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Interconnecting a System Having a Single Input-to-State Gain With a System Having a Region-Dependent Input-to-State Gain

For an ISS system, by analyzing local and nonlocal properties, it is obtained different input-to-state gains. The interconnection of a system having two input-to-state gains with a system having a single ISS gain is analyzed. By employing the Small Gain Theorem for the local (resp. non-local) gains composition, it is concluded about the local (resp. global) stability of the origin (resp. of a compact set). Additionally, if the region of local stability of the origin strictly includes the region attraction of the compact set, then it is shown that the origin is globally asymptotically stable. An example illustrates the approach.

I. INTRODUCTION

The use of nonlinear input-output gains for the study of the stability of nonlinear was introduced in [START_REF] Zames | Functional analysis applied to nonlinear feedback systems[END_REF], [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF] by considering a system as an input-output operator. The condition that ensures stability, called Small Gain Theorem, of the resulting interconnected system is based on the contraction principle ( [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF]).

The works [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF] and [START_REF] Sontag | Further facts about input to state stabilization[END_REF] introduce a new concept of gain relating the input to system states. This notion of stability, called Input-to-State Stability (ISS), combines Zames and Lyapunov approaches ( [START_REF] Sontag | The ISS philosophy as a unifying framework for stability-like behavior[END_REF], [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF]). Characterizations in terms of dissipation and Lyapunov functions are given in [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF] and [START_REF] Sontag | New characterizations of input-to-state stability[END_REF].

In [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF], the contraction principle is used in the ISS notion to obtain an equivalent Small Gain Theorem. A formulation of this criteria in terms of Lyapunov functions may be found in [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF] and [START_REF] Liberzon | Small-gain theorem of LaSalle type for hybrid systems[END_REF].

Besides stability analysis, the Small Gain Theorem may also be used for the design of dynamic feedback laws satisfying robustness constraints. The interested reader may see [START_REF] Doyle | Feedback Control Theory[END_REF], [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF], [START_REF] Isidori | Nonlinear Control Systems II[END_REF] and [START_REF] Sastry | Nonlinear Systems[END_REF] and references therein.

Other versions of the Small Gain theorem do exist in the literature, examples of which can be found in [START_REF] Astolfi | A weak version of the small-gain theorem[END_REF]. See also [START_REF] Angeli | A tight small-gain theorem for not necessarily ISS systems[END_REF], [START_REF] Ito | State-dependent scaling problems and stability of interconnected iISS and ISS systems[END_REF] and [START_REF] Ito | Necessary and sufficient small gain conditions for integral input-to-state stable systems: A Lyapunov perspective[END_REF] for the interconnection of possibly non-ISS systems.

In order to apply the Small Gain Theorem, it is required that the composition of the nonlinear gains is smaller than the argument for all of its positive values ( [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF], [START_REF] Liberzon | Small-gain theorem of LaSalle type for hybrid systems[END_REF]). Such a condition, called Small Gain Condition, restricts the application of the Small Gain Theorem to a composition of well chosen gains.

In this work, it is made use of the Small Gain Theorem in a less conservative way. This new condition ensures the asymptotic stability of a system by showing that if there exist two different gains compositions such that they satisfy the Small Gain Condition, not for all values of the arguments, but in two different regions, and if these regions cover the set of all positive values, then the resulting interconnected system is globally asymptotically stable. Thus, this approach may be seen as a composition of two different small gain conditions that hold in different regions: a local and a global.

The use of a unifying approach is well known in the literature, see [START_REF] Andrieu | Uniting two control Lyapunov functions for affine systems[END_REF] for the combination of control Lyapunov functions and [START_REF] Chaillet | Strong iISS: combination of iISS and ISS with respect to small inputs[END_REF] for a stability concept uniting ISS and the integral variant of ISS (namely, iISS [START_REF] Sontag | Comments on integral variants of ISS[END_REF]) properties.

This paper is organized as follows. In Section II, the basic concepts of Input-to-State Stability and the Dini derivative are presented. Also, the system under consideration, the problem statement and a motivational example are presented. In Section III, the assumptions to solve the problem under consideration, as well as the main results are presented. Section IV presents an example that illustrates the assumptions and main results. Section V contains the proofs of the main results. Concluding remarks are given in Section VI. Finally, in Section VII, auxiliary results are stated. Due to space limitations, some of the proofs were omitted.

