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ENTROPY-DISSIPATIVE DISCRETIZATION
OF NONLINEAR DIFFUSION EQUATIONS
AND DISCRETE BECKNER INEQUALITIES

CLAIRE CHAINAIS-HILLATRET, ANSGAR JUNGEL, AND STEFAN SCHUCHNIGG

ABSTRACT. The time decay of fully discrete finite-volume approximations of porous-
medium and fast-diffusion equations with Neumann or periodic boundary conditions is
proved in the entropy sense. The algebraic or exponential decay rates are computed ex-
plicitly. In particular, the numerical scheme dissipates all zeroth-order entropies which
are dissipated by the continuous equation. The proofs are based on novel continuous and
discrete generalized Beckner inequalities. Furthermore, the exponential decay of some
first-order entropies is proved in the continuous and discrete case using systematic inte-
gration by parts. Numerical experiments in one and two space dimensions illustrate the
theoretical results and indicate that some restrictions on the parameters seem to be only
technical.

1. INTRODUCTION

This paper is concerned with the time decay of fully discrete finite-volume solutions to
the nonlinear diffusion equation

(1) w =AW’ inQ, t>0 u(-,0)=uy inQ,

and with the relation to discrete generalized Beckner inequalities. Here, 3 > 0 and £ C R¢
(d > 1) is a bounded domain. When g > 1, (1) is called the porous-medium equation,
describing the flow of an isentropic gas through a porous medium [43]. Equation (1) with
[ < 1 is referred to as the fast-diffusion equation, which appears, for instance, in plasma
physics with 5 = £ [6] or in semiconductor theory with 0 < § < 1 [32]. We impose
homogeneous Neumann boundary conditions

(2) Vw’)-v=0 ondQ, t>0,
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where v denotes the unit normal exterior vector to 02, or multiperiodic boundary condi-
tions (i.e.  equals the torus T¢). Let us denote by m the Lebesgue measure in R¢ or R4
we assume for simplicity that m(2) = 1.

For existence and uniqueness results for the porous-medium equation in the whole space
or under suitable boundary conditions, we refer to the monograph by Vézquez [43]. There
are much less results for fast-diffusion equations (see [42]), and usually they hold for the
whole-space problem. In particular, we are not aware of an existence result for fast-diffusion
equations in bounded domains with homogeneous Neumann boundary conditions, but such
a result can be easily established since there is a maximum principle.

There exist also many results on the time decay of the continuous porous-medium or
fast-diffusion equation, with optimal decay rates or in strong norms. For instance, by us-
ing invariance principles, the sharp decay rate ¢t~/(*~1 in the L>® norm was shown in [1].
Spectral methods applied to (1) with confinement were used in [16] for g € ((d — 2)/d, 1)
and in [40] for 5 > 1. It seems to be difficult to “translate” these techniques to the discrete
case. Sharp time-decay results in L> for the solutions to the porous-medium equation
with homogeneous Neumann boundary conditions were shown in [9, 25, 26], based on reg-
ular Sobolev inequalities. The connection between logarithmic Sobolev inequalities and
ultracontractivity-like bounds was investigated in [9], also proving short- and large-time
asymptotics. These results imply the results of this paper in the continuous setting (in
fact, the results of [9, 25, 26] are more general) but not in the discrete case. Optimal con-
vergence rates to Barenblatt self-similar profiles for the fast-diffusion equation were derived
in [8], employing entropy methods and Hardy-Poincaré inequalities. However, it is unclear
to what extent the mentioned techniques can be “translated” to the discrete case, partially
because certain Sobolev inequalities (like Gagliardo-Nirenberg inequalities) seem to be not
available. We refer to [7] for special discrete Gagliardo-Nirenberg inequalities.

In the literature, there exist many numerical schemes for nonlinear diffusion equations
related to (1). Numerical techniques include (mixed) finite-element methods [2, 19, 39],
finite-volume approximations [23, 38|, high-order relaxation ENO-WENO schemes [14], or
particle methods [36]. In these references, stability and numerical convergence properties
are proved. Also the preservation of the structure of diffusion equations is a very important
property of a numerical scheme. For instance, ideas employed for hyperbolic conserva-
tion laws were extended to degenerate diffusion equations, like the porous-medium equa-
tion, which may behave like hyperbolic ones in the regions of degeneracy [37]. Positivity-
preserving schemes for nonlinear fourth-order equations were thoroughly investigated in the
context of lubrication-type equations [4, 45] and quantum diffusion equations [31]. Entropy-
consistent finite-volume finite-element schemes for the fourth-order thin-film equation were
suggested by Griin and Rumpf [28]. For quantum diffusion models, an entropy-dissipative

IFirst, take strictly positive initial data ug. By the maximum principle, any solution to the fast-diffusion
equation is strictly positive. Thus, the equation is no longer singular, and the existence of weak solutions
follows by a standard procedure. For nonnegative functions ug, we take ug + € for € > 0 as initial data,
apply the first step, and pass to the limit ¢ — 0.
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relaxation-type finite-difference discretization was investigated by Carrillo et al. [12]. Fur-
thermore, entropy-dissipative schemes for electro-reaction-diffusion systems were derived
by Glitzky and Gértner [24]. However, it seems that there does not exist any systematic
study on entropy-dissipative discretizations for (1) and the time decay of their discrete
solutions.

The aim of this paper is to provide some results on the time decay of discrete solutions
to (1)-(2) and to give estimates on the decay rates. To this end, we adapt the proofs for the
continuous case to the discrete situation. The scheme under investigation is a backward
Euler scheme in time and a finite-volume scheme in space, defined in (7). Only those proofs
are chosen which can be directly “translated” in a finite-volume context.

Our main objective is to prove that the finite volume scheme for (1)-(2) dissipates the
discrete versions of the functionals

(3) Eafu] = ail ( /Q udr — /Q ud:c)aH),

1
(4) F,lu] = 5/ \Vue?2dz, o > 0.
Q

In fact, we will prove (algebraic or exponential) convergence rates at which the discrete
functionals converge to zero as t — oco. We call E, a zeroth-order entropy and F, a first-
order entropy. The functional F} is known as the Fisher information, used in mathematical
statistics and information theory [20]. Our analysis of the decay rates of the entropies will
be guided by the entropy-dissipation method. An essential ingredient of this technique
is a functional inequality relating the entropy to the entropy dissipation [3, 11]. For the
diffusion equation (1), this relation is realized by the Beckner inequality [5].

The entropy-dissipation method was applied to (1) in the whole space to prove the decay
of the solutions to the asymptotic self-similar profile in, e.g., [13, 15]. The convergence to-
wards the constant steady state on the one-dimensional torus was proved in [10]. However,
we are not aware of general entropy decay estimates for solutions to (1)-(2) to the constant
steady state, even in the continuous case. The reason might be that generalizations to
the Beckner inequality, needed to relate the entropy dissipation to the entropy, are miss-
ing. In this paper, we propose new Beckner-type inequalities which fill this gap. Moreover,
our proof can be translated to the discrete case. These results will be presented in Section 3.

The proof of discrete time decay for solutions to the finite-volume approximation of (1)
is inspired from entropy decay estimates in the continuous case, which we review first.
Differentiating F, [u(t)] with respect to time and employing a Beckner inequality, we show
for § > 1 that

dE,
dt

[u(t)] < CEafu(t)] /0 ¢ >0,

where C' > 0 depends on «, , and Cg(p,q). By a nonlinear Gronwall inequality, this
implies the algebraic decay of u(t) to equilibrium in the entropy sense; see Theorem 9. If
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the solution is positive and 0 < a < 1, the above inequality becomes

dE,
dt

which results in an exponential decay rate; see Theorem 10. We obtain similar results for
a discrete version of F, in Theorems 11 (algebraic decay) and 12 (exponential decay).

