is to keep as much information as possible from the previous run. It is indeed possible, yet costly, to maintain dependency information at run time to retain the nodes of V and Q that are not affected by the wrong approximation. BRAB is distributed in the open source model checker Cubicle.

V. EXPERIMENTAL RESULTS

A. Experiments

We have evaluated our implementation of the BRAB algorithm on challenging mutual exclusion algorithms, faulttolerance and cache coherence protocols. In the table Figure 4, we compare the performance of Cubicle when using a classical backward reachability loop (second column), and when using BRAB (first column). We run BRAB with an unlimited depth forward exploration for two processes in all benchmarks excepted for the different versions of FLASH. We also include the results for an enumerative model checker CMurphi 5.4.9 [START_REF] Penna | Exploiting transition locality in automatic verification of finite-state concurrent systems[END_REF] and different parameterized model checkers (MCMT 2.0 [START_REF] Ghilardi | MCMT: A model checker modulo theories[END_REF], PFS [START_REF] Henda | The PFS prototype model checker[END_REF], Undip [START_REF] Rezine | [END_REF]) to show that the examples we chose are far from trivial.

For each tool we report the execution times obtained with the best setting we found. T.O. indicates a timeout if a tool didn't answer within 24 hours and O.M. means that it exceeded a memory limit of 20 GB. For CMurphi, we give the time used to prove the safety of each benchmark for a fixed number of processes between parentheses. The last columns gives the maximum number of processes we were able to reach with 20 GB. We denote by / benchmarks that we were unable to easily translate due to syntactic restrictions. For instance PFS does not allow the update of multiple local variables at the same time, Undip does not allow variables of the type of processes and MCMT doesn't support systems with more than 50 transitions or multi-dimensional arrays.

All benchmarks were executed on a 64 bits machine with an Intel R Xeon R processor @ 3.2 GHz and 24 GB of memory. The source code for Cubicle and its implementation of the BRAB algorithm as well as all the detailed benchmarks are available at http://cubicle.lri.fr/fmcad2013.

In this table, Szymanski at (resp. Szymanski na) is an atomic (resp. non-atomic) version of Szymanski's mutual exclusion algorithm. German Baukus is a version of Steven German's protocol extracted from [START_REF] Baukus | Parameterized verification of a cache coherence protocol: Safety and liveness[END_REF]. German.CTC is the version translated from Ching-Tsun Chou's Murϕ models, adding data paths to German Baukus. German pfs is an encoding of the German that was extracted from the distribution of PFS [START_REF] Henda | The PFS prototype model checker[END_REF] where invalidation is performed non atomically. Chandra-Toueg is a version of Chandra and Toueg's reliable broadcast protocol [START_REF] Chandra | Time and message efficient reliable broadcasts[END_REF] with the send omission failures model extracted from [START_REF] Alberti | Automated support for the design and validation of fault tolerant parameterized systems: a case study[END_REF].

These experiments show that BRAB is very efficient on examples from the literature and is several orders of magnitude faster than backward reachability on almost all benchmarks.

B. The FLASH Cache Coherence Protocol

The Stanford FLASH (FLexible Architecture for SHared memory) multiprocessor [START_REF] Kuskin | The Stanford FLASH multiprocessor[END_REF] is a modular architecture designed to scale to thousands of processing units. Each processor maintains a local cache memory, whose coherence is ensured by a message passing protocol on a point-to-point network with arbitrary latency. Each memory address is owned by a processing unit called Home (the physical location of the given memory address).