Notation. Let S be a subset of R n containing the origin, the notation S =0 stands for S \ {0}. The closure of S is denoted by S. Let x ∈ R n , the notation |x| stands for the Euclidean norm of

x. A function f : S → R defined in a subset S of R n containing 0 is positive definite if, ∀x ∈ S =0 , f (x) > 0 and f (0) = 0. It is proper if f (|x|) → ∞ as |x| → ∞. By C k it
is denoted the class of k-times continuously differentiable functions, by K it is denoted the class of continuous and strictly increasing functions γ : R ≥0 → R ≥0 such that γ(0) = 0; it is denoted by K∞ if, in addition, they are unbounded. Let c ∈ R>0, the notation Ωc(f ) stands for the subset of R n defined by {x ∈ R n : f (x) < c}. Let x, x ∈ R ≥0 , the notation x ր x (resp. x ց x) stands for x → x with x < x (resp. x > x).

II. BACKGROUND AND PROBLEM STATEMENT Consider the system

ẋ(t) = f (x(t), u(t)), (1) 
where, ∀t ∈ R ≥0 , x(t) ∈ R n and u(t) ∈ R m , for some positive integers n and m. The map f : R n × R m → R n is assumed to be continuous, locally Lipschitz on x and uniformly in u on compact sets. A solution of (1) with initial condition x, and input u at time t is denoted by X(t, x, u). Assume that the origin is an equilibrium point for the system (1), i.e., f (0, 0) = 0. 

→ R such that, ∀(x, u) ∈ R n × R m , |x| ≥ α x (|u|) ⇒ D + f V (x, u) ≤ -λ x (x) (2) holds. 
•

From now on, V will be assumed to be an ISS-Lyapunov function for [START_REF] Andrieu | Uniting two control Lyapunov functions for affine systems[END_REF].

Consider the system

ż(t) = g(v(t), z(t)), (3) 
where, ∀t ∈ R ≥0 , v(t) ∈ R n and z(t) ∈ R m , for some positive integers n and m. The map g : R n × R m → R n is assumed to be continuous, locally Lipschitz on z and uniformly in v on compact sets. A solution of (3) with initial condition z, and input v at time t is denoted by Z(t, z, v). Assume that the origin is an equilibrium point for the system (3), i.e., g(0, 0) = 0. Consider also the following Assumption 1. There exists a continuous locally Lipschitz function W : R m → R that is an ISS-Lyapunov function for the z-subsystem. More precisely, there exist class K ∞ functions β and β satisfying, ∀z ∈ R m , β(|z|) ≤ W (z) ≤ β(|z|). Furthermore, there exist a class K function δ and a continuous positive definite function

λ z : R m → R such that, ∀(x, z) ∈ R n × R m , W (z) ≥ δ(V (x)) ⇒ D + g W (x, z) ≤ -λ z (z), (4) 
where V is the ISS-Lyapunov function of x-subsystem. • System under consideration. Interconnecting systems (1) and (3) by linking the state of (1) with the input of (3) and vice versa leads to the following system

ẋ = f (x, z) ż = g(x, z). (5) 
Since f (0, 0) = 0 and g(0, 0) = 0, the origin is an equilibrium point for [START_REF] Doyle | Feedback Control Theory[END_REF]. Considering the ISS-Lyapunov inequalities, after the interconnection the following implications

V (x) ≥ γ(W (z)) ⇒ D + f V (x, z) ≤ -λ x (x), W (z) ≥ δ(V (x)) ⇒ D + g W (x, z) ≤ -λ z (z)
are obtained with suitable class K functions γ and δ.

A sufficient condition that ensures stability of ( 5) is given by the following Theorem 1. [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems[END_REF] If, ∀s ∈ R >0 , γ • δ(s) < s. (6) Then, the origin is globally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF].

Problem statement. At this point, it is possible to explain the problems that are dealt with, in this work.

• ISS gains computation. Although the use of ISS gains renders the analysis of stability easy to work with, it is not a trivial task to compute those gains;

• Small gain condition. Since the ISS gain is not unique, it might not be an easy task to find two ISS gains: one for the x-subsystem of ( 5) and another for the z-subsystem of ( 5) such that their composition satisfies [START_REF] Freeman | Robust Nonlinear Control Design: State-Space and Lyapunov Techniques[END_REF], for all positive values of the argument. An illustration of the problem that is dealt with is presented in the following EXAMPLE 1. Let the functions f, g : R × R → R and consider the system

ẋ = f (x, z) = -ρ(x) + z ż = g(x, z) = -sign(z) δ(|z|) + x, (7) 
where δ will be defined below.

