
HAL Id: hal-00924480
https://hal.science/hal-00924480

Submitted on 6 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Characterization of Illegal Control Flow in
Android System

Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli

To cite this version:
Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli. Formal Characterization of
Illegal Control Flow in Android System. SITIS 2013 : 9th International Conference on Signal Image
Technology & Internet Systems, Dec 2013, Kyoto, Japan. �hal-00924480�

https://hal.science/hal-00924480
https://hal.archives-ouvertes.fr

Formal Characterization of Illegal Control Flow in Android System

Mariem Graa∗†, Nora Cuppens-Boulahia∗, Frédéric Cuppens∗, and Ana Cavalli†
∗Telecom-Bretagne, 2 Rue de la Châtaigneraie, 35576 Cesson Sévigné - France

Emails: {mariem.benabdallah,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu
†Telecom-SudParis, 9 Rue Charles Fourier, 91000 Evry - France

Emails: {mariem.graa,ana.cavalli}@it-sudparis.eu

Abstract—The dynamic taint analysis mechanism is used
to protect sensitive data in the Android system. But this
technique does not detect control flows which can cause
an under-tainting problem. This means that some values
should be marked as tainted, but are not. The under-tainting
problem can be the cause of a failure to detect a leak of
sensitive information. To solve this problem, we use a set of
formally defined rules that describes the taint propagation.
We prove the completeness of these rules. Also, we provide a
correct and complete algorithm based on these rules to solve
the under-tainting problem.

Keywords-dynamic taint analysis; android system; control
flows; under-tainting; formal rules; complete algorithm

I. INTRODUCTION

Recent years have witnessed an increase in the use of
embedded systems such as smartphones. According to
a recent Gartner report [1], 417 million of worldwide
mobile phones were sold in the third quarter of 2010,
which corresponds to 35 percent increase from the third
quarter of 2009. To make mobile phones more fun and
useful, users usually download third-party applications.
For example, we can show an increase in third-party apps
of Android Market from about 15,000 third-party apps
in November 2009 to about 150,000 in November 2010.
These applications are used to capture, store, manipulate,
and access to data of a sensitive nature in mobile phone.
An attacker can launch flow control attacks to compromise
confidentiality and integrity of the Android system and
can leak private information without user authorization. In
the study presented in Black Hat conference, Daswani [2]
analyzed the live behavior of 10,000 Android applications
and show that more than 800 were found to be leaking
personal data to an unauthorized server. Therefore, there
is a need to provide adequate security mechanisms to
control the manipulation of private data by third-party
apps. The dynamic taint analysis mechanism is used to
protect sensitive data in the Android system against attacks
[3]. But this technique does not detect control flows which
can cause an under-tainting problem i.e. that some values
should be marked as tainted, but are not. Let us consider
the attack shown in Figure 1 that presents an under-
tainting problem which can cause a failure to detect a
leak of sensitive information. The variables x and y are
both initialized to false. On Line 4, the attacker tests the
user’s input for a specific value. Let us assume that the
attacker was lucky and the test was positive. In this case,
Line 5 is executed, setting x to true and x is tainted.
Variable y keeps its false value, since the assignment
on Line 7 is not executed and y is not tainted because
dynamic tainting occurs only along the branch that is
actually executed. As y is not tainted, it is leaked to the
network (Line 8) without being detected. Since y has not
been modified, it informs the attacker about the value of
the user private contact. Thus, an attacker can circumvent
an android system through the control flows.

1.x= false;
2.y=false;
3.char c[256];
4.if(gets(c) != user_contact)
5. x=true;
6.else
7. y=true;
8.NetworkTransfer (y);

Figure 1. Attack using indirect control dependency

In a previous work [4], we have proposed an approach
that combines static and dynamic taint analysis to propa-
gate taint along control dependencies and to track implicit
flows in embedded systems such as the Google Android
operating system. In this paper, we formally specify the
under-tainting problem and we provide an algorithm to
solve it based on a set of formally defined rules describ-
ing the taint propagation. We prove the completeness of
those rules and the correctness and completeness of the
algorithm.

The rest of this paper is organized as follows. Section
2 gives a technical overview of our approach. Section 3
presents some definitions and theorems that are used in
other sections. Section 4 describes our formal specification
of the under-tainting problem. In section 5, we specify
an algorithm based on a set of formally defined rules
describing the taint propagation policy that we use to solve
the under-tainting problem. Related work about existing
solutions to solve the under-tainting problem is analyzed
in section 6. Finally, section 7 concludes with an outline
of future work.

