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Some sequential boundary crossing results for geometric Brownian motion and their applications in financial engineering

This paper provides new explicit results for some boundary crossing distributions in a multidimensional geometric Brownian motion framework when the boundary is a piecewise constant function of time. Among their various possible applications, they enable accurate and efficient analytical valuation of a large number of option contracts traded in the financial markets belonging to the classes of barrier and lookback options.

2 2 2 2 dS t S t dt S t dB t a s   where   1 B t and   2 B t are standard real-valued Brownian motions and    1 2 1.2 , d B B t dt r  Let 1 2 1 2 3 , , , , H H K K K be positive real numbers and     .

Introduction

The joint law of the maximum (or the minimum) of a real-valued Brownian motion and its endpoint over a finite time interval is a central result in the study of Brownian motion, particularly with regard to the many applications of the theory in finance, medical imaging, robotics and biology. It can be obtained as a consequence of the « reflection principle », which derives from the strong Markov property of Brownian motion (Freedman [6]). Application of Girsanov's theorem easily generalizes this seminal result to the case of a geometric Brownian motion (GBM), a frequently encountered diffusion process that is the building block of financial engineering. Alternatively, the law can be derived by a partial differential equation approach, using Kolmogorov's equation for the transition density function of a diffusion process. The distribution of the first passage time by a one-dimensional GBM to a one-sided or a two-sided straight boundary then follows. A few cases where the boundary is curved have been handled (Barba Escriba [START_REF] Escriba | A Stopped Brownian Motion Formula with Two Sloping Line Boundaries[END_REF] ; Salminen [START_REF] Salminen | On the First Hitting Time and Last Exit Time for a Brownian Motion to/from a Moving Boundary[END_REF]; Kunitomo and Ikeda [START_REF] Kunitomo | Pricing Options with Curved Boundaries[END_REF]). For a comprehensive source of formulae, one may refer to Borodin and Salminen [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae[END_REF].

Various extensions to these results are often needed to solve practical engineering problems. In particular, one may look for joint distributions of the highest or lowest points hit over several time intervals, and one may deal with a multi-dimensional GBM. There are few known explicit results in these more general settings, partly because of the laborious analytical calculations involved, but also due to numerical obstacles : the rapidly increasing dimension of the boundary crossing problem leads to analytical solutions that are expressed in terms of functions that are hard to compute with accuracy.

As far as one-sided boundaries are concerned, formulae have been published for the joint law of a sequence of maxima or minima of a one-dimensional GBM over several time intervals (Guillaume [START_REF] Guillaume | Analytical Valuation of Options on Joint Minima and Maxima[END_REF]), as well as for the joint law of the maxima or minima of a two-dimensional GBM over one time interval (Iyengar [19] ; He et al. [START_REF] He | Double Lookbacks[END_REF]). A formula for the joint law of the exit times of a onedimensional GBM from two successive two-sided boundaries is also known (Guillaume [START_REF] Guillaume | Step Double Barrier Options[END_REF]).

This paper focuses on a sequence of two one-sided straight boundaries conditional on two correlated GBMs, while the value of a third correlated GBM is taken into account at the endpoint of the time interval. The state space is thus three-dimensional. The choice of this particular distribution is motivated both by its usefulness in financial engineering applications and by the fact that it leads to tractable analytical solutions that can be computed with great accuracy and efficiency.

Section 2 presents the two main formulae of this paper. Section 3 deals with applications of these formulae and discusses their numerical implementation.

Main formulae

This section contains the two main formulae of the paper. Let 

                                                                 2 1 1 1 , 2 s m a   2 2 2 2 2 s m a  
The next proposition provides an exact formula for the four above-mentioned cumulative distribution functions.

Proposition 1

Let   .,.,.; , , N q q q denote the joint trivariate cumulative distribution function of three standard normal random variables

1 2 3
, , X X X , where . a b q is the correlation coefficient between a X and b X ,

    , 1, 2, 3 a b  .
Then, for the up-and-up and the down-and-down distributions, we have : ,,,,,H H K K K t t (2.2) 

