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Abstract

This paper extends the analytical valuation of options on the maximum or the minimum of several

risky assets in several directions. The first extension consists in including more assets in the payoff

and making the latter more flexible by adding knock-in and knock-out provisions. The second

extension consists in pricing these contracts in a multivariate jump-diffusion framework allowing for a

stochastic two-factor term structure of interest rates.

In both cases, explicit formulae are provided which yield prices quasi instantaneously and with utmost

precision. Hedge ratios can be easily and accurately derived from these formulae.

Keywords : multiasset option, rainbow option, best-of option, option on the maximum or the

minimum, dimension, multivariate normal distribution.
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INTRODUCTION

Multiasset options, or rainbow options, have been traded for a long time in the markets.

Among this class of contracts, options on the best or the worst of several risky assets are popular. In its

standard form, a European-style call on the maximum (the “best”) of n assets provides the investor, at

the option expiry, with the difference, if positive, between the highest of the n asset prices and a fixed

strike price. Similarly, a put on the minimum (the “worst”) provides the difference, if positive,

between the strike price and the lowest of the underlying asset prices. It is not hard to see why these

products appeal to investors. Indeed, they provide them with powerful tools of diversification. As

such, they allow both to reduce their risk exposure and to expand their investments’ opportunities. If

you are long a call option on the maximum of several assets that behave differently when market

conditions change, it is quite unlikely that you will end up out of the money. You need not have views

about the market’s direction as long as there is volatility. Furthermore, compared with a basket option,

there is no averaging effect to make a dent in your gains, as you are automatically endowed with the

single best performance. Another intensively traded rainbow option is the spread option, which yields

the difference between two underlying asset prices at expiry. An interesting combination of spread –

like and best-of/worst-of – like features consists in defining a payoff yielding the difference, at expiry,

between the best performer and the worst performer of a basket of several risky assets (‘best-of spread

option’). The payoff to the option holder may or may not turn out to be higher than that of a standard

best-of call option written on the same assets depending on the specification of the fixed strike price in

the latter contract. Unless all assets are positively correlated, it will usually be more rewarding, except

if the standard best-of call option is very in-the-money, because then the worst of the several risky

assets would have to dip beneath a low fixed strike price for the payoff of the best-of spread option to

be greater than that of the best-of option. Finally, the most attractive payoff to the investor is probably

that of the ‘lookback best-of spread option’, which yields the difference, at expiry, between the highest

value attained by any of the several risky assets and the lowest point hit by any of them at any time

during the option life. Needless to say, the cost of such a product can be quite substantial.

These contracts are also widely used for various hedging purposes. For example, companies which

choose to settle their expenses in different foreign currencies can buy best-of calls, while those that

choose to receive earnings in various foreign currencies can buy worst-of puts. This is less costly than

buying separate calls and puts, owing to the correlation effects inherent in best/worst-of options. Also,

portfolio managers can use these contracts if they know that at some particular time in the future they

want to buy the better of two stocks for their portfolio but do not yet know exactly which of both will

turn out to be the best.

These options are also embedded in a variety of financial securities issued by firms or in their capital

budgeting decision problems (Detemple et al., 2003).
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Unfortunately, formulae for this kind of options are very scarce. To the best of our knowledge, one

and only one fully explicit formula has been published, the one given in Stulz’s seminal paper (Stulz,

1982). Another commonly cited reference is Johnson (1987), but the formulae given in his paper are

not completely explicit and their numerical implementation is not discussed. Other contributions have

been devoted to numerical approximation algorithms (Boyle, 1989; Boyle et al., 1989; Boyle and Tse,

1990). Boyle (1989) approximates the value of a worst-of call on n assets with zero strike by drawing

on Clark’s algorithm to approximate the first four moments of the maximum (or the minimum) of n

jointly normal random variables (Clark, 1961). His assumptions are quite restrictive since all asset

returns must have the same variance and the correlations between each pair of asset returns must be

equal. Boyle and Tse (1990) relax these assumptions and design a numerical approximation algorithm

for general asset return and correlation values, the accuracy of which is found to be satisfactory for

best-of/worst-of options written on three assets. More recently, the issue of parameter estimation was

discussed (Fengler and Schwenden, 2004) and American-style contracts were analysed by Detemple et

al. (2003), who provided lower and upper bounds for an American call option on the minimum of two

assets.

This work focuses on the analytical valuation of European-style options on the maximum or the

minimum of several risky assets. There are many reasons why one would want to improve on the

current state of the published research in this area. First, Stulz’s formula is restricted to two assets.