II. APPROACH OVERVIEW

TaintDroid [3], an extension of the Android mobile-
phone platform, implements dynamic taint analysis to
track the information flow in real-time and control the
handling of private data. It addresses different challenges
specific to mobile phones like the resource limitations.
TaintDroid is composed of four modules: (1) Explicit
flow module that tracks variable at the virtual machine
level, (2) IPC Binder module that tracks messages
between applications, (3) File module that tracks files
at the storage level and (4) Taint propagation module
that is implemented in the native methods level. It only
tracks explicit flows and does not track control flows.
In a previous work [4], we have proposed a technical
approach that enhances the TaintDroid approach by
tracking control flow in the Android system to solve
the under-tainting problem. To track implicit flow, we
have added an implicit flow module in the Dalvik VM
bytecode verifier which checks instructions of methods
at load time. We have defined two additional rules to
propagate taint in the control flow. At class load time,
we have built an array of variables to which a value is

assigned to handle the branch that is not executed. Figure
2 presents the modified architecture to handle implicit
flow in TaintDroid system.

Figure 2. Modified architecture to handle implicit flow in TaintDroid
system.

In this paper, we prove the completeness of the two
additional rules and we provide a correct and complete
taint algorithm based on these rules. Our algorithm is
based on a hybrid approach that combines and benefits
from the advantages of static and dynamic analyses. We
use static analysis to detect control dependencies. This
analysis is based on the control flow graphs [5], [6]
which will be analyzed to determine branches in the
conditional structure. A basic block is assigned to each
control flow branch. Then, we detect the flow of the
condition-dependencies from blocks in the graph. Also, we
detect variable assignment in a basic block of the control
flow graph to handle not executed branches. The dynamic
analysis uses information provided by the static analysis
and allows tainting variables to which a value is assigned
in the conditional instruction. To taint these variables, we
create an array of context taints that includes all condition
taints. We use the context taints array and the condition-
dependencies from block in the graph to set the context
taint of each basic block. Finally, we apply the propagation
rules to taint variables to which a value is assigned whether
the branch is taken or not.

III. NOTATIONS, DEFINITIONS AND THEOREMS

Definition 1. Direct graph
A directed graph G = (V,E) consists of a finite set
V of vertices and a set E of ordered pairs (v, w) of
distinct vertices, called edges. If (v, w) is an edge, w is
a successor of v and v is a predecessor of w.

Definition 2. Complete directed graph
A complete directed graph is a simple directed graph
G = (V,E) such that every pair of distinct vertices in G
are connected by exactly one edge. So, for each pair of
distinct vertices, either (x, y) or (y, x) (but not both) is
in E.

Definition 3. Control flow graph
A control flow graph G = (V,E, r) is a directed graph
(V,E) with a distinguished Exit vertex and start vertex
r, such that for any vertex v ∈ V there is a path from r
to v. The nodes of the control flow graph represent basic
blocks and the edges represent control flow paths.

The concept of post-dominator and dominator tree are
used to determine dependencies of blocks in the control

flow graph.

Definition 4. Dominator
A vertex v dominates another vertex w 6= v in G if every
path from r to w contains v.

Definition 5. Post-Dominator
A node v is post-dominated by a node w in G if every
path from v to Exit (not including v) contains w.

Theorem 1. Every vertex of a flow graph G = (V,E, r)
except r has a unique immediate dominator. The edges
{(idom(w), w)|w ∈ V − {r}} form a directed tree
rooted at r, called the dominator tree of G, such that v
dominates w if and only if v is a proper ancestor of w in
the dominator tree[7], [8].

Computing post-dominators in the control flow graph
is equivalent to computing dominators [5] in the reverse
control flow graph. Dominators in the reverse graph can
be computed quickly by using the Fast Algorithm [9] or
a linear-time dominators algorithm [10] to construct the
dominator tree. Using these algorithms, we can determine
the post-dominator tree of a graph.

Definition 6. Control Dependency Let G be a control
flow graph. Let X and Y be nodes in G. Y is control
dependent on X noted Dependency(X,Y) if:

1) There exists a directed path P from X to Y with
any Z in P (excluding X and Y) post-dominated by
Y and

2) X is not post-dominated by Y .
Given the post-dominator tree, Ferrante et al. [11]

determine control dependencies by examining certain
control flow graph edges and annotating nodes on the
corresponding tree paths.

Definition 7. Context Taint
Let G be a control flow graph. Let X and Y be basic
blocks in G. If Y is control dependent on X that contains
Condition then we associate to Y a Context Taint
with Context Taint(Y) = Taint(Condition).

We use the completeness theorem to prove the
completeness of the taint propagation rules in section
V-A. We use the soundness theorem to prove this
completeness from left to right and the compactness
theorem and theorem 2 to prove from right to left. These
theorems [12] are given below.

Completeness Theorem. For any sentence G and set of
sentences F , F |= G if and only if F ` G.

Soundness Theorem. For any formula G and set of
formulas F , if F ` G, then F |= G.

Compactness Theorem. Let F be a set of formulas. F
is unsatisfiable if and only if some finite subset of F is
unsatisfiable.

Definition 8. CNF formula
A formula F is in conjunctive normal form (CNF) if it is
a conjunction of disjunctions of literals. That is,

F =

n∧
i=1

(

m∨
j=1

Li,j)

where each Li,j is either atomic or a negated atomic
formula.