The first-order entropies F,[u(t)] decay exponentially fast (for positive solutions) for all
(e, B) lying in the strip —2 < a—25 < 1 (one-dimensional case) or in the region M, which
is illustrated in Figure 1 below (multi-dimensional case); see Theorems 13 and 14. The
proof is based on systematic integration by parts [29]. In order to avoid boundary integrals
arising from the iterated integrations by parts, these results are valid only if Q = T?. It is
very difficult to “translate” the iterated integrations by parts to iterated summations by
parts since there is no discrete nonlinear chain rule. For the zeroth-order entropies, this is
done by exploiting the convexity of the mapping = — 2!, For the first-order entropies,
we employ the concavity of the discrete version of dF, /dt with respect to the time ap-
proximation parameter. We prove in Theorem 16 that for 1 < o < 2 and § = «/2, the
discrete first-order entropy is monotone (multi-dimensional case) and decays exponentially
fast (one-dimensional case). We stress the fact that this is the first result in the literature
on the decay of discrete first-order entropies.

[u(t)] < C(uo) Ealu(t)], >0,

Throughout this paper, we assume that the solutions to (1) are smooth and positive
such that we can perform all the computations and integrations by parts. In particular,
we avoid any technicalities due to the degeneracy (5 > 1) or singularity (8 < 1) in (1).
Most of our results can be generalized to nonnegative weak solutions by using a suitable
approximation scheme but details are left to the reader.

We stress the fact that we do not develop an efficient implementation and we do not
perform a convergence analysis, since the scheme is rather standard. Our aim is of more
theoretical interest. In fact, our results on the discrete decay rates contribute to the aim
of developing and analyzing structure-preserving numerical schemes and this is the main
originality of the present work.

The paper is organized as follows. Section 2 is devoted to the finite-volume setting: We
introduce the numerical scheme under investigation and define discrete norms and discrete
entropies. Then we prove some novel generalized Beckner inequalities in Section 3, at the
continuous and discrete level. The algebraic and exponential decay of E,[u] are studied
in Section 4. W e first prove the results at the continuous level and then deduce similar
results for the numerical scheme. Section 5 is devoted to the study of the exponential
decay of the first-order entropies F,[u]. In Section 6, we illustrate the theoretical results
by numerical experiments in one and two space dimensions. They indicate that some of
the restrictions on the parameters (o, 5) seem to be only technical. In the appendix, a
discrete nonlinear Gronwall lemma and some auxiliary inequalities are proved.

2. THE FINITE-VOLUME SETTING
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2.1. Notations and finite-volume scheme. Let {2 be an open bounded polyhedral sub-
set of R? (d > 2) with Lipschitz boundary and m(2) = 1. An admissible mesh of € is
given by a family 7 of control volumes (open and convex polyhedral subsets of 2 with
positive measure); a family £ of relatively open parts of hyperplanes in R? which represent
the faces of the control volumes; and a family of points (x)xe7 which satisfy Definition
9.1 in [21]. This definition implies that the straight line between two neighboring centers
of cells (zk, x) is orthogonal to the edge 0 = K|L between the two control volume K and
L. For instance, triangular meshes in R? satisfy the admissibility condition if all angles
of the triangles are smaller than 7/2 [21, Examples 9.1]. Voronoi meshes in R? are also
admissible meshes [21, Examples 9.2].

We distinguish the interior faces ¢ € &, and the boundary faces o € &;. Then the
union &y U ey equals the set of all faces £. For a control volume K € T, we denote by
Ex the set of its faces, by &k the set of its interior faces, and by ey x the set of edges
of K included in 0f).

Let d be the distance in R?. We assume that the family of meshes satisfies the following
regularity requirement: There exists £ > 0 such that for all K € 7 and all o € &, x With
o = K|L, it holds

(5) d(fL’K,O') Zfd(SL’K,LEL).

This hypothesis is needed to apply a discrete Poincaré inequality; see Lemma 2. Introducing
for o € £ the notation

d. — d(;z:K,xL) if o € gint; g = K’L,
7\ d(zg,o0) it 0 € Eext ks

we define the transmissibility coefficient

The size of the mesh is denoted by Ax = maxger diam(K). Let T > 0 be some final time
and M7 the number of time steps. Then the time step size and the time points are given
by, respectively, At = T/Mp, t* = kAt for 0 < k < My. We denote by D an admissible
space-time discretization of Qr = Q x (0,7") composed of an admissible mesh 7 of Q and
the values At and M.

We are now in the position to define the finite-volume scheme of (1)-(2) on D. The
initial datum is approximated by its L? projection on control volumes:

1
6 u’ = w1y, where u) ——/u x)dx,
) 3 it k= i /. o)

and 1 is the characteristic function on K. Then it holds >~ o+ m(K)uf = [, uodz.
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The numerical scheme reads as follows:
UI;(H _U’;( k+1\5 k+1)\ 3
© m(K) S ()~ 7)) =0,
<imy

for all K € T and k = 0,..., My — 1. This scheme is based on a fully implicit Euler
discretization in time and a finite-volume approach for the volume variable. The Neumann
boundary conditions (2) are taken into account as the sum in (7) applies only on the
interior edges. The implicit scheme allows us to establish discrete entropy-dissipation
estimates which would not be possible with an explicit scheme.

We summarize in the next proposition the classical results of existence, uniqueness and
stability of the solution to the finite-volume scheme (6)-(7).

Proposition 1. Let ug € L>®(Q), m > 0, M > 0 such that m < uy < M in Q. Let T be an
admissible mesh of Q. Then the scheme (6)-(7) admits a unique solution (uk;)xer o<k<niy
satisfying

mgu’,“(gM, forall KeT,0<k< Mp,

Z m(K)ufe = ||lugl| 1), for all 0 <k < Mr.
KeT

We refer, for instance, to [21] and [22] for the proof of this proposition.
2.2. Discrete entropies. A finite-volume scheme provides an approximate solution which

is constant on each cell of the mesh and on each time interval. Let X (7) be the linear
space of functions 2 — R which are constant on each cell K € T:

The set X(T) is included in LP(Q2) for 1 < p < oo and

1/p 1/p
ull ) = (/ |u|pdx) = (Z m(K)|uK|p> Yu e X(T), V1 <p < +oo.
Q

KeT

Clearly, the set X (7) is not included in W'?(€2). However, for 1 < p < +o00, we can define
a discrete WP seminorm and a discrete W1? norm by, respectively,

1/p
|ul1p7 = ( > (o) |ur — UL|p> Vu e X(T),

p—1
o0€E&int, do
oc=K|L

[ellip = llulleo) +lulipr Yu e X(T).
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The zeroth-order entropies defined by (3) can be rewritten for u € X(7) as
1 a+1
® b = oy | Dt (3t

KeT KeT

Finally, we define the discrete first-order entropies, corresponding to (4), by
1
(9 Fllu] = i

3. GENERALIZED BECKNER INEQUALITIES

The decay properties of the zeroth-order entropies rely on generalized Beckner inequal-
ities which follow from the Poincaré-Wirtinger inequality. This section is devoted to the
proof of these Beckner inequalities in the functional space H'(2) and of their discrete
counterpart in the functional space X (7).