    . 1 2 1 2 3 1 2 P ,
1 1 1 2 2 1 3 2 2 1 1 3 1.2 1.
                                             1 1 1 2 1 2 2 1 3 2 2 2 1.2 1 1 2 2 1 2 2 2 2 3 2 2 1 1 1.2 1.2 2 2 2 2 , , ; 2 exp , , k t t k t k h t t t t h N t t t t m m m m l r l l s s s s m s r r                                                                        1 1 1 1 2 2 1 1 3 2 2 1 1.2 1.2 1 1 2 1 1 1 2 2 1 2 1 1 3 2 1 1 1 1.2 1.2 2 2 2 2 2 , , ; 2 exp , , k h t k t h k t h t t t t t h N t t t t m m m l l r l r s s s s s m s r r                                                                       1 2 1.2 2 2 1 2 2 1 2 1 2 1 1 1 1 2 1 2 2 1 1 1.2 1.2 1 1 2 2 1 1 1 3 3 2 2 2 1 1 1 1.2 1.2 1.2 2 2 1 2 2 2 2 4 2 exp 2 2 2 , , 2 2 ; 
                                                                                 
where 

1 l  if         . 1 2 1 2 3 1 2 1 2 1 2 3
H H K K K t t H H K K K t t  1 l   if         . 1 2 1 2 3 1 2 1 2 1 2
3 1 2 down-and-down P , , , , , , P , , , , , ,

H H K K K t t H H K K K t t 
And, for the up-and-down and the down-and-up distributions, we have : 

    . 1 2 1 2 3 1 2 P , , , , , , H H K K K t t (2.3) 1 1 1 2 2 1 3 2 2 1 1 3 1.2 1.2 1 1 2 1 2 2 2 2 , , ; , , k t k t k t t t N t t t t t m m m l l l r r s s s                                                  1 1 1 2 1 2 2 1 3 2 2 2 1.2 1 1 2 2 1 2 2 2 2 3 2 2 1 1 1.2 1.
                                                                         1 1 1 1 2 2 1 1 3 2 2 1 1.2 1.2 1 1 2 1 1 1 2 2 1 2 1 1 3 2 1 1 1 1.2 1.2 2 2 2 2 2 , , ; 2 exp , , k h t k t h k t h t t t t t h N t t t t m m m l l r l r s s s s s m s r r                                                                           1 2 1.2 2 2 1 2 2 1 2 1 2 1 1 1 1 2 1 2 2 1 1 1.2 1.2 1 1 2 2 1 1 1 3 3 2 2 2 1 1 1 1.2 1.2 1.2 2 2 1 2 2 2 2 4 2 exp 2 2 2 , , 2 2 ; 
, ,
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where 

1 l  if         . 1 2 1 2 3 1 2 1 2 1 2 3
H H K K K t t H H K K K t t  1 l   if         . 1 2 1 2 3 1 2 1 2 1 2 3
H H K K K t t H H K K K t t   Corollary of Proposition 1
The four following joint cumulative distribution functions, that will be useful in Section 3, are deduced from Proposition 1 :

1)           1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 0 sup , , , sup , t t t t t S t H S t K S t K S t H S t K                               1 2 1 2 1 2 1 2
3 up-and-up up-and-up P , , , , P , , , , 

H H K K H H K K K    2)           1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 0 inf , , , inf , t t t t t S t H S t K S t K S t H S t K                             1 2 1 2 1 2 1
H H K K H H K K K    3)           1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 0 inf , , , sup , t t t t t S t H S t K S t K S t H S t K                               1 2 1 2
H H K K H H K K K    4)           1 2 1 1 1 1 1 1 2 1 2 2 2 2 2 3 0 sup , , , inf , t t t t t S t H S t K S t K S t H S t K                               1 2 1 2 1 2 1 2
3 up-and-down up-and-down P , , , , P , , , ,

H H K K H H K K K     Proof of Proposition 1 is provided in the Appendix.
The numerical implementation of Proposition 1 and its corollary is easy using Genz's algorithm for the computation of trivariate normal cumulative distribution functions (Genz [START_REF] Genz | Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities[END_REF]).

In the next Proposition, we introduce a third correlated geometric Brownian motion that will serve as the endpoint of the joint distribution and we show that this can still be analytically valued. Let 

    3 , 0 S t
    1 3 1.3 , d B B t dt r  ,    
                1 1 2 1 2 1 2 3 4 1 2 3 up-and-up 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 1) P , , , , , , , , sup , , , sup , 
, 

t t t t t H H K K K K t t t S t H S t K S t K S t H S t K S t K                                         1 1 2 1 2 1 2
                                      1 1 2 1 2 1 2 3 4 1 2 3 down-and-up 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 3) P , , , , , , , , inf , , , sup , 
,

t t t t t H H K K K K t t t S t H S t K S t K S t H S t K S t K                                         1 2 1 1 2 1 2 3 4 1 2 3 up-and-down 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 4) P , , , , , , , , sup , , , inf , 
,

t t t t t H H K K K K t t t S t H S t K S t K S t H S t K S t K                        
Let us introduce the following new notations :

  4 4 0 3 ln , K k S t              2 3 3 3 2 s m a  
The next proposition provides an exact formula for the four above-mentioned joint cumulative distribution functions.