Theorem 2. Let F and G be formulas of the first-order
logic. Let H be the CNF formula obtained by applying the
CNF algorithm [12] to the formula F ∧¬G. Let Res∗(H)
be the set of all clauses that can be derived from H using
resolvents. The following are equivalent:

1) F |= G
2) F ` G
3) ∅ ∈ Res∗(H)

IV. THE UNDER-TAINTING PROBLEM

In this section we formally specify the under-tainting
problem based on Denning’s information flow model.
Denning [13] defined an information flow model as:

FM =< N,P, SC,⊕,→> .

N is a set of logical storage objects (files, program
variables, ...). P is a set of processes that are executed by
the active agents responsible for all information flow. SC
is a set of security classes that are assigned to the objects
in N . SC is finite and has a lower bound L attached to
objects in N by default. The class combining operator “⊕”
specifies the class result of any binary function on values
from the operand classes. A flow relation “→” between
pairs of security classes A and B means that “information
in class A is permitted to flow into class B”. A flow model
FM is secure if and only if execution of a sequence of
operations cannot produce a flow that violates the relation
“→”.

We draw our inspiration from the Denning information
flow model to formally specify under-tainting. However,
we assign taint to the objects instead of assigning security
classes. Thus, the class combining operator “⊕” is used
in our formal specification to combine taints of objects.
Syntactic definition of connectors {⇒,→,←,⊕}:
We use the following syntax to formally specify under-
tainting: A and B are two logical formulas and x and y
are two variables.
• A⇒ B : If A then B
• x→ y : Information flow from object x to object y
• x← y : the value of y is assigned to x
• Taint(x) ⊕ Taint(y) : specifies the taint result of

combined taints.
Semantic definition of connectors {→,←,⊕}:
• The → connector is reflexive: If x is a variable then

x→ x.
• The → connector is transitive: x, y and z are three

variables, if (x→ y) ∧ (y → z) then x→ z.
• The ← connector is reflexive: If x is a variable then

x← x.
• The ← connector is transitive: x, y and z are three

variables, if (x← y) ∧ (y ← z) then x← z.
• The → and ← connectors are not symmetric.
• The ⊕ relation is commutative: Taint(x) ⊕

Taint(y) = Taint(y)⊕ Taint(x)
• The⊕ relation is associative: Taint(x)⊕(Taint(y)⊕

Taint(z)) = (Taint(x)⊕ Taint(y))⊕ Taint(z)

Definition 9. Under-Tainting
We have a situation of under-tainting when x depends on

a condition, the value of x is assigned in the conditional
branch and condition is tainted but x is not tainted.

Formally, an under-tainting occurs when there is a
variable x and a formula condition such that:

IsAssigned(x, y) ∧Dependency(x, condition)

∧Tainted(condition) ∧ ¬Tainted(x) (1)

where:
• IsAssigned(x, y) associates with x the value of y.

IsAssigned(x, y)
def
≡ (x← y)

• Dependency(x, condition) defines an information
flow from condition to x when x depends on the
condition.

Dependency(x, condition)
def
≡ (condition→ x)

V. THE UNDER-TAINTING SOLUTION

In this section, we specify a set of formally defined
rules that describe the taint propagation. We prove the
completeness of these rules. Then, we provide an algo-
rithm to solve the under-tainting problem based on these
rules. Afterwards, we analyse some important properties
of our algorithm such as Correctness and Completeness.

A. The taint propagation rules
Let us consider the following axioms:

(x→ y)⇒ (Taint(y)← Taint(x)) (2)

(x← y)⇒ (y → x) (3)

(Taint(x)← Taint(y)) ∧ (Taint(x)← Taint(z))

⇒ (Taint(x)← Taint(y)⊕ Taint(z))
(4)

Theorem 3. We consider that Context Taint is the taint
of the condition. To solve the under-tainting problem, we
use the two rules that specify the propagation taint policy:
• Rule 1: if the value of x is modified and x depends

on the condition and the branch is taken, we will
apply the following rule to taint x.

IsModified(x, explicitflowstatement)

∧(Dependency(x, condition))

∧(BranchTaken(br, conditionalstatement))

` (Taint(x)← Context Taint

⊕Taint(explicitflowstatement))

where: The predicate
BranchTaken(br, conditionalstatement) specifies
that branch br in the conditionalstatement is executed.
So, an explicit flow which contains x is executed.
IsModified (x, explicitflowstatement) associates with x the
result of an explicit flow statement.

IsModified(x, explicitflowstatement)
def
≡

(x← explicitflowstatement)

• Rule 2: if the value of y is assigned to x and x
depends on the condition and the branch br′ in the
conditional statement is not taken (x depends only on
implicit flow and does not depend on explicit flow),
we will apply the following rule to taint x.