Let, ∀x ∈ R, V (x) = |x|, ρ(x) = 5x/ 4 -2x 2 + x 3 and, ∀z ∈ R, W (z) = |z|. Taking the Dini derivative of V in the f -direction, ∀(x, z) ∈ R × R, it yields D + f V (x, z) ≤ -ρ(V (x)) + W (z). (8) This implies that ∃ε x ∈ (0, 1) such that, ∀(x, z) ∈ R × R, ρ(V (x)) ≥ W (z) 1-εx ⇒ D + f V (x, z) ≤ -λ x (x), (9) 
where λ x (•) := ε x ρ(V (•)). From now on, let ε x = 0.05. Note also that, in the interval [1/ 2 , 5/ 6 ], ρ is decreasing.

Consider the piecewise continuous function Γ defined by

Γ(s) = ρ -1 s 0.95 , if s ∈ 0, 0.95ρ 5 6 , ρ -1 + s 0.95 , if s ∈ 0.95ρ 5 6 , ∞ , (10) 
where

[5/ 6 , ∞) ∋ s → ρ + (s) = ρ(s) ∈ [ρ(5/ 6 ), ∞). Remark 1.
The function Γ can be viewed as a discontinuous input-to-state gain of the x-subsystem of (7). More preciselly,

∀(x, z) ∈ R × R, V (x) ≥ Γ(W (z)) ⇒ D + f V (x, z) ≤ -λ x (x)
. Furthermore, the function Γ is "optimal", in the sense that if there exist a function Γ * : R → R and a value

s * ∈ R >0 such that Γ * (s * ) < Γ(s * ), then ∃(x * , z * ) = (0, 0) such that V (x * ) ≥ Γ * (W (z * )) and D + f V (x * , z * ) > 0.
• It follows from Remark 1 that an ISS gain for the xsubsystem of ( 7) is any class

K function γ such that, ∀s ∈ R >0 , Γ(s) ≤ γ(s). A local gain. Consider the function [0, 1/ 2 ) ∋ s → ρ -(s) = ρ(s) ∈ [0, ρ(1/ 2 )). Since ρ -is strictly increasing on its domain, it is invertible. Let γ ℓ be a class K function such that, ∀s ∈ [0, 0.95ρ(1/ 2 )), γ ℓ (s) = ρ -1 - s 0.95 . (11) Note that, γ ℓ satisfies the following inequalities ∀s ∈ 0, 0.95ρ 1 2 , γ ℓ (s) ≤ Γ(s), ∀s ∈ 0.95ρ 5 6 , 0.95ρ 1 2 , γ ℓ (s) < Γ(s). Moreover, ∀(x, z) ∈ Ω ρ(1/2) (V ) × R, V (x) ≥ γ ℓ (W (z)) ⇒ D + f V (x, z) ≤ -λ x (x). ( 12 
)
Let the constant values M ℓ = 0.236 and M g = 0.245. At this point, it is possible to define the function δ of the z-subsystem of [START_REF] Isidori | Nonlinear Control Systems II[END_REF]. It is a function of class K ∞ satisfying the following inequalities ∀s ∈ (0,

M ℓ ], γ ℓ (s) < δ(s), ( 13 
) ∀s ∈ [M g , ∞), Γ(s) < δ(s), ( 14 
) ∀s ∈ ρ 5 6 , M ℓ , δ(s) < Γ(s). (15) 
Equations ( 13) and ( 14) correspond to two different small gain conditions, the first may be seen as a small gain condition for small values of the argument while the last as a small gain condition for large values of the argument. Note that [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF] implies that Theorem 1 cannot be applied. 1Fig. 1 shows a plot of the functions ρ, id, Γ, γ ℓ and δ. • In this work, it will be shown that, if • there exist two ISS gains γ ℓ and γ g , for the x-subsystem of (5); • there exists one ISS gain δ, for the z-subsystem of (5);

• the compositions γ ℓ • δ and γ g • δ satisfy the Small Gain Condition, not for all values of the arguments, but for two different intervals (I ℓ , I g ⊂ R ≥0 ). In other words, ∀s ∈ I ℓ \{0}, γ ℓ •δ(s) < s and, ∀s ∈ I g \{0}, γ g •δ(s) < s; • these intervals are such that I ℓ ∩I g = ∅ and I ℓ ∪I g = R ≥0 ; then, the origin is globally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF]. See Theorem 2 below for a precise statement of this result.

III. ASSUMPTIONS AND MAIN RESULTS

In this section, it is specified the assumptions on the system (5) necessary to solve the problem under consideration. The proof of the stabilization results are provided from Section V-A to Section V-C.