Proposition 2

Let the real function  

1 2 3 4 1.2 1.3 1.4 2.3 3.4
, , , ; , , , , b b b b q q q q q  , where   , , , , q q q q q is included in

  1,1 
, be defined as follows :

 

1 2 3 4 1.2 1.3 1.4 2.3 3.4
, , , ; , , , , b b b b q q q q q  (2.6)

    1 2 3 1 2 3 2 2 2 1 1.2 2 3 2.3 2 2 2 2 3 2 1 3 2 2 1 3 2 3 1.3 1 4 1.4 1 3.4 1 2 1.3 3 2 1 4 1.3 1 exp 2 2 2 8 1 b b b x x x x x x x x x x b x N dx dx dx q q f f f f p q q q q f                                                                 where   . N
is the standard normal cumulative distribution function and the following definitions apply :

2 2 1 1.2 1 , f q   2 3 2 2.3 1 , f q   2 2 3.4 1.3 1.4 3.4 1 4 1.3 1.4 3.4 1 3 1 , 1 q q q q f q q f     
Then, for the up-and-up and the down-and-down distributions, we have : ,,,,,,,P ,,,,,,,,H ,,,,,,,P ,,,,,,,,H 

    . 1 2 
q r q r q r q q r                                                                          1 1 1 2 1 2 2 1 3 2 2 2 1.2 1 1 2 1 2 1 2 2 2 2 4 3 3 2 2 1 2 1 1.3 1.2 1.4 1.2 2 3 3 2 2 2 1 2 2 3.4 1.3 1.4 2 1.3 1 2 2 , , , 
2 2 2 2 exp k t t k t k h t t t t t h k t h t t t t t q q q q m m m m l r l l s s s s m m m m l q r q r s s s s s                                                                      1 1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2.3 2 3 2 3 ; , , , , 
t t t t t t t t t q r q r q r q q r                                                1 1 1 1 2 2 1 1 3 2 2 1 1.2 1.2 1 1 2 1 1 1 2 2 1 2 1 1 4 3 3 1 1 1 1.4 1.2 1.3 2 3 3 1 1 1 2 1 1 1 3.4 1.3 1.4 2 1.3 1 2 2 2 , , , 
2 2 2 2 exp k h t k t h k t h t t t t t h k t h h h t t t t q q q q m m m l l r l r s s s s s m m l q r q s s s s s                                                                   1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2.3 2 3 2 3 ; , , , , t t t t t t t t q r q r q r q q r                                                   1 2 1.2 2 2 1 2 2 1 2 1 2 1 1 1 1 2 1 2 2 1 1 3 2 2 2 1 1.2 1.2 1.2 1 1 2 1 2 1 1 1 2 2 1 2 4 3 3 2 1.4 1.2 3 3 2 4 2 exp 2 2 2 2 2 , , , 2 
h h k h t t k t h k h t h t t t t t t k t t m m r m s s s s m m m m l r l r l r s s s s s s m m q r s l                                                                  1 1 2 1 1 2 1 2 1 1 1.2 1.3 1.2 2 2 1 2 2 1 1 1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2 2 3 2 3 3.4 1.3 1.4 2 1.3 1 2 ; 2 2 2 2 , , , , 
t h t h h t h t t t t t t t t t t t q q q q s s m r q r s s s s q r q r q r q q r                                                                       .3                                     where 1 l  if         . 1 2 1 2 3 4 1 2 3 1 2 1 2 3 4 1 2 3 up-and-up P ,
H K K K K t t t H H K K K K t t t  1 l   if         . 1 2 1 2 3 4 1 2 3 1 2 1 2 3 4 1 2 3 down-and-down P ,

H K K K K t t t H H K K K K t t t 

And, for the up-and-down and the down-and-up distributions, we have : 