IsAssigned(x, y) ∧Dependency(x, condition)

∧¬BranchTaken(br′, conditionalstatement)

` Taint(x)← Taint(x)⊕ Context Taint

Proof of taint propagation rules
To prove completeness of propagation taint rules, we

use the basic rules cited in Table I for derivations.

Premise Conclusion Name
G is in F F ` G Assumption
F ` G and F ⊂ F ′ F ′ ` G Monotonicity
F ` F ,F ` G F ` (F ∧G) ∧-Introduction
F ` (F ∧G) F ` (G ∧ F) ∧-Symmetry

Table I
BASIC RULES FOR DERIVATIONS

We start by proving completeness of the first rule.
We suppose that F =
{IsModified(x, explicitflowstatement),
Dependency(x, condition),
BranchTaken(br, conditionalstatement)}
and G = Taint(x) ← Context Taint ⊕
Taint(explicitflowstatement).

We prove soundness, left to right, by induction. If
F ` G, then there is a formal proof concluding with
F ` G (see Table II). Let M be an arbitrary model of
F , we will demonstrate that M |= G. G is deduced
by Modus ponens of Gj , Gj → G then by induction,
M |= Gj and M |= Gj → G and it follows M |= G.

Statement Justification
1. (condition → x) ` (Taint(x) ← Taint(condition)) Axiom (2)
2. (condition → x) ` (Taint(x) ← Context Taint) Taint(condition)

=
Context Taint

3. F ` (Taint(x) ← ContextTaint) Monotonicity
applied to 2

4. (x ← explicitflowstatement) ` Axiom (3)
(explicitflowstatement → x)

5. (x ← explicitflowstatement) ` Axiom (2)
(Taint(x) ← Taint(explicitflowstatement))

6. F ` (Taint(x) ← Taint(explicitflowstatement)) Monotonicity
applied to 5

7. F ` ((Taint(x) ← Context Taint)∧ ∧-Introduction
(Taint(x) ← Taint(explicitflowstatement))) applied to 3

and 6
8.F ` G Modus ponens

Table II
FORMAL PROOF OF THE FIRST RULE

Conversely, suppose that F |= G, then F ∪ ¬G is
unsatisfiable. By compactness, some finite subset of
F ∪ ¬G is unsatisfiable. So there exists finite F0 ⊂ F
such that F0 ∪ ¬G is unsatisfiable and, equivalently,
F0 |= G. Since F0 is finite, we can apply Theorem 2 to
get F0 ` G. Finally, F ` G by Monotonicity. �

We will now prove completeness of the second rule.
We assume again that F =
{IsAssigned(x, y), Dependency(x, condition),
¬BranchTaken(br′, conditionalstatement)} and
G = Taint(x)← Taint(x)⊕ Context Taint.

Similarly to the first rule, we prove soundness by induc-
tion. If F ` G, then there is a formal proof concluding
with F ` G (see Table III).

Let M be an arbitrary model of F , we will demonstrate
that M |= G. G is deduced by Modus ponens of
Gj , Gj → G then by induction, M |= Gj and
M |= Gj → G and it follows M |= G.

Statement Justification
1. (condition → x) ` (Taint(x) ← Taint(condition)) Axiom (2)

2. (condition → x) ` (Taint(x) ← Context Taint)

Taint(condition)
=
Context Taint

3. F ` (Taint(x) ← Context Taint)
Monotonicity
applied to 2

4. x ` (x ← x)
The relation
← is reflexive

5. F ` (x ← x)
Monotonicity
applied to 3

6. (x ← x) ` (Taint(x) ← Taint(x)) Axiom (2)

7. F ` (Taint(x) ← Taint(x))

Modus ponens
applied to 5
and 6

8. F ` ((Taint(x) ← Context Taint)∧ ∧-Introduction

(Taint(x) ← Taint(x)))
applied to 3
and 7

9. F ` ((Taint(x) ← Taint(x))∧ ∧-Symmetry
(Taint(x) ← Context Taint)) applied to 8
10.F ` G Modus ponens

Table III
FORMAL PROOF OF THE SECOND RULE

Conversely, suppose that F |= G. Then F ∪ ¬G is
unsatisfiable. By compactness, some finite subset of F ∪
¬G is unsatisfiable. So there exists finite F0 ⊂ F such
that F0 ∪ ¬G is unsatisfiable and, equivalently, F0 |= G.
Since F0 is finite, we can apply Theorem 2 to get F0 ` G.
Finally, F ` G by Monotonicity. �

B. The algorithm

The tainting algorithm that we propose,
Taint Algorithm, allows solving the under-tainting
problem. It takes as input a control flow graph of a
binary program. In this graph, nodes represent a set
of instructions that represent basic blocks. Firstly, it
determines the control dependency of the different
blocks in the graph using Dependency Algorithm [11].
Afterwards, we parse the Dependency List generated
by Dependency Algorithm and we set the context
taint of blocks to include the taint of the condition that
depends on whether the branch is taken or not. Finally,
using the context taint and the two propagation rules,
we taint all variables to which a value is assigned in the
conditional branch.