Related work. The first proof was performed by Park and Dill [START_REF] Park | Protocol verification by aggregation of distributed transactions[END_REF] in 1996 using the PVS proof assistant but it requires to construct inductive invariants by hand and detail the proof steps in the assistant. This protocol was also verified by Das, Dill and Park [START_REF] Das | Experience with predicate abstraction[END_REF] using a manually guided predicate abstraction. The method of compositional model checking and data type reduction developed by McMillan [START_REF] Mcmillan | Parameterized verification of the FLASH cache coherence protocol by compositional model checking[END_REF] which first relied on BDD based model checking in SMV was later elaborated by Chou, Mannava and Park in a framework called CMP [START_REF] Chou | A simple method for parameterized verification of cache coherence protocols[END_REF]. The CMP method, formalized by Krstic [START_REF] Krstić | Parametrized system verification with guard strengthening and parameter abstraction[END_REF], works by iteratively abstracting a protocol and strengthening the invariants from the analysis of counterexamples produced by the model checker. As of today, it is the method that scales best but it requires a lot of expert knowledge and manual intervention to devise non interference lemmas from counterexamples. In 2008, Talupur and Tuttle came up with the insight of using message flows conceived by protocol designers as a source of potential invariants to help the CMP method converge faster [START_REF] O'leary | Protocol verification using flows: An industrial experience[END_REF], [START_REF] Talupur | Going with the flow: Parameterized verification using message flows[END_REF]. Although their method is able to automatically We have modeled this protocol in Cubicle's input language from the Murϕ models by Ching-Tsun Chou that were used in [START_REF] Chou | A simple method for parameterized verification of cache coherence protocols[END_REF], [START_REF] Talupur | Going with the flow: Parameterized verification using message flows[END_REF]. These models only account for one memory line but they (and their properties) are straightforwardly generalizable to an arbitrary number of memory addresses. The only difference we introduced is that we abstracted away the Home processor and for all arrays indexed by Home, each occurrence of A[Home] was replaced by a global variable A home. The control property we want to verify for FLASH is We show the results obtained with Cubicle ran with option -brab on different versions of the FLASH protocol in Figure 5. The line nodata gives the result when we only asked to verify control properties whereas in line Flash we asked to verify both control and data properties. Finally we give the results on a version of FLASH where we introduced an error in line buggy. On this version, Cubicle exhibits an error trace highlighting a buggy behaviour. Invariant generation: Ghilardi and Ranise describe in [START_REF] Ghilardi | Backward reachability of array-based systems by SMT solving: Termination and invariant synthesis[END_REF] an invariant synthesis algorithm for array-based systems. Their backward reachability analysis always computes precise formulas and their mechanism of guessing candidate invariants guided by the goal is similar to BWDA but the candidates are only filtered by syntactic heuristics. The main difference with our approach is that candidates are model checked one at a time in a completely independent resource limited backward reachability loop. Other approaches for generating inductive invariants include network invariants [START_REF] Grinchtein | Inferring network invariants automatically[END_REF] which uses finite automata learning algorithms and split invariants [START_REF] Namjoshi | Symmetry and completeness in the analysis of parameterized systems[END_REF] which connects small-model properties, inductive methods and compositional reasoning.

∀x, y. x = y ⇒ CacheState[x] = Exclusive ⇒ CacheState[y] = Exclusive
Cutoffs: The method of invisible invariants [START_REF] Arons | Parameterized verification with automatically computed inductive assertions[END_REF], [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF] aims at discovering inductive invariants for parameterized systems that are checked up to a certain cutoff value obtained with a syntactic criterion. Similarly to our approach, it extracts information from a forward exploration of a finite instance of the original system. This information is generalized and, contrary to our technique, must amount to inductive invariants, whereas we only use it as an oracle. Although in Section II I 1 ∧ I 2 ∧ I 3 ∧ ¬Θ is an inductive invariant, it is generally not the case. In [START_REF] Emmi | Parameterized verification of transactional memories[END_REF], finite instances are also used in conjunction with a template mechanism to obtain formulas that describe interesting system behaviors. Approaches based on cutoff and small model properties have been most successful when the value is detected dynamically such as in [START_REF] Kaiser | Dynamic cutoff detection in parameterized concurrent programs[END_REF] although their method only works for petri-nets, and most recently in [START_REF] Abdulla | All for the price of few[END_REF] which is capable of handling multiple process topologies (arrays, rings, trees, multisets) whereas our implementation of BRAB for array based transition systems only applies for linear topologies (and multisets) but scales for the Flash.