3.1. Poincaré-Wirtinger inequalities. We assume that Q C R? (d > 1) is a bounded
domain such that the Poincaré-Wirtinger inequality

(10) Lf = Fllzz) < CrlV fllz2)

for all f € H'(Q) holds, where f = m(Q)™" [, fdz and Cp > 0 only depends on d and
Q). This is the case if, for instance, Q has the cone property [35, Theorem 8.11] or if 92
is locally Lipschitz continuous [44, Theorem 1.3.4]. We recall that m(£2) = 1 in this paper
(to shorten the proof). The discrete counterpart of (10) is stated in the following Lemma
(see for instance [7, Theorem 5)):

Lemma 2 (Discrete Poincaré-Wirtinger inequality). Let Q@ C R? be an open bounded
polyhedral set and let T be an admissible mesh satisfying the reqularity constraint (5). Then
there exists a constant C, > 0, only depending on d and 2, such that for all f € X(T),

- C
(11) 1f = fllz2e) < éTf;’fh,zm
where f = [, fdz (recall that m(Q) = 1) and & is defined in (5).
We present now a new inequality which can be seen as a generalized Poincaré inequality.

Lemma 3 (Generalized Poincaré-Wirtinger inequality). Let 0 < ¢ < 2 and f € H'(Q).
Then

(12) 11720y < CEIV T2y + 11700y
holds, where Cp > 0 is the constant of the Poincaré-Wirtinger inequality (10).
Proof. Let first 1 < ¢ < 2. The Poincaré-Wirtinger inequality (10) rewrites as

(13) 1122 = 117 @) = I1f = FllZe@) < CRIV T2
and together with the Holder inequality leads to

(14) £ 172y < CRIVFIIZ20) + 1/ 1 Zae)-
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Here we use the assumption m(Q2) = 1. Since ¢/2 < 1, it follows that

/2
11520y < (CRIV Al T2) + 1 o)™ < CRIV AlT2) + 11500y

which equals (12).
Next, let 0 < ¢ < 1. We claim that

(15) a?? —a? Y2 < (a — )72 for all a > b > 0.
Indeed, setting ¢ = b/a, this inequality is equivalent to
1—c"92<(1—0)¥? forall0<c<1.

The function g(c) = 1 — =92 — (1 — )% for ¢ € [0,1] satisfies g(0) = g(1) = 0 and
g"(c) = (q/2)(1 — q/2)(c™ =92 + (1 — ¢)¥/?72) > 0 for ¢ € (0,1), which implies that
g(c) <0, proving (15). Applying (15) to a = || f||72() and b = || f[|7, ¢, and using (13), we
find that

2(g—1 - /2
(16) ||f||qL2(Q) B ||f||L(2q(Q))||f||ing) < (Hf”%?(ﬂ) B ||f||%1(9))q < C%vaHC[I,Z Q

In order to get rid of the L! norm, we employ the interpolation inequality

(17) [RAIFRIEY /If! Iz < 1 Za) 1 1 200,

where 6 = ¢/(2 —¢) < 1. Since (2 —¢)f = g and (2 —¢)(1 —8) =2(1 — q), (16) becomes
1172y = I Ze () < CRINV 17200y

which is the desired inequality. U

Starting from the discrete Poincaré-Wirtinger inequality (11) instead of (10), we obtain
the discrete analogue of (13):

£ 122 ) = 12y = I = flll2@) < Cp& If oy forall f e X(T).

Then, following the lines of the proof of Lemma 3, we obtain the discrete counterpart of
the generalized Poincaré-Wirtinger inequality (12)

(18) 1%y < CLE 1+ 1f |y for all f € X(T),
under the hypotheses of Lemma 2.

3.2. First generalization of the Beckner inequality. For the proof of the algebraic
decay of the zeroth-order entropies, we need the following variant of the Beckner inequality.

Lemma 4 (Generalized Beckner inequality I). Let d > 1 and either 0 < q < 2, pqg > 1
orq =2, % — é <p<1(0<p<1ifd<2),andlet f e H Q). Then the generalized
Beckner inequality

(19) [isias ([ |f|1/”d:v) < Colpr DIV %
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holds, where

2(pg — 1)Ch

g ifg<2, Cp(p,2)=Ch ifq=2,

Cp(p.q) =

and Cp > 0 is the constant of the Poincaré-Wirtinger inequality (10).

Remark 5. The case ¢ = 2 corresponds to the usual Beckner inequality [5]

J1sede = ( [ 1520ae) < Catp. 21912,
Q Q

where 1 < r = 2p < 2. It is shown in [18] that the constant Cz(p,2) can be related to the
lowest positive eigenvalue of a Schrodinger operator if ) is convex. On the one-dimensonal
torus, the generalized Beckner inequality (19) for p > 0 and 0 < ¢ < 2 has been derived
n [10]. In the multi-dimensional situation, the special case p = 2/q was proved in [17]. In
this work, it was also shown that (19) with ¢ > 2 and p = 2/¢g cannot be true unless the
Lebesgue measure dx is replaced by the Dirac measure. In the limit pg — 1, (19) leads to
a generalized logarithmic Sobolev inequality (see (21) below). If ¢ = 2 in this limit, the
usual logarithmic Sobolev inequality [27] is obtained. O

Proof of Lemma 4. Let first ¢ = 2. Then the Beckner inequality is a consequence of the
Poincaré-Wirtinger inequality (10) and the Jensen inequality:

C%HVfH%%Q) > ||f — JFH%Q(Q) = ”f||2L2(Q) - ||f||%1(9) = /Qf2d$ - (/Q |f\2/"dx> )

where 1 — %l <r<2(0<r<2ifd<2). The lower bound for r ensures that the

embedding H'(Q) < L?"(Q) is continuous. The choice p = r/2 € [1 — 1 1] yields the
formulation (19).

Next, let 0 < g < 2. The first part of the proof is inspired by the proof of Proposition
2.2 in [17]. Taking the logarithm of the interpolation inequality

1oy < IF1 LIS,
where ¢ <r <2 and 0(r) = q(2 — r)/(r(2 —q)), gives

Clog / flrde - / flodz — 2200 10 / f2dz <0,

The function F' : [¢,2] — R is nonpositive, differentiable and F(q) = 0. Therefore,
F’'(q) <0, which equals

1 q 1 q o q
_?bg/gm dg;+—(/|f\ da:) /|f| log [ f|dx
+0'(q ( log/ | f] dﬂf——log/ If\qu) <
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We multiply this inequality by ¢* [, | f|?dz to obtain

!fl
(e

Then, we employ Lemma 3 and the mequality log(x + 1) < x for z > 0 to infer that

IIfHL A 11z2 ) CrlV Iz
< 1A lzogy o8 | —a———
STy

Combining this inequality and (20), we conclude the generalized logarithmic Sobolev in-
equality

g My < 208
@ 110 e < SR 91

The generalized Beckner inequality (19) is derived by extending slightly the proof of [33,
Corollary 1]. Let

Mtz

(20) [ 1711108 Tz < 2l o

BT e

11 Zae 1o 1) < CplIVF Ty

11 a0

G(r) = rlog/ ||V dx, > 1.
0

The function G is twice differentiable with

~1
) = ( [isirras) ([ israoo [ 1s1mae =2 [ (107 10g1az).
—2 2
1" _ q/r q/r q/r . q/r
6= 5 ([ o) (/Qm do [ 1119 Gog 7% ([ 171" g1 )

The Cauchy-Schwarz inequality shows that G”(r) > 0, i.e., G is convex. Consequently,
7 €9 is also convex and r +— H(r) = — (e — M) /(r — 1) is nonincreasing on
(1, 00), which implies that

H(r) < lim H(t) = = [ Ifrios i —

=1 ||fHLq(Q

This inequality is equivalent to

1 q . /r,« >) q |f|
_ d a“rd |
(22) g (L ([srrae) ) < fisirios ™

Combining this inequality and the generalized logarithmic Sobolev inequality (21), it fol-

lows that
" 2(r
| \riedo - ( / |f|q/’”da:) < 2V v,

for all 0 < ¢ < 2 and r > 1. Setting p := r/q, this proves (19) for all pg = r > 1. O
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Lemma 6 (Discrete generalized Beckner inequality I). Let 0 < g < 2, pg > 1 or ¢ = 2
and 0 <p <1, and f € X(T). Then

[ 1spac - ( / !f|1/”dfv> < Cpa)lf17 s
Q Q

holds, where

2(pg — 1)C4 C?
Cb(p;Q):% if ¢ <2, Cb(p,Q)Z?p if g =2.