Algorithm 1 Taint Algorithm (Control flow graph G)
Input: G = (V,E, r) is a control flow graph of a binary
program
Output: Tainted V ariables List is the list of
variables that are tainted.

x ∈ V
y ∈ V
Dependency List← Dependency Algorithm(G)
while (x, y) ∈ Dependency List do
Set Context Taint(y, List Context Taint)
Tainted V ariables List←
Taint Assigned V ariable(y)

end while

Figure 3. Source code example Figure 4. Bytecode example

C. Running example

We analyze the control flow graph G = (V,E, r) (see
Figure 5) of the bytecode given in Figure 4 to illustrate
the operation of the Taint Algorithm. The source code
is given in Figure 3. The Taint Algorithm takes as input
the control flow graph G = (V,E, r) where :

• V = {BB(1), BB(2), BB(3), BB(4)}
• E = {(BB(1), BB(2)), (BB(1), BB(3)),

(BB(2), BB(4)), (BB(3), BB(4))}
• r = {BB(1)}
The Dependency Algorithm checks the

dependency of the blocks in the control flow
graph. It generates a Dependency List =
{(BB(1), BB(2)); (BB(1), BB(3))}. As, BB(2)
depends on BB(1) and BB(3) depends on BB(1),
the Taint Algorithm sets context taint of BB(2)
and context taint of BB(3) to condition taint in
BB(1). If x = true, the first branch is executed
but the second is not. The first rule is used to
taint modified variable y in BB(2) : Taint(y) =
ContextTaint ⊕ Taint(explicitflowstatement).
The second rule is used to taint the variable y in
BB(3) : Taint(y) = ContextTaint⊕ Taint(y). So, all
variables that depend on the condition will be tainted and
stored in Tainted V ariables List whether the branch
is taken or not and we do not have an under-tainting
problem.

Figure 5. Control flow graph corresponding to the example given in
Figure 3.

D. Properties of the algorithm

First, we prove the correctness of the
Taint Algorithm and then we prove its completeness.

1) Correctness: We want to prove the correctness of
the Taint Algorithm. Let us assume that the control
flow graph is correct [14]. The proof consists of three
steps: first prove that Dependency Algorithm is
correct, then prove that Set Context Taint is correct,
and finally prove that Taint Assigned V ariable is
correct. Each step relies on the result from the previous
step.

Correctness proof for Dependency Algorithm
The Dependency Algorithm is defined by Ferrante et

al. [11] to determine dependency of blocks in the graph.
This algorithm takes as input the post-dominator tree for
an augmented control flow graph (ACFG). Ferrante et al.
add to the control flow graph a special predicate node
ENTRY that has one edge labeled ‘T’ going to START
node and another edge labeled ‘F’ going to STOP node.
ENTRY corresponds to whatever external condition causes
the program to begin execution. The post-dominator tree
of ACFG can be created using the algorithms defined in
[9], [10]. These algorithms are proven to be correct.
Basic steps in the Dependency Algorithm:

Given the post-dominator tree, Ferrante et al. [11]
determine control dependencies as following:
• Find S,a set of all edges (A,B) in the ACFG such

that B is not an ancestor of A in the post-dominator
tree (i.e., B does not postdominate A).

• For each edge (A,B) in S, find L, the least common
ancestor of A and B in the post-dominator tree.

CLAIM: Either L is A or L is the parent of A in
the post-dominator tree.

Ferrante et al. consider these two cases for L, and
show that one method of marking the post-dominator
tree with the appropriate control dependencies ac-
commodates both cases.

– Case 1. L = parent of A. All nodes in the
post-dominator tree on the path from L to B,
including B but not L, should be made control
dependent on A.

– Case 2. L = A. All nodes in the post-dominator
tree on the path from A to B, including A and
B, should be made control dependent on A.

• Given (A,B) in S and its corresponding L, the
algorithm given by Ferrante et al. traverses backwards
from B in the post-dominator tree until they reach L
and mark all nodes visited; mark L only if L = A.

• Statements representing all marked nodes are control
dependent on A with the label that is on edge (A,B).

They prove that the correctness of the construction
follows directly from the definition of control dependency
(see section III).

Referring back to this definition, for any node M on the
path in the post-dominator tree from (but not including)
L to B, (1) there is a path from A to M in the control
flow graph that consists of nodes post-dominated by M ,
and (2) A is not post-dominated by M . Condition (1) is
true because the edge (A,B) gives us a path to B, and B
is post-dominated by M . Condition (2) is true because A
is either L, in which case it post-dominates M , or A is a
child of L not on the path from L to B.

We can therefore conclude that
Dependency Algorithm is correct.

Correctness proof for Set Context Taint
We include the taint of the condition in the context

taint of the dependent blocks. As the condition taint
is valid thus the inclusion operation is valid. We can
conclude that Set Context Taint is correct.