This seriously limits the scope of diversification and does not allow to exploit all the potential of best-

of contracts. A fundamental reason for this restriction is technical, that is the alleged laboriousness of

mathematical computations involving the multivariate standard normal distribution and, more

seriously, the lack of knowledge of analytical expressions for multivariate normal densities as soon as

dimension goes beyond 3, let alone the issue of the numerical evaluation of the multivariate normal

cumulative distribution. The problem of dimension alone is sufficiently involved to lead practitioners

to resort to Monte Carlo simulation as soon as the number of assets is greater than two.

A second limitation in Stulz’s formula is that it does not accommodate for flexibility provisions that

are highly attractive to investors, such as knock-in or knock-out triggering barriers. Yet, these are all

the more welcome as an obstacle to the commercial success of best-of calls and worst-of puts is the

cost of these products, which can be substantially higher than that of vanilla calls and puts. One way to

reduce this cost is for investors not to buy insurance against the scenarios that they consider too

unlikely to happen or, conversely, to buy insurance conditional on the manifestation of an event that

they regard as almost certain. Again, the main reason why these features are not dealt with in the

existing formulae is the supposed absence of analytical tractability of such path-dependent features in

a multiasset setting.

A third limitation in Stulz’s formula is that, like most closed form option pricing formulae, it relies on

the Black-Scholes assumptions (Black and Scholes, 1973), which are notoriously at odds with some

salient features of real market data, such as the fact that asset prices can “jump” or the fact that interest
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rates are stochastic. Yet, the latter properties can be incorporated into a pricing model leading to a

closed form solution.

This paper is an attempt to adress the above deficiencies. More specifically, Section 1 provides an

explicit formula for a knock-in/out option on the minimum/maximum of four risky assets, as well as

for a regular option on the minimum/maximum of four risky assets. As a consequence of the

complexity of the payoff, which involves both dimension and path dependency issues, the only way to

preserve analytical tractability is to remain in a Black-Scholes framework. This also enables to keep

the number of model parameters relatively under control. Option values are obtained through an

extensive use of the change of numeraire approach (Geman et al., 1995), each risky asset successively

completing the market. The formulae given in Section 1 are fully explicit and immediately computable

using an elementary quadrature. This degree of analytical tractability is made possible by expressing

the quadrivariate normal density function as a product of univariate normal conditional density

functions. This approach stands in contrast with the usual definition of the multivariate normal density

function in terms of the inverse of the determinant of the covariance matrix as stated, for example, in

Tong (1990). Not only does it make more sense intuitively from a probabilistic perspective, but it

results in the explicit statement of the joint density of four correlated standard normal random

variables, contrary to the linear algebra representation. Furthermore, this new approach allows to

obtain several expressions of the quadrivariate normal cumulative distribution as a function of the

trivariate, the bivariate or the univariate normal distributions, thus leading to highly accurate and

efficient evaluations of the integral. Generalisation to higher dimension is analytically straightforward.

Section 2 deals with the valuation of an option on the minimum/maximum of two risky assets when

both assets follow jump-diffusion processes, where the jump component consists of two correlated

compound Poisson processes and the diffusion component consists of two correlated geometric

Brownian motions with a time-dependent two-factor term structure of interest rates. This model is a

two-dimensional combination of the classical Merton (1976) and Hull and White (1990) models. It is

designed to obtain prices in a more ‘realistic’ framework, relaxing two stringent assumptions of the

Black-Scholes model used in Section 1, whilst being sufficiently tractable to attain a closed form

formula.
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SECTION 1 - KNOCK-IN/OUT CALL OR PUT OPTION ON THE BEST OR THE WORST

OF FOUR ASSETS

The class of option contract under consideration in this Section is written on four asset prices

denoted by  i
tS ,  1,2, 3, 4 , 0i t  . Generalisation to a higher number of underlying assets is

analytically feasible but results in cumbersome formulae and, more importantly, may raise numerical

computation issues, as will be discussed later.

The option contract assigns a positive weight, iw , to each asset  iS , so there is no need to assume

that initial asset prices (i.e. prices at time 0 0t  ) are the same. For the option to have positive value

at expiry T , the maximum/minimum (best-of/worst-of contract) of the four terminal weighted asset

values        1 2 3 4
1 2 3 4, , ,T T T TS S S Sw w w w must be greater/smaller (call / put contract) than a pre-specified

strike price, provided that a pre-specified knock-in/out condition has been met prior to the option

expiry.