    . 1 2 1 2 3 4 1 2 3 P , , , , , , , , H H K K K K t t t (2.8) 1 1 1 2 2 1 3 2 2 4 3 3 1 1 2 1 2 2 3 3 1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2.3 2 3 2 3 , , , ; , , , , 
k t k t k t k t t t t t t t t t t t t t m m m m l l l l s s s s q r q r q r q q r                                                                              1 1 1 2 1 2 2 1 3 2 2 2 1.2 1 1 2 1 2 1 2 2 2 2 4 3 3 2 2 1 2 1 1.3 1.2 1.4 1.2 2 3 3 2 2 2 2 2 3.4 1.3 1.4 2 1.3 1 2 2 , , , 2 2 2 2 exp k t t k t k h t t t t t h k t h t t t t q q q q m m m m l r l l s s s s m m m m l q r q r s s s s s                                                                        1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2.3 2 3 2 3 ; , , , , t t t t t t t t q r q r q r q q r                                                 1 1 1 1 2 2 1 1 3 2 2 1 1.2 1.2 1 1 2 1 1 1 2 2 1 2 1 1 4 3 3 1 1 1 1.4 1.2 1.3 2 3 3 1 1 1 2 1 1 1 3.4 1.3 1.4 2 1.3 1 2 2 2 , , , 2 2 2 2 exp k h t k t h k t h t t t t t h k t h h h t t t t q q q q m m m l l r l r s s s s s m m l q r q s s s s s                                                                   1 1 1 2 1.2 1.2 1.3 1.2 1.4 1.3 2.3 3.4 2.3 2 3 2 3 ; , , , , t t t t t t t t q r q r q r q q r                                                       1 2 1.2 2 2 1 2 2 1 2 1 2 1 1 1 1 2 1 2 2 1 1 3 2 2 2 1 1.2 1.2 1.2 1 1 2 2 1 1 1 2 2 1 2 4 3 3 2 1.4 1.2 3 3 2 4 2 exp 2 2 2 2 2 , , , 2 
h h k h t t k t h k h t h t t t t t k t t t m m r m s s s s m m m m l r l r l r s s s s s s m m q r s l                                                                   1 1 2 1 1 2 1 2 1 1 1.2 1.3 1.2 2 2 1 2 2 1 1 1 1 1 2 1.2 1.2 1
q q q q s s m r q r s s s s q r q r q r q q r                                                                         2.3                                    
where

1 l  if         . 1 2 1 2 3 4 1 2 3 1 2 1 2 3
4 1 2 3 down-and-up P , , , , , , , , P , , , , , , , ,

H H K K K K t t t H H K K K K t t t  1 l   if         . 1 2 1 2 3 4 1 2 3 1 2 1 2 3
4 1 2 3 up-and-down P , , , , , , , , P , , , , , , , ,

H H K K K K t t t H H K K K K t t t   Corollary of Proposition 2
The four following cumulative distribution functions, that will be useful in Section 3, are deduced from Proposition 2 : 

1)             1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 sup , , , sup , , t t t t t S t H S t K S t K S t H S t K S t K                                1 2 1 2 3 
H H K K K H H K K K K    2)             1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 inf , , , inf , , t t t t t S t H S t K S t K S t H S t K S t K                              1 2 1 2 3 
H H K K K H H K K K K    3)             1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 inf , , , sup , , t t t t t S t H S t K S t K S t H S t K S t K                                1 2 1 2 3
H H K K K H H K K K K    4)             1 2 1 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 4 0 sup , , , inf , , t t t t t S t H S t K S t K S t H S t K S t K                                1 2 1 2 3
H H K K K H H K K K K     Proof of Proposition 2 is provided in the Appendix.
Practical use of Proposition 2 and its corollary in engineering applications depends on the accuracy and the efficiency with which the function  can be numerically implemented. This question is dealt with in Section 3.

Applications and numerical implementation

This Section deals with applications of the results provided in Section 1 in financial engineering. Indeed, Proposition 1 and Proposition 2 can be used as the building blocks for the valuation and the risk management of a large number of option contracts. The main class of instruments under consideration will be barrier options. In their standard form, the latter are contracts whereby the holder is entitled (but not obligated) to buy (call option) or sell (put option) an asset at a prespecified future date (the option expiry) at a prespecified price (the strike price), on condition that the asset price has not (knock-out type) or has (knock-in type) crossed a specific upward level (called the up-barrier) or downward level (called the down-barrier) at any given time from valuation date to expiry. In standard option pricing theory, asset prices are modelled as geometric Brownian motions, so that boundary crossing distributions such as those provided in Section 1 are of immediate use in financial engineering.