Correctness proof for Taint Assigned V ariable
We use the two propagation rules to taint variables to

which a value is assigned. We proved the completeness
of the two propagation rules in section V-A, thus we can
conclude that Taint Assigned V ariable is complete.
Therefore, we can conclude the completeness of the
Taint Algorithm.

2) Completeness: Let us assume that the control
flow graph is complete (see Definition 2). To prove
the completeness of the Taint Algorithm, we will
prove the completeness of Dependency Algorithm and
Taint Assigned V ariable.

The Dependency Algorithm takes as input the post-
dominator tree of the control flow graph. The post-
dominator tree can be constructed using the complete
algorithm defined in [10]. The Dependency Algorithm
is based on the set of the least common ancestor (L) of A
and B in the post-dominator tree for each edge (A,B) in
S. According to the value of L, Ferrante et al. define two
cases to determine the control dependency. To prove the
completeness of the Dependency Algorithm, we show
that Ferrante et al. prove that there does not exist another
value of L (either A′s parent or A itself) to consider.
Proof: Let us assume that X is the parent of A in the
post-dominator tree. So, X is not B because B is not an
ancestor of A in the post-dominator tree (by construction
of S). Ferrante et al. perform a proof reductio ad absurdum
to demonstrate that X post-dominates B, and suppose it
does not. Thus, there would be a path from B to STOP
that does not contain X . But, by adding edge (A,B) to
this path, a path from A to STOP does not pass through
X (since, by construction, X is not B). This contradicts
the fact that X post-dominates A. Thus, X post-dominates
B and it must be an ancestor of B in the post-dominator
tree. If X , immediate post-dominator of A, post-dominates
B, then the least common ancestor of A and B in the post-
dominator tree must be either X or A itself. �

As only two values of L exist, there does not exist
another case to compute the control dependency. The
Case 2 captures loop dependency and all other de-
pendencies are determined according to Case 1. Thus,
Dependency Algorithm is complete.

We proved the completeness of the two propaga-
tion rules in section V-A thus we can conclude that
Taint Assigned V ariable is complete. Therefore, we
can conclude the completeness of the Taint Algorithm.

E. Time complexity of the algorithm

The Dependency Algorithm performs with a time of
at most O(N2) where N is the number of nodes in the
control flow graph. Linear time algorithm to calculate
control dependencies have been proposed in [15] but no
proof of correctness of this algorithm was given. For each
(X, Y) examined in the Dependency List, setting context
taint and tainting variables can be done in constant time
O(N). Thus, the Taint Algorithm requires linear time
using algorithm defined in [15] and at most O(N2) using
Ferrante et al. algorithm.

VI. RELATED WORK

Privacy issues on smartphones are a growing concern.
Several works [16], [17], [18], [19], [20] have been
proposed to control access to private data in mobile
operating systems. These access control approaches do
not track the flow of information and cannot prevent
leakage of sensitive data. A number of researches have
been proposed to prevent private information leakage by
untrusted android applications. [21], [22], [23] substitute
private data by fake information in the data flow. This
can cause a problem and disrupt execution of applications.
Enck et al. [3] implement dynamic taint analysis to track
explicit flows on smartphones. AppFence [23] extends
Taintdroid to implement enforcement policies. One limit
of these approaches is that they cannot detect control
flows because they use dynamic taint analysis. The static
analysis approaches implemented in smartphones [24],
[25], [26] allow detecting data leaks but they cannot
capture all runtime configuration and input. We were
inspired by these prior works, but we combine static and
dynamic analysis to prevent sensitive information leakage
by untrusted android applications. Some implementations
exist in the literature to solve the under-tainting problem.
BitBlaze [27] presents a novel fusion of static and dynamic
taint analysis techniques to track implicit and explicit flow.
DTA++ [28], based on the Bitblaze approach, presents an
enhancement of dynamic taint analysis to limit the under-
tainting problem. However DTA++ is evaluated only on
benign applications but malicious programs in which an
adversary uses implicit flows to circumvent analysis are
out of scope. Trishul [29] correctly identifies implicit flow
of information to detect a leak of sensitive information.
Egele et al. [30] associate a taint label with the program
counter to enhance dynamic taint-tracking technique. They
identify unknown components like spyware and provide
comprehensive reports on their behavior. Furthermore,
these approaches do not formally give a proof to solve
the under-tainting problem and are not implemented in
smartphones application. Fenton [31] proposed a Data
Mark Machine, an abstract model, to handle control
flows. Fenton associates a security class to information
and defines an interaction matrix to manipulate data in
the system. He gives a formal description of his model
and a proof of its correctness in terms of information
flow. The Data Mark Machine is based on a runtime
mechanism that does not take into account the implicit
flow when the branch is not executed. This can cause
an under-tainting problem. To solve this problem, Aries
[32] considers that writing to a particular location within
a branch is disallowed when the security class associated
with that location is equal or less restrictive than the
security class of program counter. The Aries approach
is based only on high and low security classes. Denning
[33] enhances the run time mechanism used by Fenton
with a compile time mechanism to solve the under-tainting
problem. Denning inserts updating instructions whether
the branch is taken or not to reflect the information flow.
Denning and Denning [34] gave an informal argument
for the soundness of their compile time mechanism. Graa
et al. [4] propose an approach based on dynamic taint
analysis that propagates taint along control dependencies
using static analysis to track implicit flows in embedded
systems such as the Google Android operating system.
They define a set of formal propagation rules to solve
the under-tainting problem but they do not prove the

completness of these rules. We draw our inspiration from
the Denning approach, but we define formally a set of taint
propagation rules to solve the under-tainting problem and
we improve the approach of Graa et al. by proving the
correctness and completeness of these rules.