C,, is the constant in the discrete Poincaré-Wirtinger inequality, and £ is defined in (5).

Proof. The proof follows the lines of the proof of Lemma 4, noting that in the discrete
(finite-dimensional) setting, we do not need anymore the lower bound on p. Indeed, if
q = 2, the conclusion results from the discrete Poincaré-Wirtinger inequality (11) and the
Jensen inequality. If ¢ < 2, we first remark that (20) and (22) still holds for f € X(7),

leading to
. £
[ s = ([ 15177as)" < a—1) [ 1510108
0 o ||f||L4(Q

~ 2(pa— 1)|’qu HfH
T 2—g¢ L@ 1 Hflqum

Then, inserting the discrete Poincaré-Wirtinger inequality (18) instead of (12) into (23) to
replace || f{|12(q) and using log(x 4 1) < x for x > 0, the lemma follows. O

(23)

3.3. Second generalization of the Beckner inequality. For the proof of exponential
decay rates, we need the following variant of the Beckner inequality.

Lemma 7 (Generalized Beckner inequality II). Let 0 < g < 2, pg > 1 and f € H'(Q).

Then
5 rq
1 151 ([ 1510 = ( [ 15170) ") < otV
where
q(pg —1)C3
, KL= TP 1 < g <2,
Colpq)=4  a2—4  I1=d

(pg—1)C%  if0<qg<l1.

Proof. By (20), it holds that for all 0 < ¢ < 2,

!f| Wl
7] .
/ F1og e e < g Moy los 7
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Then, for ¢ > 1, the Poincaré-Wirtinger inequality in the version (14) and the inequality
log(z + 1) <z for x > 0 yield

) 1 0220) _ oy s IV a0y

q —= q P P 2

(25) (11400108 Tz < %00y Tog | Chmm— +1 | < CRIF 1% IV FllE2q
171 By

Taking into account (22), the conclusion follows for ¢ > 1.
Let 0 < ¢ < 1. Suppose that the following inequality holds:

q
(26) 110 + ColIVflIZ2) = 1fll720) = 0-

This implies that, by (22) and for r = pq,

1 1712
[isvas— ([ 1rrac) < PE=20 o o

2
T 2—yq Law) q ||f||iq(9)

< (pq — 1)0123”Vf||L2 ||f| La 9)7

which shows the desired Beckner inequality.
It remains to prove (26). For this, we employ the Poincaré-Wirtinger inequality (13)

CElIV o) = 1fE2) = £ 120
and the interpolation inequality (17) in the form

2/0 2(6—1 9 q
I lzecey = 171200 1A 1E2) s 0= 52 <1,

to obtain

2
[Fes +—CI23HVfHL2(Q) 111220

2 — 2 —
2/6 2(0-1)/ q q
> | £ £ 175 + (T - 1) 1Az = =~ 1oy

We interpret the right-hand side as a function G of || f[|7. . Then, setting A = || f||Z.q

Gly) = yl/QAlfl/H + 2(1 - CJ)A . 2 — Qy

Y

q q
1 11 2—q
G/(y) _ gyl/é lAl 1/6 p ,
1/1 9 a1
G//(y) _ 5 (5 . 1) yl/e 2A1 1/6 > O,

Therefore, G is a convex function which satisfies G(A) = 0 and G'(A) = 0. This implies
that G is a nonnegative function on R* and in particular, G(]| f H%I(Q)) > 0. This proves
(26), completing the proof. O
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The adaptation of the proof of Lemma 7 is straightforward, using the discrete Poincaré-
Wirtinger inequality (11) instead of (10). This yields the following result.

Lemma 8 (Discrete generalized Beckner inequality IT). Let 0 < ¢ < 2, pg > 1, and
feX(T). Then

115 ( NS ( / \frl/pdx) ) < U)o

holds, where

—1)C?
Cy(p,q) = (pg — 1)C2
Tp if0<q<1,

C, is the constant in the discrete Poincaré-Wirtinger inequality, and £ is defined in (5).

4. ZEROTH-ORDER ENTROPIES: FROM THE CONTINUOUS TO THE DISCRETE LEVEL

In this section, we prove the algebraic or exponential decay of the zeroth-order entropies.
We first study the continuous case and then show how to extend the obtained result to the
numerical scheme.

4.1. The continuous case. Let u be a smooth solution to (1)-(2) and let uy € L>(Q),
infgug > 0 in €. By the maximum principle, 0 < infq uy < u(t) < supg up in Q for ¢ > 0.
First, we prove algebraic decay rates for E,[u], defined in (3).

Theorem 9 (Polynomial decay for E,). Let « > 0 and > 1. Let u be a smooth solution
to (1)-(2) and ug € L>(2) with infquy > 0. Then

1
(Cit + Cy) @ D/G-1)

Eolu(t)] < t>0,

where

C) =

(a+8)/(a+1)
daf(p—1) ( a+1 > = Ea[uo]f(ﬁfl)/(oﬂrl)’

(a+1)(a+8)* \Cr(p,q)
and Cg(p,q) > 0 is the constant in the Beckner inequality for p = (a + £)/2 and q¢ =
2a+1)/(a+ 5).

Proof. We apply Lemma 4 with p = (a«+)/2 and ¢ = 2(a+1)/(a+ ). The assumptions
on o and 3 guarantee that 0 < ¢ < 2 and pg > 1. Then, with f = u(*t9)/2

1 a+1 CB p (a+1)/(a+P)
E,[u] = /ua+1dx — </ udw) < ’ (/ |VuletB)/22 d:z:) :

Now, computing the derivative,
dE,
dt

4
(27) - / Vo . Vil dy = - / V@22
Q

(a+8)* Jo
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(a+B)/(a+1)
(28) - 4af3 ( a+1 ) Ea[u](aJrﬁ)/(aJrl).
(a+8)* \Cs(p,q)
An integration of this inequality gives the assertion. U

Next, we show exponential decay rates.

Theorem 10 (Exponential decay for E,). Let u be a smooth solution to (1)-(2), 0 < o <
1, 8>0, ug € L*(Q) with infqug > 0. Then

E,[u(t)] < EjJugle™, t>0.
The constant A 1s given by

A:

daf . B—-1
Cpi(a+1),2)(a+1) igf <u0 ) 20,
for 8 >0 and
oy I
Cp(p,a)(a+ B2 T NEE
for B> 1. Here, Cp(3(a+1),2) and Cy(p,q) are the constants in the Beckner inequalities
(19) and (24), respectively, with p = (o + ()/2 and ¢ =2(a+ 1) /(a + B).

Proof. Let f > 0. We compute

dE, _ 4o /u5‘1|Vu(“+1)/2|2dx
4aff . p-1 a+1)/2)2
(29) < o ) | v,
By the Beckner inequality (19) with p = (a +1)/2, ¢ = 2, and f = u®*V/2 we find that
dFE, 4a3 . 1
30 < - f(uy ") Ea,
(30) dt — Cg(p,2)(a+1) &t (ug )

and Gronwall’s lemma proves the claim. The restriction p < 1 in Lemma 4 is equivalent
to a < 1.