It must be emphasized that the market for barrier options is huge. They are the most actively traded class of non-standard options (usually referred to as exotic options). Many variations on the standard barrier option payoff have been designed to match investors' demand more closely. One of them is the partial-time barrier option, which specifies that the barrier level is monitored during only a fraction of the option lifespan. The basic contracts were studied by Heynen and Kat [START_REF] Heynen | Partial Barrier Options[END_REF] and more general contracts were valued by Armstrong [START_REF] Armstrong | Valuation Formulae for Window Barrier Options[END_REF] and Guillaume [START_REF] Guillaume | Window Double Barrier Options[END_REF]. Another variation is the step barrier option (Guillaume [START_REF] Guillaume | Analytical Valuation of Options on Joint Minima and Maxima[END_REF], [START_REF] Guillaume | Step Double Barrier Options[END_REF]), whereby the barrier evolves as a step function of time. It is also common to encounter outside barrier options, whose payoff is a function of two asset prices : one of them is compared with the strike price at expiry to determine the moneyness of the option, while the other one is monitored up until expiry to check whether the barrier level has been crossed. Outside barrier options were originally valued by Heynen and Kat [START_REF] Heynen | Crossing Barriers[END_REF] and they were further studied by Kwok, Wu and Lyu [START_REF] Kwok | Pricing Multi-Asset Options with an External Barrier[END_REF] and Wong and Kwok [START_REF] Wong | Multi-Asset Barrier Options and Occupation Time Derivatives[END_REF].

These different features -partial time barrier, step barrier and outside barrier, often combine to allow for increased flexibility. But then, performing analytical valuation becomes more and more involved and practitioners have to turn to numerical methods that are slow and relatively inaccurate. This is when the results provided in Section 1 become valuable. Indeed, they enable to price a large number of barrier option contracts sharing the three above-mentioned innovative features (partial time, step and outside barrier), i.e. options based on two or even three assets that may knock-out depending on whether the underlying assets move within a sequence of prespecified ranges of prices over all or part of the option lifespan. More precisely, Proposition 1 and its corollary are the building blocks for the valuation of sequential two-asset knock-out calls and puts whose four payoff structures are defined as follows :

1)

        2 1 2 1 2 0 1 1 2 2 sup , sup t t t t t t t t S H S H K S                       
for a two-asset up-and-up knock-out put

(substitute     2 2 t S K   for     2 2 t K S  
for an up-and-up knock-out call)

2)

          2 1 2 1 2 0 1 1 2 2 inf , inf t t t t t t t t S H S H S K          
for a two-asset down-and-down knock-out call or put 3)

        2 1 2 1 2 0 1 2 1 2 sup , inf t t t t t t t t S H S H S K                        
for a two-asset up-and-down knock-out call or put 4)

        2 1 2 1 2 0 1 1 2 2 inf , sup t t t t t t t t S H S H K S                        
for a two-asset down-and-up knock-out put or call where :

- 

   is the indicator function -     1 , 0 S t
              0 0 0 1 2 1 2 1 2 2 

P , , , , , , H H H H K t t in Proposition 1

By using Corollary of Proposition 1, one can value up-and-up and down-and-up call options, as well as down-and-down and up-and-down put options.



A sketch of proof of Proposition 3 is provided in the Appendix.

Just as Proposition 1 enables to value two-asset knock-out calls and puts, Proposition 2 can be used to value three-asset knock-out calls and puts. More specifically, if 

    3 , 0 S t
K S                        
for a three-asset up-and-up knock-out put or call 2)

          3 1 2 1 2 0 1 1 2 3 inf , inf t t t t t t t t S H S H S K          
for a three-asset down-and-down knock-out call or put 3)

        3 1 2 1 2 0 1 2 1 3 sup , inf t t t t t t t t S H S H S K                        
for a three-asset up-and-down knock-out call or put 4)

        3 1 2 1 2 0 1 1 2 3 inf , sup t t t t t t t t S H S H K S                        
for a three-asset down-and-up knock-out put or call

The no-arbitrage prices of the eight types of option under consideration are now provided by the following proposition.

Proposition 4

Let three geometric Brownian motions ,,,,,,,H H H H H K t t ,,,,,,,H 

    1 , 0 S t t  ,     2 , 0 S t
                0 0 0 0 1 2 3 1 2 3 1 2 3 1 3 3 3 

H H H H K t t t in Proposition 2

By using Corollary of Proposition 2, one can value up-and-up and down-and-up call options, as well as down-and-down and up-and-down put options.