A. Local set of assumptions on the x-subsystem

In this section, it is introduced the set of assumptions to ensure that the origin is locally asymptotically stable for (5). Assumption 2. There exist a class K function γ ℓ and a strictly positive constant M ℓ such that,

M ℓ < lim s→∞ γ ℓ (s) = b ℓ . ( 16 
) Moreover, ∀(x, z) ∈ Ω M ℓ (V ) × R m , V (x) ≥ γ ℓ (W (z)) ⇒ D + f V (x, z) ≤ -λ x (x). (17) 
• Assumption 3. The composition of the functions γ ℓ and δ is such that, ∀s ∈ (0,

M ℓ ], γ ℓ • δ(s) < s. (18) 
• Proposition 1. Under Assumptions 1, 2 and 3 the origin is locally asymptotically stable for system [START_REF] Doyle | Feedback Control Theory[END_REF].

no class K function γ such that (6) holds.

B. Non-local set of assumptions on the x-subsystem

In this section, it is introduced the set of assumptions to ensure that a neighborhood of the origin is globally attractive for (5). Assumption 4. There exist a class K function γ g and a strictly positive constant M g such that

M g < lim s→∞ γ g (s) = b g . (19) 
Moreover, ∀(x, z) 

∈ (R n \ Ω Mg (V )) × R m , V (x) ≥ γ g (W (z)) ⇒ D + f V (x, z) ≤ -λ x (x). (20) 

C. Main result

In this section, it is introduced the assumption to ensure that the origin is globally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF]. Assumption 6. The positive constants M ℓ and M g given, respectively, by Assumptions 2 and 4 satisfy M g < M ℓ . • Theorem 2. Under Assumptions 1-6, the origin is globally asymptotically stable for system [START_REF] Doyle | Feedback Control Theory[END_REF].

IV. ILLUSTRATION EXAMPLE 2. [Example 1 revisited.]

Verifying Assumption 1. Let the function δ be given by the inverse of δ. It follows that,

∀(x, z) ∈ R × R, W (z) ≥ δ(V (x)) ⇒ D + g W (z) ≤ -λ z (z)
, where for a given ε z ∈ (0, 1) and ∀z ∈ R, λ z (z) = ε z W (z). Thus, Assumption 1 holds. Verifying Assumption 2. The function γ ℓ is given by [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF] and M ℓ = 0.236. Moreover, it follows from (12) that Assumption 2 holds. Verifying Assumption 3. It follows from inequality (13) that Assumption 3 holds.

From Proposition 1, it follows that the origin is locally asymptotically stable for [START_REF] Isidori | Nonlinear Control Systems II[END_REF]. Figure 2 shows some solutions of [START_REF] Isidori | Nonlinear Control Systems II[END_REF]. 

• -0.2 -0.1 0 0.1 0.2
M g = 0.245. It follows from Remark 1 that, ∀(x, z) ∈ (R \ Ω Mg (V )) × R, V (x) ≥ γ g (W (z)) ⇒ D + f V (x, z) ≤ -λ x (x)
. Thus, Assumption 4 holds.

Verifying Assumption 5. It follows from inequality (14) that Assumption 5 holds.

From Proposition 2, it follows that a neighborhood of the origin is globally asymptotically stable for [START_REF] Isidori | Nonlinear Control Systems II[END_REF]. Figure 2 shows some solutions of [START_REF] Isidori | Nonlinear Control Systems II[END_REF].

•

V. PROOFS

A. Proof of Proposition 1

Proof. This proof is divided into three parts. In the first one, it is obtained a function σ ℓ that is class K ∞ and C 1 with strictly positive derivative. This function is used in the second part, where a class C 0 proper positive definite function U ℓ is defined and its Dini derivative is studied. In the last part, it is shown that U ℓ is locally Lipschitz and the local asymptotical stability of the origin is concluded by using Lemma 2. First part. Consider the class K functions δ and γ ℓ from Assumptions 1 and 2. Under Assumption 3, δ and γ ℓ are such that, ∀s ∈ (0, M ℓ ], δ(s) < γ -1 ℓ (s). Since γ ℓ is class of K, from Lemma 1, there exists a class

K ∞ function γℓ such that, ∀s ∈ R >0 , δ(s) < γℓ (s) (22) and, ∀s ∈ (0, M ℓ ], γℓ (s) < γ -1 ℓ (s). (23) 
Since δ is of class K and γℓ is of class K ∞ satisfying, ∀s ∈ R >0 , inequality [START_REF] Zames | Functional analysis applied to nonlinear feedback systems[END_REF], from Lemma [10, Lemma A.1], there exists a class K ∞ and C 1 function σ ℓ whose derivative is strictly positive and satisfies, ∀s ∈ R >0 , δ(s) < σ ℓ (s) < γℓ (s).