VII. DISCUSSION

Cavallaro et al. [35] describe evasion techniques that
can easily defeat dynamic information flow analysis.
These evasion attacks can use control dependencies. They
demonstrate that a malware writer can propagate an
arbitrarily large amount of information through control
dependencies. Cavallaro et al. see that it is necessary to
reason about assignments that take place on the unexe-
cuted program branches. We implement the same idea
in our taint propagation rules. Unfortunately, this will
lead to an over-tainting problem (false positives). The
problem has been addressed in [28] and [36] but not
solved though. Kang et al. [28] used a diagnosis technique
to select branches that could be responsible for under-
tainting and propagated taint only along these branches in
order to reduce over-tainting. However a smaller amount
of over tainting occurs even with DTA++, as we can see
by comparing the ”Optimal” and ”DTA++” results in the
evaluation. Bao et al. [36] define the concept of strict
control dependencies (SCDs) and introduce its semantics.
They use a static analysis to identify predicate branches
that give rise to SCDs. They do not consider all control
dependencies to reduce the number of false positives.
Their implementation gives similar results as DTA++ in
many cases, but is based on the syntax of a comparison
expression. Contrariwise, DTA++ uses a more general
and precise semantic-level condition, implemented using
symbolic execution.

In our approach, we taint all variables in the conditional
branch. This causes an over-tainting. But it provides more
security because all confidential data are tainted. So, the
sensitive information cannot be leaked. We are interested
in solving the under tainting because the false negatives
are much more dangerous than the false positives since the
false negatives can lead to a false sense of security. We
can try to reduce the over-tainting problem by considering
expert rules.

VIII. CONCLUSION

Smartphones are extensively used. However, the use of
untrusted android applications can provoke the leakage
of private data by exploiting the under-tainting problem.
In this paper, we propose a formal approach to detect
control flow and to solve the under-tainting problem in
android sytem. We formally specify the under-tainting
problem. As a solution, we provide an algorithm based
on a set of formally defined rules that describe the taint
propagation. We prove the completeness of those rules and
the correctness and completeness of the algorithm. In the
future works, we will evaluate our approach in terms of
overhead and false alarms. We will also test our approach
and show that it resists to code obfuscation attacks based
on control dependencies.

REFERENCES

[1] UK Egham, “Gartner says worldwide mobile phone sales
grew 35 percent in third quarter 2010; smartphone sales
increased 96 percent,” November 2010, http://www.gartner.
com/newsroom/id/1466313.

[2] Tim Wilson, “Many android apps leak-
ing private information,” July 2011, http:
//www.informationweek.com/security/mobile/
many-android-apps-leaking-private-inform/231002162.

[3] W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, J. Jung, P. Mc-
Daniel, and A.N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smart-
phones,” in Proceedings of the 9th USENIX conference
on Operating systems design and implementation. USENIX
Association, 2010, pp. 1–6.

[4] Mariem Graa, Nora Cuppens-Boulahia, Frédéric Cuppens,
and Ana Cavalli, “Detecting control flow in smarphones:
Combining static and dynamic analyses,” in Cyberspace
Safety and Security, pp. 33–47. Springer, 2012.

[5] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Com-
pilers: principles, techniques, and tools, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[6] Frances E Allen, “Control flow analysis,” in ACM Sigplan
Notices. ACM, 1970, vol. 5, pp. 1–19.

[7] Alfred V Aho and Jeffrey D Ullman, The theory of parsing,
translation, and compiling, Prentice-Hall, Inc., 1972.

[8] Edward S. Lowry and C. W. Medlock, “Object code
optimization,” Commun. ACM, vol. 12, no. 1, pp. 13–22,
Jan. 1969.

[9] Thomas Lengauer and Robert Endre Tarjan, “A fast
algorithm for finding dominators in a flowgraph,” ACM
Transactions on Programming Languages and Systems
(TOPLAS), vol. 1, no. 1, pp. 121–141, 1979.

[10] Loukas Georgiadis and Robert E Tarjan, “Finding dom-
inators revisited,” in Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms. Society for
Industrial and Applied Mathematics, 2004, pp. 869–878.