A sketch of proof of Proposition 4 is provided in the Appendix.

It is easy to notice that Proposition 4 nests Proposition 3 under the following three conditions : S as in Proposition 3. This is achieved by implementing Proposition 4 with the following specifications :

1) 1 1 1 2 1.2 r u d s s r    and 2 2 2 2 r u d s    2) take     . 1 2 
1)

2 1 1 1 r u d s    and 2 2 1 2 1.2 r u d s s r    2) 3 2 t t  , 3 1 s s  , 1.3 1 r  and 2.3 1.2 r r  3) compute         0 2 1 1 1 1 2 exp exp K rt P S t t P d    
Similarly, Proposition 4 can be used to value sequential two-asset knock-out options with expiry involves three-dimensional numerical integration. Given the fact that the integrand is very smooth, a classical Gauss-Legendre quadrature can be used, along with a simple adaptive rule increasing the number of points in case the required accuracy is not reached after one iteration, starting with an 8point quadrature. To test the efficiency and the accuracy of this numerical implementation, four series of tests have been implemented. In the first three categories of tests, the option parameters are specified so that the option can be valued by a known analytical formula involving numerical integration of lower dimension. More specifically, tests of category 1 reduce a three-asset up-and-up knock-out put to a two-asset up-and-up knock-out put by letting

4 K   in     1 2 1 2 3
4 1 2 3 up-and-up P , , , , , , , , H H K K K K t t t ; the benchmark is then Proposition 3, that involves the computation of trivariate normal cumulative distribution functions. The latter can be obtained with high precision by Genz's algorithm (Genz [7]), as mentioned earlier.

Tests of category 2 reduce the three-asset up-and-up knock-out put to an outside knock-out put by letting

1 1 K H  , 2 H   , 3 K   , 4 K   and 3 2 1 t t t   in     1 2 1 2 3
4 1 2 3 up-and-up P , , , , , , , , H H K K K K t t t ; the benchmark, then, is the formula for an outside barrier option as given by Heynen and Kat [START_REF] Heynen | Crossing Barriers[END_REF], that involves the computation of bivariate normal cumulative distribution functions. Again, the latter can be obtained with high precision using Genz [START_REF] Genz | Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities[END_REF].

Tests of category 3 reduce the three-asset up-and-up knock-out put to a single asset up-and-out put by

letting 2 H   , 2 1 K K  , 3 K   , 4 K   , 3 2 1 t t t   , 2 1 s s  and 1.2 1 r  in     1 2 1 2 3
4 1 2 3 up-and-up P , , , , , , , , H H K K K K t t t ; the benchmark, then, is the formula for a basic barrier option as given, e.g., by Haug [START_REF] Haug | The Complete Guide to Option Pricing Formulas[END_REF], that involves the computation of univariate normal cumulative distribution functions.

In the last set of tests, the three-asset up-and-up knock-out put cannot be valued as a simpler contract, so that no reduction of the dimension of numerical integration is possible. Our goal, then, is to find a robust numerical valuation method and study its convergence pattern with the results obtained by implementing Proposition 4. Neither using trees nor numerically solving a partial differential equation stand as the most suitable methods in this case, in view of the double difficulty of having three correlated diffusion processes and path-dependent features in the option payoff. On another hand, crude Monte Carlo simulation would be very poor both in terms of accuracy and efficiency, due to the required time discretization. That is why the most suitable numerical method in this case is probably a Brownian Bridge Monte Carlo approximation (Glasserman [START_REF] Glasserman | Monte Carlo Methods in Financial Engineering[END_REF]), as it involves only 6 random draws of the asset prices for each simulation and avoids a discretization bias. This is indeed the method commonly used by market practitioners when they are faced with a pricing problem involving both multi-asset and path-dependent features.