(24)

Second part. Let, ∀(x, z) ∈ R n × R m , U ℓ (x, z) := max{σ ℓ (V (x)), W (z)}. Note that the function U ℓ is proper positive definite. Pick (x, z) ∈ R n × R m , one of three cases is possible: σ ℓ (V (x)) < W (z), W (z) < σ ℓ (V (x)) or W (z) = σ ℓ (V (x)
). The proof follows by showing that the Dini derivative of U ℓ is negative. For each case, assume that 24), the following inequality δ(V (x)) < σ ℓ (V (x)) < W (z) holds. Together with (4), it follows that

(x, z) ∈ Ω M ℓ (V ) × R m . Case 1. Suppose that σ ℓ (V (x)) < W (z). This implies that U ℓ (x, z) = W (z) and D + f,g U ℓ (x, z) = D + g W (x, z). From (
D + g W (x, z) ≤ -λ z (z). This concludes Case 1. Case 2. Suppose that W (z) < σ ℓ (V (x)). This im- plies that U ℓ (x, z) = σ ℓ (V (x)) and D + f,g U ℓ (x, z) = σ ′ ℓ (V (x))D + f V (x, z). From (24), the following inequality W (z) < σ ℓ (V (x)) < (V (x)) holds. Since V (x) ≤ M ℓ , it follows that W (z) < σ ℓ (V (x)) < γℓ (V (x)) < γ -1 ℓ (V (x)), (25) 
where the last inequality follows from [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF]. Equation [START_REF] Sontag | Comments on integral variants of ISS[END_REF] together with (25) yields

D + f V (x, z) ≤ -λ x (x). Since, ∀s ∈ R >0 , σ ′ ℓ (s) > 0, it follows that D + f,g U ℓ (x, z) = σ ′ ℓ (V (x))D + f V (x, z) ≤ -σ ′ ℓ (V (x))λ x (x). This concludes Case 2. Case 3. Let W (z) = σ ℓ (V (x)) := U * ℓ (x, z). This implies D + f,g U * ℓ (x, z)= lim sup tց0 1 t (max{σ ℓ (V (X(x, z, t))), W (Z(z, x, t))} -U * ℓ (x, z)) = lim sup tց0 max σ ℓ (V (X(x,z,t)))-σ ℓ (V (x)) t , W (Z(z,x,t))-W (z) t = max{σ ′ ℓ (V (x))D + f V (x, z), D + g W (x, z)}.
The analysis of D + f,g U * ℓ is divided in two sub cases. In the first one, the function D + g W is analyzed while in the last, the function D + f V is analyzed. Case 3.a. The analysis of D + g W . From (24), the following inequality δ(V (x)) < σ ℓ (V (x)) = W (z) holds. Together with Equation ( 4), it yields

D + g W (x, z) ≤ -λ z (z). Case 3.b. The analysis of D + f V . From (24), the following inequality W (z) = σ ℓ (V (x)) < γℓ (V (x)) holds. Since V (x) ≤ M ℓ , it follows that W (z) = σ ℓ (V (x)) < γℓ (V (x)) < γ -1 ℓ (V (x)), (26) 
where the last inequality is due to [START_REF] Zames | On the input-output stability of time-varying nonlinear feedback systems part I: Conditions derived using concepts of loop gain, conicity, and positivity[END_REF].

Equation [START_REF] Sontag | Comments on integral variants of ISS[END_REF] together with (26) yields

D + f V (x, z) ≤ -λ x (x).
To conclude Case 3, Third part. To conclude local asymptotical stability of the origin, it remains to show that U ℓ is locally Lipschitz.

W (z) = σ ℓ (V (x)) ⇒ D + f,g U * ℓ (x, z) ≤ -min{σ ′ ℓ (V (x))λ x (x), λ z (z)} holds, since (x, z) ∈ Ω M ℓ (V ) × R m . Let Mℓ := max{c ∈ R >0 : Ω c (U ℓ ) ⊂ Ω M ℓ (V ) × {0} and Ω c (U ℓ ) is connected}. To sum up all the above cases, ∀(x, z) ∈ Ω Mℓ (U ℓ ), U ℓ (x, z) ≤ Mℓ ⇒ D + f,g U ℓ (x, z) ≤ -E ℓ (x, z), (27) 
Since σ ℓ (V (•)) (resp. W ) is locally Lipschitz, U ℓ is locally Lipschitz in the region W (•) ≤ σ ℓ (V (•)) (resp. σ ℓ (V (•)) ≤ W (•)).
Since the hypotheses of Lemma 2 (in Section VII) below are verified with U (•) = U ℓ (•) and E(•) = E ℓ (•), the origin is locally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF]. This concludes the proof of Proposition 1.