Next, let 5 > 1. By Lemma 7, with p = (a+3)/2, ¢ = 2(a+1)/(a+p), and f = ul*+F)/2]
it follows that

a-+1
el fet ( /Q udr — ( /Q udx) ) < C(p, ) /Q Va2 dg.

Hence, we can estimate

B—1
dE, 4af / daf(a+ 1) llullzer o
Lo 40P g erBi2zg, < Eu[u
T | @i 8F Cplnag)

(a+p8)* Cppq)
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and Gronwall’s lemma gives the conclusion. Note that in the last step of the inequality we
used ||u||La+1(Q) > ||u||L1(Q) = ||UQ||L1(Q). U

4.2. The discrete case. We prove a result which is the discrete analogue of Theorem 9.
The finite-volume scheme (7) permits to define uniquely a piecewise constant solution at
cach time step: u* = >~ uf1x. Then the discrete entropies at each time step E,[u]
are defined in (8).

Theorem 11 (Polynomial decay). Let a > 0 and 8 > 1. Let (uk.)xer x>0 be the solution
to the finite-volume scheme (7) with inferule > 0. Then

1

k
where
-1
a+ D(a+B)? [ Cyp,q)\ T/t N _
o =(8-1) (( ot} (Yng F (0t BB

Cy = Ea[uo]—(ﬁ—l)/(a+1)7
and Cy(p,q) for p=(a+ B)/2 and ¢ =2(a+ 1)/(a+ ) is defined in Lemma 6.

Proof. The idea is to “translate” the proof of Theorem 9 to the discrete case. To this end,
we use the elementary inequality y*™! — 22T < (a + 1)y®(y — x), which follows from the
convexity of the mapping x +— x*™!. Using also the scheme (7), we obtain

Balu") = Bofuf] = — i - D m{IO) () = (uf)*)
KeT
< D m(E) () — )
KeT
< At Z Z Ta(ul}:{-i—l)a((u/;(-i-l)ﬁ _ (U]Z—H)ﬁ)-
KeT o€int,
o=K|L

Rearranging the sum leads to the discrete counterpart of (28):

(1) Ea[u"] = Eafu'] < =AY m (i) = (upt)®) ((wi™)? = (uf™)7).

Ueginh
o=K|L

Then, employing the inequality in Lemma 19 (see the appendix), we deduce the discrete
version of (28):

daf At N N 9
E,[u"™ — B [uf] < “GiAF Z T (k) @FD/2 _ (k41 (e48)/2)

0€E&int,
oc=K|L
4oL
R e e

(a+p)
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Applying the discrete Beckner inequality given in Lemma 6 with p = (a + )/2, ¢ =
2(a +1)/(a+ B), and f = (uF1)@+h/2 we obtain the discrete counterpart of (28):

daBAt ( a+1 )(a+5)/(a+1)

Ea[uk+l] . Ea[uk] < — Ea[uk+1](a+6)/(a+l).

(a+B8)* \Cy(p, q)
The discrete nonlinear Gronwall lemma (see Corollary 18 in the appendix) with
Yy pp
da Bt ( a+1 )(aw)/(aﬂ) a+ -
T = s g s

(a+ B2 \Colp,q) T

implies that
1
k

bS] S e ey K20

where ¢; = (v — 1)/(1 + y7E,[u°]""!). Finally, computing ¢; shows the result. O

The discrete analogue to Theorem 10 is as follows.

Theorem 12 (Exponential decay for E,). Let (uf.)eriso be a solution to the finite-
volume scheme (7) and let 0 < a <1, 8> 0, infgerul > 0. Then

Eu[u"] < B, [ul)e™" k> 0.
The constant X is given by

A:

daff : 0 \8-1
Col{a+1).2)(a 1) A2 ((ug)”™") >0,

for 8 >0, and
4af(a+1) HUOHB;l
Cyp, ) (e + )2 D)
for B > 1. Here C{(p,q) > 0 is the constant from Lemma 8 with p = (o + (3)/2 and
qg=2(a+1)/(a+p).
Proof. Let @« <1 and > 0. As in the proof of Theorem 11, we find that (see (31))
Eo[uf*'] = Bo[u"] < At Y 7o ((uf) = (™)) (i) = (up™)?).

Uegint
o=K|L

A\ =

Employing Corollary 20 (see the appendix), we obtain

4aﬁAt
Ea uk—‘rl o Ea uk < _ 7, min k+1 ﬁ 1 k—l—l B—-1
) = Bl <~ 3 momin {0 )
o=KL
« ((u];(+1)(a+1)/2 . (u§+1)(a+1)/2)2
4af At

k —1) (. k+13(a+1)/2(2
(o +1)2 Keg'( K—H)ﬁ |(u - )( +/ 1,2,7°
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which is the discrete counterpart of (29). Then, applying the discrete Beckner inequality
given in Lemma 6 with p = (o +1)/2, ¢ = 2, and f = u®*/2_ we obtain the analogue of
(30):

dafS AL )
Ea k+17 Ea k < _ f 0 B_lEa k+1

and the Gronwall lemma shows the claim.
Next, let § > 1. As in the proof of Theorem 11, we find that

k1 & daf At
Ea[u + ] —Ea[u ] S —m

We apply Lemma 8 with p = (a + 8)/2, ¢ = 2(a+1)/(a + ), and f = u@T%)/2 to obtain

|(uk+1)(a+1)/2|i277_.

uk+1 5;11

Ea[ukﬂ] o Ea[uk] < _4Oéﬁ<05 + 12At || /HL +1(

(a+5) Cy(p,q)
daBla+ 1At 10
(a+p5)?  Cipa)

Then Gronwall’s lemma finishes the proof. O

Q) Ea [uk+1]

a[ k+1]_

5. FIRST-ORDER ENTROPIES: FROM THE CONTINUOUS TO THE DISCRETE LEVEL

In this section, we consider the diffusion equation (1) on the torus 2 = T and we first
prove the exponential decay of the first-order entropies.

In the discrete setting, we consider the diffusion equation (1) on the half open unit cube
0,1)? ¢ R? with multiperiodic boundary conditions (this is topologically equivalent to the
torus T?). By identifying “opposite” faces on 92, we can construct a family of control
volumes and a family of edges in such a way that every face is an interior face. Then
cells with such identified faces are neighboring cells. The numerical scheme we consider is
similar to (7).

5.1. The continuous case. The exponential decay for the first-order entropies (4) is

given, for the one-dimensional case, in the following theorem.

Theorem 13 (Exponential decay of F, in one space dimension). Let u be a smooth solution
to (1) on the one-dimensional torus Q = T. Let ug € L*(Q2) with infquy > 0 and let
a, B >0 satisfy —2 < a— 26 < 1. Then

E[u(t)] < Fulugle™, 0<t<T,

where
N = —iIlf(U A= l)inf(Qﬂ ) >0 Y= —((Y—f—l;—l)
C% @ 0 o - 3 ’

where Cp > 0 is the Poincaré constant in (10).
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Proof. We extend slightly the entropy construction method of [29]. The time derivative of
the entropy reads as

dF. «Q «Q
@ _ = /2 a/2-1 _ = /2 a/2-1(, B
= [ e = =5 [ 0 )
0126 a+p-1 - 4 o 2 2
——T/QU ((5—1>(5—1)&;+<§+5—2)£G§L+£L>dm,
where we introduced " "
£G - _$7 £L - ﬁ
U U

This integral is compared to

9 2
Q 4 Ja 2

where, compared to the method of [29], v # 0 gives an additional degree of freedom in the
calculations. In the one-dimensional situation, there is only one relevant integration-by-
parts rule:

0= /(ua+5_4ui)mdaz = / ua+'8_1((oz + 3 — 4)§é + 35%5,;) dx.
Q Q

We introduce the polynomials

(32) So(€) = (5-1) (B-Dek+ (5 +8-2) e +&,
() Dofe) = (3 -1) e+ (- D& + €4,

T(€) = (a+ B —4)&; + 3E84L,

where £ = (£g,&1). We wish to show that there exist numbers ¢, v € R (v # 0) and £ > 0
such that

S(&) = So(&) + T (€) — kDy(€) >0 for all £ € R%
The polynomial S can be written as S(§) = a1&% + aaé2&r + (1 — k)&F, where

m = (1= 2P+ ot B Aot L(a—2)(5 - 1),

1
as =—(y—2)k+3c+ 5(04—1—25—4).