For each category of tests, a total of 10,000 different option prices have been computed with randomly drawn volatility, correlation and expiry parameters. Let us now sum up the main findings of these numerical experiments. First, the average computational time when applying Proposition 4 on an ordinary personal computer (P7350 2GHz) is 0.6 seconds, which is fast. The longest recorded computational time was 1.4 second. Speed could obviously be greatly increased by involving more hardware resources. In absolute terms, Proposition 4 can thus be considered as an efficient way of computing option prices. In relative terms, Proposition 4 is even extremely efficient. Indeed, 10,000,000 simulations are required to obtain a modest 4 10  digits convergence of the Brownian Bridge Monte Carlo approximation with Proposition 4, which amounts to a computational time of over 4 minutes ! Such slowness becomes a serious issue in real time trading or when large portfolios of options are valued. As far as accuracy is concerned, the results obtained using Proposition 4 always matched to at least 8 10  digits the analytical benchmarks in almost all the numerical experiments conducted. The very rare exceptions were observed when the absolute value of one of the correlation coefficients was above 99.7%. It must be noticed that in this couple of cases, the correlation matrix was found to be almost singular. Besides, risky assets with such levels of correlation are never encountered in the markets, so that it does not seem worthwhile to us to search for more complicated integration rules that would be better suited to these negligible subregions of integration. For all practical purposes, the numerical accuracy of our simple implementation of Proposition 4 can thus be deemed as very satisfactory. The results did not vary significantly between tests of categories 1, 2 and 3, which means that an increase in the number of option parameters that are given limit values does not entail instability in the quadrature rule.

To close this section, it is worth mentioning that the results provided in Section 1 can also apply to other popular derivatives contracts. Among them is the lookback option, which allows investors to sell at the highest and buy at the lowest over a time interval, thus optimizing market exit and market entry on a given asset. In its basic form, a fixed strike lookback call pays off

  0 sup t T S t K               at expiry
T . Many variations on this standard structure have been designed. One of them is the double lookback call, written on two assets 1 S and 2 S , which provides investors with the following payoff at expiry T : 

    1 1 2 2 0 0 sup sup t T t T a S t a S t K                  ,
    1 1 2 1 1 2 2 0 sup sup t t t t t a S t a S t K                   
. Drawing on Proposition 1, the no-arbitrage price of this option is equal to : One can notice that the valuation of sequential double lookback options is only semi-analytical since it still requires numerical double integration. For a given degree of the quadrature rule, it will not be as accurate as the valuation of two-asset and three-asset sequential knock-out options because of the inaccuracies arising from the numerical differentiation of Proposition 1.

            1 2 0 0 2 1 1 1 2 2 2 0 exp exp exp h h rt a S t h a S t h K               2 1

Conclusion

This paper provides new explicit solutions for some sequential boundary crossing problems in a multidimensional geometric Brownian motion framework. Among their various possible applications, they form the basis for accurate and fast valuation of a large number of option contracts traded in the markets. The methods presented here could be used to solve higher-dimensional problems, especially the introduction of a third boundary monitored with respect to the third process in the model.

However, the resulting formulae would become quite cumbersome and, more importantly, the quality of the numerical integration involved should have to be compared with a Brownian Bridge Monte Carlo approximation. Another possible extension would be to study the analytical tractability of introducing curved boundaries, but it should be pointed out that this form of boundary is rarely encountered in the options markets.

Appendix A. Proof of Proposition 1

Proof is outlined for 

    1 2 1 2 3 
          1 1 2 1 1 1 1 1 2 1 2 2 2 2 2 3 0 sup , , , sup , t t t t t X t h X t k X t k X t h X t k                       (A.1)
where : 

            1 2 1 2 0 0 1 2 ln , ln S t S t X t X t S t S t                           For a fixed 0 t  ,   1 X t and
          1 2 3 1 1 2 3 1 2 1 1 1 1 1 2 1 2 0 3 2 1 2 2 2 2 3 sup , , , sup , k k k t t x x x t t t X t h X t dx X t dx dx dx dx X t h X t dx                                     
By conditioning and using the Markov property of processes 

      1 2 3 1 2 3 1 1 2 1 2 3 2 3 3 2 1
, ,

k k k x x x P x P x x P x x dx dx dx        (A.3)
where :

      1 1 1 1 1 1 1 1 0 sup , t t P x X t h X t dx                           2 1 2 2 1 2 1 1 1 , P x x X t dx X t dx             1 2 3 2 3 2 2 2 2 3 2 1 2 
, sup ,

t t t P x x X t h X t dx X t dx                   
The functions   , P x x , the following formula is used (Guillaume [START_REF] Guillaume | Analytical Valuation of Options on Joint Minima and Maxima[END_REF]) :

      1 2 2 1 2 2 2 2 2 3
, sup , 

t t t X t x X t h X t x                   (A.4) 2 
                                   
where   2 .,.; N r is the bivariate standard normal cumulative distribution function with correlation coefficient r . Differentiating (A.4) twice with respect to variables 2 x and 3

x , and applying the definition of conditional probability yields : 

            1 exp 2 2 , 2 2 
p                                                                                                                         (A.5)
Then, the most cumbersome part of the proof consists in performing the necessary calculations to solve (A.3) in closed form and find the sum of trivariate standard normal cumulative distribution functions given by Proposition 1.