[11] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren, “The
program dependence graph and its use in optimization,”
ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[12] S. Hedman, A First Course In Logic: An Introduction
To Model Theory, Proof Theory, Computability, And Com-
plexity, Number n 9 in Oxford Texts in Logic. Oxford
University Press, 2004.

[13] D.E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, no. 5, pp. 236–243,
1976.

[14] Afshin Amighi, Pedro de Carvalho Gomes, Dilian Gurov,
and Marieke Huisman, “Provably correct control-flow
graphs from java programs with exceptions,” 2012.

[15] Richard Johnson and Keshav Pingali, “Dependence-based
program analysis,” in ACM SigPlan Notices. ACM, 1993,
vol. 28, pp. 78–89.

[16] William Enck, Machigar Ongtang, and Patrick McDaniel,
“On lightweight mobile phone application certification,” in
Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 235–245.

[17] Mohammad Nauman, Sohail Khan, and Xinwen Zhang,
“Apex: extending android permission model and enforce-
ment with user-defined runtime constraints,” in Proceedings
of the 5th ACM Symposium on Information, Computer and
Communications Security. ACM, 2010, pp. 328–332.

[18] Mauro Conti, Vu Nguyen, and Bruno Crispo, “Crepe:
Context-related policy enforcement for android,” Informa-
tion Security, pp. 331–345, 2011.

[19] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan
Heuser, Ahmad-Reza Sadeghi, and Bhargava Shastry,
“Practical and lightweight domain isolation on android,”
in Proceedings of the 1st ACM workshop on Security and
privacy in smartphones and mobile devices. ACM, 2011,
pp. 51–62.

[20] Machigar Ongtang, Kevin Butler, and Patrick McDaniel,
“Porscha: Policy oriented secure content handling in an-
droid,” in Proceedings of the 26th Annual Computer
Security Applications Conference. ACM, 2010, pp. 221–
230.

[21] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent
Freeh, “Taming information-stealing smartphone applica-
tions (on android),” Trust and Trustworthy Computing, pp.
93–107, 2011.

[22] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and
Ripduman Sohan, “Mockdroid: trading privacy for ap-
plication functionality on smartphones,” in Proceedings
of the 12th Workshop on Mobile Computing Systems and
Applications. ACM, 2011, pp. 49–54.

[23] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart
Schechter, and David Wetherall, “These aren’t the droids
you’re looking for: retrofitting android to protect data from
imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security.
ACM, 2011, pp. 639–652.

[24] Manuel Egele, Christopher Kruegel, Engin Kirda, and
Giovanni Vigna, “Pios: Detecting privacy leaks in ios ap-
plications,” in Proceedings of the Network and Distributed
System Security Symposium, 2011.

[25] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and
David Wagner, “Analyzing inter-application communica-
tion in android,” in Proceedings of the 9th international
conference on Mobile systems, applications, and services.
ACM, 2011, pp. 239–252.

[26] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster,
“Scandroid: Automated security certification of android
applications,” Manuscript, Univ. of Maryland, http://www.
cs. umd. edu/˜ avik/projects/scandroidascaa, 2009.

[27] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. Kang, Z. Liang, J. Newsome, P. Poosankam, and
P. Saxena, “Bitblaze: A new approach to computer security
via binary analysis,” Information Systems Security, pp. 1–
25, 2008.

[28] M.G. Kang, S. McCamant, P. Poosankam, and D. Song,
“Dta++: Dynamic taint analysis with targeted control-flow
propagation,” in Proc. of the 18th Annual Network and
Distributed System Security Symp. San Diego, CA, 2011.

[29] S.K. Nair, P.N.D. Simpson, B. Crispo, and A.S. Tanenbaum,
“A virtual machine based information flow control system
for policy enforcement,” Electronic Notes in Theoretical
Computer Science, vol. 197, no. 1, pp. 3–16, 2008.

[30] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng
Yin, and Dawn Song, “Dynamic spyware analysis,” in
Usenix Annual Technical Conference, 2007.

[31] J.S. Fenton, “Memoryless subsystem,” Computer Journal,
vol. 17, no. 2, pp. 143–147, 1974.

[32] J. Brown and T.F. Knight Jr, “A minimal trusted computing
base for dynamically ensuring secure information flow,”
Project Aries TM-015 (November 2001), 2001.

[33] D.E.R. Denning, Secure information flow in computer
systems, Ph.D. thesis, Purdue University, 1975.

[34] D.E. Denning and P.J. Denning, “Certification of programs
for secure information flow,” Communications of the ACM,
vol. 20, no. 7, pp. 504–513, 1977.

[35] Lorenzo Cavallaro, Prateek Saxena, and R Sekar, “On the
limits of information flow techniques for malware analysis
and containment,” in Detection of Intrusions and Malware,
and Vulnerability Assessment, pp. 143–163. Springer, 2008.

[36] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu, “Strict control dependence and its effect
on dynamic information flow analyses,” in Proceedings of
the 19th international symposium on Software testing and
analysis. ACM, 2010, pp. 13–24.