Therefore, the maximal value for x is kK = 1. Let kK = 1. Then we need to eliminate the
mixed term £4¢.. The solution of ay = 0 is given by ¢ = —%(a + 2 — 27v), which leads to

4 3 18

Choosing v = 2(a+ 8 — 1) to maximize a;, we find that a; > 0 and hence S(&) > 0 if and
only if -2 <a—24<1.

alz—l (’y—g(a—l—ﬁ—l)) —i(a—Qﬁ—l)(a—QﬁjLQ).
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Using the Poincaré inequality (10) and the maximum principle, we obtain

dF 2 2
ﬁ/ 18, (¢ ﬁ/ OIS (&) + T (€))d
02
<__ u&th— ID( B/ a+ﬁ’yl 7/2) dr
=7/,
2
< —% inf (w7 1)/(u7/2)m dx
Y Qx(0,00) 9
0525 . [e% —v—1
< —7202 inf ( O+B 7 )/Q(UVﬂ) dx
20 . +B—y—1y ; -
< 22 « vy T« .
<~ 1%f(u0 )11512f(u0 VF,
For the last inequality, we use the identity (u7/?), = Zu(=%/2(4*/2),  which cancels out
the ratio a?/+%. An application of the Gronwall’s lemma finishes the proof. O

We turn to the multi-dimensional case.

Theorem 14 (Exponential decay of F, in several space dimensions). Let u be a smooth
solution to (1) on the torus Q = T¢. Let ug € L>(Q) with infqug > 0 and let

(a,8) e My ={(a,8) eR*: 2 —2a+ 208 —d+ ad)(4 — 48 — 2d + ad + 28 + 23d) > 0
and (o — 28 — 1)(a — 28+ 2) < 0}

(see Figure 1). Then there exists A > 0, depending on «, 3, d, ug, and  such that
Fu[u(t)] < Fylugle™, t>0.

F1GURE 1. Illustration of the set My, defined in Theorem 14, for d = 9.
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Proof. The time derivative of the first-order entropy becomes

dF,
(34) t=-3 / uP AW AW de = ——= [ u T Sd,

where Sy is defined in (32) with the (scalar) variables ¢ = |Vu|/u, £, = Au/u. We
compare this integral to

2
/uwﬂvl(A(uWQ))zdx: l/ua+ﬁ1Dod$>
Q 4 Ja

where Dy is as in (33) and v # 0. In contrast to the one-dimensional case, we employ two
integration-by-parts rules:

O:/div (ua+ﬂ_4|Vu|2Vu)dx:/uo‘+ﬁ_1T1dx,
Q Q

0= / div (P 73(V?u — Al) - Vu)dz = / u P Ty de,
Q Q

where
Ty = (a+ B — 4 + 26ane + £,
Ty = (a+ B —3)éauc — (o + B —3)E&E + & — &5,

and égpg = u3Vu' V2uVu, £y = v t|V2u|. Here, |[V2u|| denotes the Frobenius norm
of the Hessian.
In order to compare V?u and Au, we employ Lemma 2.1 of [30]:

Vu'ViuVu _Au 2
|Vul? d

1 d
2,112 > = (Auy)?
72 = jaup + 74
Therefore, there exists £ € R such that

2 2 2
2 _ SL d (&ne 1 s _ &L d
fH_d+d—1(gg déL) TRy T

where we introduced s = gre /& — €1 /d. Rewriting the polynomials T} and T} in terms
of £ = (6,61, s, Er) € R? leads to:
Ti(§) = (a+ B —4)¢; + TfoL + 28¢€s,
1—

—d d d
Ty(O) =~ o+~ e + 8+ st f—3) + T+

&+ &3,

We wish to find ¢, ¢2, v € R (v # 0) and xk > 0 such that
S(€) = So(&) + a1Ti(€) + eaTa(§) — kDo(€) > 0 for all £ € R™.
The polynomial S can be written as

S(€) = am&l + as€iér + asé] + as€ils + as€s + c2€f, where

w=(5-1)@-D+@+s-9a-(1-1)x
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d—1

a2:g+5—2+(2+1>01—(a+5—3) co — (v — 2)k,
2 d d
1—-4d
a3 =1+ 7 Co — K,
ay =2c1 + (a+ f — 3)co,
_d
CL5—d_1CQ.

We remove the variable £g by requiring that c; > 0. The remaining polyomial can be
reduced to a quadratic polynomial by setting z = £, /&% and y = £5/&2:

(35) S(z,y) > ay + asw + azx® + agy +asy* >0 for all z, y € R.
This quadratic decision problem can be solved by employing the computer algebra system
Mathematica. The result of the command

Resolve[ForAll[{x, y}, Exists[{Cl, C2, kappa, gamma},
al + a2*x + a3*x"2 + adxy + abxy~2 >= 0 && kappa > O
&% gamma '= 0]], Reals]
gives all (o, 3) € R? such that there exist ¢, ca, v € R (y # 0) and x > 0 such that (35)

holds. This region equals the set M, defined in the statement of the theorem.
Similar to the one-dimensional case, we infer that

dF, o?Bk o?Bk
& a+B—1 _ atfB—y—1 2\2
7 < — I /Qu Dy (&) dr = — " /Qu L (AW?)2dg.

Thus, proceeding as in the proof of Theorem 13 and using the identity

| @rpas= [ v

for smooth functions f (which can be derived by integrating by parts twice), we obtain

dF, 208k . BT - —a

s < —O—]%lgf(u0+5 7 1)1?2f(ug VF,.
Gronwall’s lemma concludes the proof. U
Remark 15. Under the additional constraints as = a3 = 0, we are able to solve the

decision problem (35) without the help of the computer algebra system. The solution set,
however, is slightly smaller than M, which is obtained from Mathematica without these
constraints. Indeed, we can compute ¢; and ¢y from the equations ay = a3 = 0 giving

d(1 — k)

d o
Cq —(——1+/€(1+7—a—ﬁ)), Co = d_1

T d+2\2
The decision problem (35) reduces to

ay + agy +asy* >0 for all y € R.
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If Kk < 1, it holds ¢ > 0 and consequently, a; > 0. Therefore, the above polynomial is
nonnegative for all y € R if it has no real roots, i.e., if

0 < dayas — aj = qo + @y + @7°
for some 7 # 0, where (for d > 1)
d*k
BT a2 -0)

and qg, ¢ are polynomials depending on d, «, 3, and k. The above problem is solvable if
and only if there exist real roots, i.e. if

~(3d(d — 4)k + (d+2)%) <0,

k(1 — K)
d+2)%(d—1)

0 < ¢f —4q0g2 = ( ~(s0 + s16 + s2K7),

where
so = —d(5d — 8) + 6d(d — 1)+ 2d(d + 2)3 + 2(d + 2)aB — (2d*> + 1)a’® — (d + 2)*5?,
sy = 2d(3d — 4) — 2d(4d — 3)a — 4d(d + 1)B + 2d(3d — 5)aB + 2d(d + 1)a?
—2d(d - 6)?,
sg = —d*(a+ B —1)%

We set f(k) = so+s1k+ 5262 We have to find 0 < x < 1 such that f(k) > 0. Since s, < 0,
this is possible if f(k) possesses two (not necessarily distinct) real roots k¢ and ; and if
at least one of these roots is between zero and one. Since f(1) = —(d — 1)?(a —23)? < 0,
there are only two possibilities for kg and kq: either kg <0< k; <lor0<ky <k <1
The first case holds if f(0) = so > 0, the second one if

(36) f(0)=s,>0, f'(1)=s1+2s <0,
(37) s — 4sgsy = —4d*(a — 26 + 2)(a — 28 — 1)(4 — 2d + da + 2d3)
x (2—d+ (d—2)a+28) > 0.
The set of all (a, 3) € R? fulfilling these conditions is illustrated in Figure 2. g

5.2. The discrete case. At the discrete level, we establish the decay of the first-order
entropies in any dimension, with an exponential rate in one space dimension. We recall
that the discrete first-order entropies are defined by (9).