B. Proof of Proposition 2

Proof. This proof is analogous to the proof of Proposition 1 and divided into three parts. In the first one, it is obtained a function σ g that is class K ∞ and C 1 with strictly positive derivative. This function is used in the second part, where a class C 0 proper and positive definite function U g is defined and its Dini derivative is studied. In the last part, it is used Lemma 4 to show that the set Ω Mg (V ) × {0} is globally asymptotically stable.

First part. Consider the class K functions δ and γ g from Assumptions 1 and 4. The function γ -1 g is defined on [0, b g ) and satisfies lim sրbg γ -1

g (s) = ∞. Assumption 5 implies that, ∀s ∈ [M g , b g ), δ(s) < γ -1 g (s). Since γ g is of class K, from Lemma 1 (in Section VII), there exists a class K ∞ function γg such that, ∀s ∈ R >0 , δ(s) < γg (s) (28) and, ∀s ∈ [M g , b g ), γg (s) < γ -1 g (s). ( 29 
)
Since δ is of class K and γg is of class K ∞ satisfying, ∀s ∈ R >0 , the inequality (28), from Lemma [10, Lemma A.1], there exists a function σ g that is of class K ∞ and C 1 whose derivative is strictly positive and satisfies, ∀s ∈ R >0 , δ(s) < σ g (s) < γg (s).

(30) Second part. Let, ∀(x, z) ∈ R n × R m , U g (x, z) := max{σ g (V (x)), W (z)}. Note that the function U g is proper positive definite. Pick (x, z) ∈ R n × R m , one of three cases is possible: σ g (V (x)) < W (z), W (z) < σ g (V (x)) or W (z) = σ g (V (x)
). The proof follows by showing that the Dini derivative of U g is negative. For each case, assume that (x, z)

∈ (R n \ Ω Mg (V )) × R m . Case 1. Suppose that σ g (V (x)) < W (z). Analogously to the Case 1 of proof of Proposition 1, σ g (V (x)) < W (z) ⇒ D + f,g U g (x, z) ≤ -λ z (z). This concludes Case 1. Case 2. Suppose that W (z) < σ g (V (x)). This im- plies that U g (x, z) = σ g (V (x)) and D + f,g U g (x, z) = σ ′ g (V (x))D + f V (x, z). From (30), the following inequality W (z) < σ g (V (x)) < γg (V (x)) (31) 
holds. At this point, two regions of x will be analyzed:

b g ≤ V (x) and M g ≤ V (x) < b g .
Case 2.a. In the region where b g ≤ V (x), Equation (20) together with [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF] 

yields D + f V (x, z) ≤ -λ x (x). Case 2.b. In the region where M g ≤ V (x) < b g , from (29) and (31), it yields W (z) < σ g (V (x)) < γg (V (x)) < γ -1 g (V (x)). (32) 
Equation ( 20) together with (32) yields

D + f V (x, z) ≤ -λ x (x). Since, ∀s ∈ R >0 , σ ′ g (s) > 0, it follows that D + f,g U g (x, z) = σ ′ g (V (x))D + f V (x, z) ≤ -σ ′ g (s)λ x (x)
. This concludes Case 2.

Case 3. Let W (z) = σ g (V (x)) := U * g (x, z). Analogously to the Case 3 of proof Proposition 1 and together with the analysis of Cases 1 and 2, the implication