Abstraction: Abdulla et al. propose in [START_REF] Abdulla | Regular model checking without transducers[END_REF], [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] versions of backward reachability analysis with approximated transitions. Other methods for parameterized verification are based on abstraction: the method of indexed predicates [START_REF] Lahiri | Constructing quantified invariants via predicate abstraction[END_REF] automatically infers quantified predicated from which the technique of predicate abstraction is able to construct inductive invariants: the tool UCLID which implements this technique is able to verify the German protocol [START_REF] Lahiri | Indexed predicate discovery for unbounded system verification[END_REF] but not the FLASH, counter abstraction [START_REF] Emerson | On model checking for nondeterministic infinite-state systems[END_REF] whose idea is to keep track of the number of processes that satisfy a given property, and environment abstraction [START_REF] Clarke | Environment abstraction for parameterized verification[END_REF] which combines predicate abstraction with counter abstraction. In our case, we do not abstract the original system, abstractions are performed on the fly.

VII. CONCLUSION AND PERSPECTIVES

We have presented a novel backward reachability algorithm with approximations and backtracking to check safety properties of parameterized systems. Given a correct backward reachability algorithm, we have proved the correctness of our extension. We believe that small instances of the original problem already exhibit behaviors that constitute a valuable source of knowledge. Our algorithm uses this information to filter approximations which are then model checked altogether, allowing a factoring of the proofs. It can be seen as a technique for automatically inferring invariants. We provide an open source implementation BRAB and have demonstrated the viability of our approach on several examples from the literature and FLASH, a near industrial cache coherence protocol.

An immediate line of future work is to experiment this approach on real industrial protocols such as Intel's LCP or hierarchical cache coherence protocols. While satisfactory, we think that the backtracking mechanism can be improved and that other oracles can be used for the exploration of the finite instance. Finally we would also like to explore the idea of approximations guided by finite instances in other frameworks.

Fig. 1 :

 1 Fig. 1: State diagram of the German-ish protocol

Algorithm 1 : 2 V

 12 Backward Reachability AnalysisInput: a parameterized system (I, T) and a formula Θ Variables:V: visited nodes Q: work queue 1 function BWD() : begin := ∅; 3 push(Q, Θ); 4 while not_empty(Q) do 5 ϕ := pop(Q); 6 if (I ∧ ϕ sat) then 7 return unsafe 8 else if (ϕ |= V) then 9 V := V ∪ {ϕ}; 10 push(Q, PRE(ϕ)); BRAB Algorithm BRAB is defined by Algorithms 2 and 3. It implements an extended version of backward reachability that computes overapproximations during the search loop and backtracks when spurious traces are introduced by too coarse formulas.

5 if 33 M 36 B 3 : 2 V := ∅; 3 push 4 while not_empty(Q) do 5 (7 V := V ∪ {ϕ}; 8 N 9 push

 5333632345789 : visited nodes Q: work queue M : Finite model obtained by forward exploration B: bookkeeping of bad approximations F: last node visited when unsafety discovered Kind: map formulas -→ {Orig, Appr} From: map formulas -→ formula 1 function Approx(ϕ) : begin 2 foreach ψ in candidates(ϕ) do 3 if ψ ∈ B ∧ M |= ψ then 4 Kind(ψ) := Appr; Kind(ϕ) = Orig then From(ψ) := ψ else From(ψ) := From(ϕ) return ψ ∅; Kind(Θ) := Orig; From(Θ) := Θ; := FWD(d max ,k); 34 while BWDA() = unsafe do 35 if Kind(F)= Orig then return unsafe; := B ∪ {From(F)}; Finite and Depth-Limited Forward Analysis Input: a parameterized system (I, T) Variables: V: visited nodes Q: work queue 1 function FWD(d max ,k) : begin (Q, (0, I(#1) ∧ • • • ∧ I(#k))); d, ϕ) := pop(Q); 6 if (ϕ ∈ V and d ≤ d max) then := {(d + 1, ψ) | ψ ∈ POST(ϕ)};

 and the data properties are∀x. CacheState[x] = Exclusive ⇒ Data[x] = Currdata ∀x. CacheState[x] = Shared ∧ Collecting ⇒ Data[x] = PrevData ∀x. CacheState[x] = Shared ∧ ¬Collecting ⇒ Data[x] = CurrDatawhere CurrData, PrevData and Collecting are auxiliary variables introduced only to specify these data properties.

Fig. 5 :

 5 Fig. 5: Verification of FLASH with Cubicle

ACKNOWLEDGMENT

This work was partially supported by the French ANR project ANR-12-INSE-0007 Cafein.