Theorem 16 (Exponential decay of F?). Let (u¥)ker 10 be the solution to the finite-
volume scheme (7) with = T and inf e u% > 0. Then, for alll < a <2 and B = /2,

Fuf™ < FIu™, keN.
Furthermore, if d =1 and the grid is uniform with N subintervals,
Filu*] < Filugle ™,

where \ = 43 sin’(7/N) min; ((uf)?#=1) > 0.
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FIGURE 2. Set of all (o, §) fulfilling so > 0, (36), and (37) for d = 9.

Proof. The difference G, = F2[u*™1] — F2[u*] can be written as
Go=3 D 7 (Wl = (b)) = ((uhe)™” = (uf)7?)?)

Ueginm
o=K|L

Introducing ax = (ub — uk.) /7, we find that

1

G, = 5 Z . <((ullc<+1)a/2 B (ulz+1)a/2)2 — (kY = rag ) — (! — TaL)a/2)2> .

O'Eginta
o=K|L

We claim that G, is concave with respect to 7. Indeed, we compute

oG Q@
=0 S (- ra) — (™ — 7))
or 2
Uegintv
oc=K]|L
% ((ul;(—i-l - TCLK)O‘/Q_ICLK o (ulzﬂ . TaL)a/z_laL),
82G 042 _ _ 2
PGo 0 S (e~ ) — (7~ 7))
or 4
Ueginh
oc=K|L
Qo
-5 (5 _ 1) Z Tg((uI[C(+1 o 7_aK)a/2 . (UEH . TaL)a/Q)
Uegint:
o=K|L

x ((ubh = rag)*? a3 — (uftt — 1ar)**%a3).

23
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Replacing ukH Tag, u’Z“ — 1ay, by ub, u¥ respectively, the second derivative becomes
0*G a?
2a _ Z Ta((u’%)a/z_lal( . (ulz>a/2—1aL)2
or 4 5
o=KL
— (5 =1) 20 (k)™ = (uh)?) (ko) *2ak — (wh)** %}
o€int,
oc=K|L
«
=7 Z To(c1a% + coarar, + csal),
Jegintv
oc=K|L
where

1 = (o= 2)((uh )72 = ()2 ()22 + a2
& = —20(uf)* 2 (),
s = (o — 2) ()" = (wh)*2) (h) 22 + auf)* 2,

We show that the quadratic polynomial in the variables ayx and aj is nonnegative for all
u’;( and u’Z This is the case if and only if ¢; > 0 and 4cic3 — ¢ > 0. The former condition
is equivalent to

2o — 1) (ufe)* ™ > (o = 2) ()2 ()™,
which is true for 1 < a < 2. After an elementary computation, the latter condition
becomes

tesca - & = 8l — D2 - @) (uf)®> a2 ()" = (u)7)? 2 0

for 1 < a < 2. This proves the concavity of 7 +— G, (7).
A Taylor expansion and G, (0) = 0 leads to

oG

Go(1) < Go(0)+ 7 5 2(0)
T
= 0TS () ) () ()
0€E€nt,
o=K|L
_ar k+1y0/2 k+1ya/2) [, k+1ya/2—1
Y Ta((uK )4 = (up™) )(UK ) ag
Jegintv
oc=K|L
at k+1ya/2 k+1ya/2) (o k+1ya/2—1
+ o Ta((uL )5 = (ug) )(UL ) ar.
Uegintv
o=K|L

Replacing ayx and ay, by scheme (7) and rearranging the terms, we infer that

Go(AL) = O‘At Z Z - Z 75 (u k:+1 a/21

KeT 0€Emt,  T€Em,
o=K|L &=K|M
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(38) x (i) = (uh ")) (i) = (u)*?).

Note that the expression on the right-hand side is the discrete counterpart of the integral

a o — o
—§/u /2 1(uﬁ)m(u /2)mdx,
Q

appearing in (34). The condition o« = 2/ implies immediately the monotonicity of k& —

Fa[uF].
For the proof of the second statement, let d = 1 and decompose the interval €2 in N
subintervals K7i,..., Ky of length h > 0. Because of the periodic boundary conditions,

we may set uf,; = uf and u*, = uk;, where uf is the approximation of the mean value

of u(-,t*) on the subinterval K;, i = 1,..., N. We rewrite (38) for a« = 23 in one space
dimension:

Gas(T) < —g—; ( Z (ufﬂ)ﬁ—l((ufﬂ)ﬁ _ (ujk+1)ﬁ))

i=1 N je{i-li+1}
b N
- i k+1y2(8-1) 2
< — g i (@EYO) Y (e =z,

i=1
where z; = (u}™")? — (uf!)?. The periodic boundary conditions imply that SV 2= 0.
Hence, we can employ the discrete Wirtinger inequality in [41, Theorem 1] to obtain

N
Gop(T) < — sin % Z:I{HHN ((uf)zw—l)) ; z;

= —" gin* — i kN2(8—1)\ ppdy, k+1
P iy () R

By the discrete maximum principle, max; (uf™)20=%) < max;(u?)?'~# which is equivalent

to min;(uf)#=1 > min;(u))?~!. Therefore,
Z¥oYAN
FA) — Fut] = Ga(ar) < ~ 020 sin? T in (u)20) B
and Gronwall’s lemma finishes the proof. O

6. NUMERICAL EXPERIMENTS

We illustrate the time decay of the solutions to the discretized porous-medium (5 = 2)
and fast-diffusion equation (5 = 1/2) in one and two space dimensions.
First, let g = 2. We recall that the Barenblatt profile

B(B—1) |z — zo|* \V/(B-1)
28 (t+ t0)2B>

UB<JI,t) = (t+t0)_A<O— N
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is a special solution to the porous-medium equation in the whole space. (Here, z, denotes
the positive part of a function z, := max{0, z}.) The constants are given by

d 1
BRECE e CE )

and C is typically determined by the initial datum via [, u(z,t)dz = [, u(z,0)dz. We
choose C' = B(B — 1)(28) 7 (t1 + to) *B|zy — x0|?, where t; > 0 is the smallest time for
which u(zy,t,) = 0.

In the one-dimensional situation, we choose 2 = (0,1) with homogeneous Neumann
boundary conditions and a uniform grid (z;,#/) € [0,1] x [0,0.2] with 1 <7 < 50 and 0 <
j <1000, i.e., the space grid size is Az = 0.02 and the time step size equals At = 2-107%.
We have chosen a very small time step size for a smoother graphical presentation of the
solution, but the implicit scheme clearly also works for time step sizes of the order of Ax
and for smaller values of Ax. The initial datum is given by the Barenblatt profile up(-,0)
with 2o = 0.5, x1 = 1 and ty = 0.01. The constant C' is computed by using ¢t; = 0.1, which
yields C' = 0.091. For 0 <t < 0.1, the analytical solution corresponds to the Barenblatt
profile.