W (z) = σ g (V (x)) ⇒ D + f,g U g (x, z) ≤ -min{σ ′ g (s)λ x (x), λ z (z)} holds, since (x, z) ∈ (R n \ Ω Mg (V )) × R m . Let Mg = min{c ∈ R >0 : Ω Mg (V ) × {0} ⊂ Ω c (U g ) and Ω c (U g ) is connected}. To sum up all the above cases, ∀(x, z) ∈ (R n × R m ) \ Ω Mg (U g ), Mg < U g (x, z) ⇒ D + f,g U g (x, z) ≤ -E g (x, z), ( 33 
) where E g (•, •) = min{σ ′ g (V (•))λ x (•), λ z (•)} is continuous and positive definite.
Third part. Analogously to the third part of the proof of Proposition 1, it follows that U g is locally Lipschitz. From Lemma 3 and (33), it follows that, ∀(x, z) ∈ R n × R m and ∀t ∈ R ≥0 , along solutions of (5), D + U g (X(t, x, z), Z(t, z, x))=D + f,g U g (X(t, x, z), Z(t, z, x)). Since solutions of (5) are absolutely continuous functions and, along solutions of ( 5), E g is a continuous positive definite function, from Lemma 4, ∀(x, z) ∈ (R n × R m ) \ Ω Mg (U g ) and ∀t ∈ R ≥0 , the function t → U g (X(t, x, z), Z(t, z, x)) (34) is strictly decreasing. Pick (x, z) ∈ (R n × R m ) \ Ω Mg (U g ), it will be proven that U ∞ g := lim t→∞ U g (X(t, x, z), Z(t, z, x)) ≤ Mg .

To see the above suppose, by contradiction, that

U ∞ g > Mg . From the continuity of U g , ∃ε > 0 such that U ∞ g -ε > Mg and U ∞ g -ε ≤ U g (x, z) ≤ U ∞ g + ε. Since U g is proper, the constant ξ = min{E g (x, z) > 0 : (x, z) ∈ U g (x, z) and U ∞ g -ε ≤ U g (x, z) ≤ U ∞ g + ε} exists.
Recalling the definition of U g , ∃T > 0 such that, ∀t ≥ T , U g (X(t, x, z), Z(t, z, x)) -U ∞ g < ε. Moreover, from the definition of the constant ξ, U g (X(t, x, z), Z(t, z, x)) -U g (X(T, x, z), Z(T, z, x))

= t T D + U g (X(s, x, z), Z(s, z, x)) ds ≤ -ξ • (t -T ). Then, U ∞ g = lim t→∞ U g (X(t, x, z), Z(t, z, x))
= U g (X(T, x, z), Z(T, z, x))

+ lim t→∞ t T D + U g (X(s, x, z), Z(s, z, x)) ds ≤ -∞
which contradicts the fact that U g is positive definite. Therefore, U ∞ g ≤ Mℓ . In summary, the following facts hold for the function U g : 1) U g is a proper positive definite function; 2) U g decreases along solutions of (5) having initial conditions in (R n × R m ) \ Ω Mg (U g ). From facts 1) and 2), the set Ω Mg (U g ) is globally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF]. This concludes the proof of Proposition 2.

C. Proof of Theorem 2

Proof. Under Assumption 6, ∃M > 0 such that M g < M < M ℓ . Under Assumptions 1, 2, 3 and Proposition 1, it follows that the origin is locally asymptotically stable. From the proof of Proposition 1, there exists a proper positive definite function given, ∀(x, z) ∈ R n × R m , by U ℓ (x, z) = max{σ ℓ (V (x), W (z)}, where σ ℓ is of class K ∞ and C 1 satisfying (24). Moreover, letting Mℓ := max{c ∈ R >0 : c > M, Ω c (U ℓ ) ⊂ Ω M ℓ (V ) × {0} with Ω c (U ℓ ) connected} every solution starting in Ω Mℓ (U ℓ ) converges to the origin.

Together with Assumptions 1, 4, 5 and the proof of Proposition 2, it is possible to define, ∀s ∈ R ≥0 , a class K ∞ function γg (s) = min{γ g (s), σ ℓ (s)} satisfying (28) and (29). Then, it is obtained a class K ∞ and C 1 function σg whose derivative is strictly positive and satisfies, ∀s ∈ R >0 , δ(s) < σg (s) < γg (s).

(30.new) Defining a proper positive definite function given

, ∀(x, z) ∈ R n × R m , by Ûg (x, z) = max{σ g (V (x)), W (z)} and the constant Mg = min{c ∈ R >0 : c < M, Ω Mg (V ) × {0} ⊂ Ω c ( Ûg ) with Ω c ( Ûg ) connected}, it follows from the proof of Proposition 2 that the set Ω Mg ( Ûg ) is globally asymptotically stable. Since, ∀s ∈ R >0 , σg (s) < σ ℓ (s), it follows that, ∀(x, z) ∈ (R n × R m ) \ {(0, 0)}, Ûg (x, z) < U ℓ (x, z). This inequality implies that, ∀c ∈ R >0 , Ω c ( Ûg ) ⊂ Ω c (U ℓ ). Then, the following inclusion holds Ω Mg ( Ûg ) ⊂ Ω M ( Ûg ) ⊂ Ω M (U ℓ ) ⊂ Ω Mℓ (U ℓ ). (35 
) Thus, every solution of (5) starting in (R n × R m ) \ Ω Mℓ (U ℓ ) converges to Ω Mg ( Ûg ), in finite time. Then, due to (35), Ω Mg ( Ûg ) ⊂ Ω Mℓ (U ℓ ) holds, and thus solutions will converge to the origin, as t → ∞.