B. Proof of Proposition 2

Proof is outlined for 

q the correlation coefficient between a X and b X ,     , 1, 2, 3 a b  . Then, the joint density function of   1 2 3
, , X X X is given by : , , X X X , one also finds that 3 X admits the following representation :

  1 1 2 2 3 3 , , X dx X dx X dx     (B.1)       2 2 1 3 2 1 2 1.2 1 2 2 1.2 1 3 1.3 1 2.3 1 2 1 3 1.2 2 2 1 2 1 1.2 2 3 1 1 exp 2 2 2 2 x x x x x x x q q q q p f f f f f                                             where 2 2 1 1.2 1 f q   is the standard deviation of 2 X conditional on 1 X , and 2.3 1.2 1.3 2.3 1 2 1 q q q q f   is the partial correlation between 2 X and 3 X conditional on 1 X , and 2 
2 3 1.2 1.3 2.3 1 1 f q q    is the standard deviation of 3 X conditional on 1 X and on 2 X .  Proof of Lemma 1 is simple. It is known that 2 X is equal in law to 1.2 1 2 1 2 X Y q f  ,
2 1.2 1 3 1.3 1 2.3 1 2 3 1.2 3 3 1.3 1 2.3 1 3 1.2 3 1 2 X X X X Y Y X X Y q q q f q q f f         (B.2) where 3 Y is a standard normal random variable uncorrelated with 1 X and 2 Y Thus, given 1 X and 2 X , 3 X is normally distributed with mean 2 1.2 1 1.3 1 2.3 1 1 2 X X X q q q f   and standard deviation 3 1.2 f
. Hence, the density function of Next, we proceed to outline proof of Proposition 2. By taking the logarithms of the asset prices at the times 1 t , 2 t , 3 t , and integrating with respect to these variables, the sought cumulative distribution function becomes : (B.4)

    2 1 2 1.2 1 3 3 1 1 2 2 3 1.3 1 2.3 1 3 1.2 2 1 1.2 2 3 1 , exp 2 2 x x X dx X dx X dx x x q q q f p f f                                              (B.
            1 1 2 1 2 3 4 1 2 3 4 1 1 1 1 1 2 1 2 0 4 3 2 1 2 2 2 2 3 3 3 4 sup , , , sup , , t t t t t k k k k x x x x X t h X t dx X t dx dx dx dx dx X t h X t dx X t dx                                         where       3 3 0 3 ln S t X t S t             
and the other terms are defined in the proof of Proposition 1. Then, by conditioning and using the Markov property of the processes , , a a a is a sum of three uncorrelated normal random variables, hence it is normally distributed.

      1 1 1 1 1 0 sup , t t P x X t h X t dx                           2 1 2 2 1 2 1 1 1 , P x x X t dx X t dx             1 
Therefore, using Frechet's characterization of multivariate normality (Frechet [START_REF] Fréchet | Généralisations de la Loi de Probabilité de Laplace[END_REF]), the joint density function   x x x x t t t j q j j q j q f f s s s p f f

                                      
where the notations are defined as follows :

      q q q r f q q f q q f        

Then, the most cumbersome part of the proof consists in performing the necessary calculations to solve (B.5) in closed form and find the sum of functions given by Proposition 2.

C. Sketch of proof of Proposition 3 and Proposition 4

Once endowed with Proposition 1, proof of Proposition 3 is straightforward, as an application of option pricing theory (Harrison and Pliska [START_REF] Harrison | Martingales and Stochastic Integrals in the Theory of Continuous Trading[END_REF]) and Girsanov's theorem in two dimensions. The substitutions 
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are independent standard Brownian motions under the new measure.

  overall, this formula alone suffices to compute 40 different types of sequential multi-asset knock-out options. Proposition 4 implies the numerical implementation of Proposition 2. The function  in Proposition 2

  2 X

 2 t are absolutely continuous random variables, hence one can express (A.1) as the following triple integral : (A.2)

3 X

 3 be three standard normal random variables defined on a probability space with measure  . Denote by . a b

3 X conditional on 1 X and 2 X

 312 writes :

  [START_REF] Borodin | Handbook of Brownian Motion -Facts and Formulae[END_REF] which suffices to prove Lemma 1.
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