The time decay of the zeroth- and first-order entropies are depicted in Figure 3 in semi-
logarithmic scale for various values of . The decay rates are exponential for sufficiently
large times, even for @ > 1 (compare to Theorem 12) and for o # 23 (see Theorem 16),
which indicates that the conditions imposed in these theorems are technical. For small
times, the decay seems to be faster than the decay in the large-time regime. This fact
has been already observed in [10, Remark 4]. There is a significant change in the decay
rate of the first-order entropies F¢ for times around #; = 0.1. Indeed, the positive part of
the discrete solution, which approximates the Barenblatt profile up for t < ¢, arrives the
boundary and does not approximate ug anymore. The change is more apparent for a < 1.

Next, we investigate the two-dimensional situation (still with g = 2). The domain
Q = (0,1)%is divided into 144 quadratic cells each of which consists of four control volumes
(see Figure 4). Again we employ the Barenblatt profile as the initial datum, choosing
to = 0.01, t; = 0.1, and xy = (0.5,0.5), and impose homogeneous boundary conditions.
The time step size equals At = 8- 1074

In Figure 5, the time evolution of the (logarithmic) zeroth- and first-order entropies are
presented. Again, the decay seems to be exponential for large times, even for values of «
not covered by the theoretical results. At time ¢ = ¢, the profile reaches the boundary of
the domain. Since the radially symmetric profile does not reach the boundary everywhere
at the same time, the time decay rate of F'¢ does not change as distinct as in Figure 3.

Let f = 1/2. The one-dimensional interval Q = (0,1) is discretized as before using 51
grid points and the time step size is At = 2 - 10~*. We impose homogeneous Neumann
boundary conditions. As initial datum, we choose the following truncated polynomial
up(z) = C((zg — x)(z — 21))3, where zop = 0.3, ; = 0.7, and C = 3000. In the two-
dimensional box Q = (0, 1)?, we employ the discretization described above and the initial
datum ug(z) = C(R? — |z — x0|*)%, where R = 0.2, x5 = (0.5,0.5) and again C' = 3000.
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0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

FIGURE 3. The natural logarithm of the entropies log(E%[u](t)) (left) and
log(F¥[u](t)) (right) versus time for different values of o (8 =2, d = 1).

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FIGURE 5. The natural logarithm of the entropies log(E%[u](t)) (left) and
log(F%u](t)) (right) versus time for different values of a (8 =2, d = 2).
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In the fast-diffusion case # < 1, we do not expect significant changes in the decay rate
since the initial values propagate with infinite speed. This expectation is supported by
the numerical results presented in Figures 6 and 7. For a large range of values of «, the
decay rate is exponential, at least for large times. Interestingly, the rate seems to approach
almost the same value for a € {0.5, 1,2} in Figure 7.

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

FIGURE 6. The natural logarithm of the entropies log(E%[u](t)) (left) and
log(F%[u](t)) (right) versus time for different values of a (8 =1/2, d = 1).

S

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

FIGURE 7. The natural logarithm of the entropies log(E%[u](t)) (left) and
log(F%[u](t)) (right) versus time for different values of « (8 =1/2, d = 2).
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APPENDIX A. SOME TECHNICAL LEMMAS

A.1. Discrete Gronwall lemmas. First, we prove a rather general discrete nonlinear
Gronwall lemma.

Lemma 17 (Discrete nonlinear Gronwall lemma). Let f € C'(]0,00)) be a positive, non-
decreasing, and convex function such that 1/f is locally integrable. Define

*d
& x> 0.

B v f(z2) N
Let (z,) be a sequence of nonnegative numbers such that x,y1 — x, + f(xps1) < 0 for
n € Ny. Then

w(z)

T, <w? (w(xo) - %) , neN

Notice that the function w is strictly increasing such that its inverse is well defined.

Proof. Since f is nondecreasing and (x,,) is nonincreasing, we obtain
dz Tpi1 — T

W(Tp41) — w(Tn) = /xn f(z) = flan)

The sequence (x,,) satisfies f(x,11)/(2ps1 — x,) > —1. Therefore,

W(Tp41) — w(T,) < <xﬁfnjlx)n N f(x;Z+_1 i(ZH))l
<(-1- f(x;3 - j;(zm )

By the convexity of f, f(zn) = f(2n+1) < f'(#0)(@n — Tns1) < f'(20) (@0 — Zps1), Which
implies that

w(Tp41) = w(wn) < (=1 = f'(20)) 7"
Summing this inequality from n =0 to N — 1, where N € N, yields
N
L+ f'(xo)
Applying the inverse function of w shows the lemma. O

w(ry) < w(xy) —

The choice f(z) = 7Kz" for some v > 1 in Lemma 17 lead to the following result.
Corollary 18. Let (x,) be a sequence of nonnegative numbers satisfying
Tpr1 — Tp + T$71+1 < 07 ne NJ

where K >0 and v > 1. Then
1

(33(1)_7 +cmn

Ty < n €N,

)1/(’%1)’

where ¢ = (v —1)/(1 4+ yrad ™).
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A.2. Some inequalities. We show some inequalities in two variables.
Lemma 19. Let «, 8 > 0. Then, for all x, y > 0,

4
(39) (,yOé — q;a)(yﬁ _ xﬁ) > ﬁ(y(oﬁrﬁ)ﬂ _ x(a+5)/2)2.

Proof. If y = 0, inequality (39) holds. Let y # 0 and set z = (z/y)”. Then the inequality
is proved if for all z > 0,

fz)= (1 =2 (1~2) -

We differentiate f twice:

4af

| _ SatB)/28y2 5
arppl =7 )z

2
— 4
fl(z)=—-1- gzo‘/ﬁ_l + (a = f) 28 4 —az(o‘+5)/2’3

B pla+B) a+f ’
iy = M= B) appsp( L oapsap =B appap 2
£(z) = ; a2 32( 522 12+5<a+5)z2+12+a+5>'

Then f(1) =0 and f/(1) = 0. Thus, if we show that f is convex, the assertion follows. In
order to prove the convexity of f, we define

1 a—f 2
_ a/2B8-1/2 a/2B+1/2
glz) = ——==z + =z + —.
=3 Bla+B) a+ B

Then ¢(1) = 0 and it holds

rey &7 s @/26-3/2(_1
and therefore, ¢’(1) = 0. Now, if a > /3, g(0) = 2/(a + ) > 0, and g is decreasing in [0, 1]
and increasing in [1,00). Thus, g(z) > 0 for all z > 0. If & < /3 then g(0+) = —o0, and ¢
is increasing in [0, 1] and decreasing in [1,00). Hence, g(z) < 0 for z > 0. Independently
of the sign of o — 3, we obtain

ala—PB) e
() = %z /28 3/29(2) > ()
for all z > 0, which shows the convexity of f. O
Corollary 20. Let o, § > 0. Then, for all x, y > 0,
(1 — )y — 0%) 2 — infal 1, Pyl e,

(a+1)

Proof. We assume without restriction that y > 2. Then we apply Lemma 19 to § = 1:

(yﬂ _ JJB)(yO‘ —2%) = Z/ﬁ — (™ — 2%)(y — z) > 4o . yﬁ — (y(a+1)/2 . I(a+1)/2)2_
y—u (a+1)?2 y—=x

Since Y
P — af = ﬂ/ 7=t > fmin{a”", ¢ Yy — @),

the conclusion follows. O
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