From the above, combining the local asymptotical stability of the origin with its global attractivitty it is concluded that the origin is globally asymptotically stable for [START_REF] Doyle | Feedback Control Theory[END_REF].

VI. CONCLUSION AND PERSPECTIVES

In this work, the authors shown that it is possible to make use of local and non-local input-to-state properties of an ISS system, in order to derive an "optimal" ISS gain. As a result of such approach, it is possible to apply the Small Gain Theorem in a less conservative way by deriving local and non-local small gain conditions to ensure the stability of an interconnected system.

In a future work, the authors will generalize the above results for the case in which there exist four ISS gains: two for each subsystem. Moreover, the authors also intend to use the region-dependent gain condition to develop a methodology for the design of feedback laws under different gains constraints. (36)

VII. AUXILIARY RESULTS

Let also p, q be two constants and α be a class K function such that, 0 < p < q and, ∀s ∈ [p, q], β • α(s) < s. , if q + ε < b and s ∈ [p, q], A + B(sq), if q + ε < b and s ∈ [q, q + ε), α(s) + s, if q + ε ≥ b or s ∈ [q + ε, ∞), (38) is such that, ∀s ∈ R >0 , α(s) < β(s).

(39) Moreover, ∀s ∈ [p, q], it also satisfies β(s) < β -1 (s).

(40) Due to space constraints, the proof of Lemma 1 is not provided in this paper. Due to space constraints, the proof of Lemma 4 is not provided in this paper.
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 1 Fig. 1. Plot of the functions id (dotted black line), Γ (dashed blue line), γ ℓ (dash dotted red line) and the continuous function δ (solid blue line), in the interval [0.225, 0.25]. The vertical lines are the values M ℓ = 0.236 and Mg = 0.245, respectively.
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 2 Fig.2. Solutions to[START_REF] Isidori | Nonlinear Control Systems II[END_REF] for initial condition starting at a ball centered at the origin with radius, respectively, given by M ℓ and 5.EXAMPLE 3. [Example 1 revisited.]Verifying Assumption 4. Let a class K ∞ function γ g be such that, ∀s ∈ [0.95ρ(5/6), ∞), γ g (s) = Γ(s). Moreover,

  where E(•, •) := min{σ ′ ℓ (V (•))λ x (•), λ z (•)} is continuous and positive definite.
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 1 Let β be a class K function with b = lim s→∞ β(s).

  Then, the class K ∞ function β given by β) + min{s, K}, if p = 0 and s ∈ [0, p), α(s) + min s, β -1 (s)-α(s) 2
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 2 [START_REF] Praly | Fonctions de Lyapunov, stabilité, stabilisation et atténuation de perturbations[END_REF] Théorème 2.133] Let S ⊂ R k be a be a neighborhood of the origin. Let also the class C 0 function h : R k → R k and consider the system ẏ = h(y). If there exist a positive definite and locally Lipschitz function U : S → R and a positive definite function E : S → R such that, ∀y ∈ S, D + h U (y) ≤ -E(y). Then, the origin is locally asymptotically stable for ẏ = h(y).
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 3 [13, Lemme 1.28] Let the measurable and essentially bounded function d : R → R p and the classC 0 function h : R k × R p → R k . If U : R k → Ris locally Lipschitz, then, for all maximal solutions Y (t, y, d) of the system ẏ = h(y, d(t)) defined in the interval (t -, t + ), the function t → U (Y (t, y, d)), defined over (t -, t + ), is locally Lipschitz and, for almost every t ∈ (t -, t + ), ∂U (Y ) ∂t (t, y, d) = D + U (Y (t, y, d)) = D + h U (Y (t, y, d)). Moreover, if d is continuous, the above equality holds, ∀t ∈ (t -, t + ).

Lemma 4 .

 4 Let Y : R → R k be an absolutely continuous function, U : R k → R be a locally Lipschitz proper positive definite function and E : R k → R be a continuous positive definite function. Define, ∀t ∈ R,U (t) = U • Y (t) and E(t) = E • Y (t). If, ∀t ∈ R, D + U (t) ≤ -E(t), then, ∀t ∈ R, U (t) is strictly decreasing.
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