Let  i
TS refer to the worst performer of the four assets at the option expiry T . Then, the payoff of an

up-and-in worst-of put option can be written in the following manner :

     
0
supi i

ti i i iT
t T

K S S Hw w
 

  (1)

where  . will denote, from now on, the indicator function ; iK and iH are the strike price and the

barrier, respectively, associated with the worst performer at expiry in the option contract.

Likewise, let  i
TS refer to the best performer of the four assets at the option expiry T . Then, the

payoff of down-and-out best-of call option is :

     
0
infi i

ti i i iT t T
S K S Hw w

 
  (2)

All other possible payoffs can obviously be written in a similar manner.

It should be emphasized that, if the knock-in or knock-out condition of the best-performer or the

worst-performer at expiry has not been met, then the option expires worthless. In other words, the

payoff is defined with regard to the absolute maximum or minimum, i.e., it does not allow to take the

next best/worst asset at expiry that would have fulfilled the knock-in/out condition. If one is concerned

this absolute maximum/minimum condition will be deemed as overly stringent by investors, then one

can “soften” the payoff rule under consideration by specifying a rebate provision in case of knocking-

out or not knocking-in. Of course, such a compensation will make the option more expensive.

Also, it must be pointed out that it is not more difficult to value a second-best/worst or a third-

best/worst contract using the techniques developed in this paper, but the resulting formula are bulkier.

To price four-asset knock-in/out options on the maximum/minimum, a multidimensional Black-

Scholes framework is assumed in this Section, which implies that asset prices  i
tS are modeled by
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geometric Brownian motions with constant drifts ia (under the historical probability measure),

volatilities is and continuous payout rates id , according to the standard stochastic differential

equation :

 

     
i

it
ti i ii

t

dS
dt dW

S
a d s   (3)

It is assumed that all Brownian motions are defined on an adequate probability product space. The

smallest s algebra generated by the set of random variables  , 0i
sW s t  , is denoted by t .

The assumption that asset price paths are continuous will be relaxed in section 2.

The constant correlation coefficient between  i
tW and  j

tW is denoted by .i jr . The constant riskless

interest rate is denoted by r ; in section 2, a stochastic yield curve will be incorporated.

The volatilities is are supposed to be extracted from quoted vanilla option prices. If the set of strikes

and maturities available in the market is inadequate, then one may fit a deterministic volatility

function, as explained in Dumas et al. (1998). Adopting this simple method in a Black-Scholes

framework yields good results in terms of pricing errors, as documented by Christoffersen and Jacobs

(2004).

With regard to the correlation parameters .i jr , it is assumed that there exists a set of quoted two-asset

option prices (e.g. exchange option prices) from which implied correlations can be extracted and used

as inputs to the forthcoming Proposition 1. The estimation procedure should ensure that implied

volatilities and implied correlations are consistent in the sense that the volatilities extracted from

quoted vanilla option prices should be the same as those can be inferred from the quoted two-asset

option prices. In practice, estimation of the .i jr parameters will not be as easy as estimation of the is

ones, since rainbow options are traded over-the-counter. Correlation between the constituents of liquid

equity indices, however, is publicly observable. Index option prices can thus be combined with prices

of individual options on all index components to infer the implied average correlation between the

index components over the option’s life (Driessen et al., 2005). Further investigation into this

important issue is beyond the scope of this paper.

Under the above assumptions, the no-arbitrage price of the class of options under consideration is

given by the following formula.

Proposition 1 : Under the above assumptions, the value, at current time 0 0t  , of an up-and-in put

or a down-and-in call on the minimum or the maximum of four positively weighted assets

       1 2 3 4
1 2 3 4, , ,T T T TS S S Sw w w w with strike prices 1 2 3 4, , ,K K K K , knock-in barriers 1 2 3 4, , ,H H H H

and maturity 0T t is given by :

        1 2 3 4
0 0 0 01 2 3 4 1 2 3 4 1 2 3 4, , , ; , , , ; , , , ; , , , ;V S S S S K K K K H H H H Tw w w w
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  1 1 2 2 3 3 4 4exp rT K Q K Q K Q K Q     

                1 2 3 4
1 1 0 2 2 0 3 3 0 04 41 2 3 4exp exp exp expF F F FT S Q T S Q T S Q T S Qd w d w d w d w       

where

1

1

if the option is an up - and - in put

if the option is a down - and - in call

  


          
1 1 2 2 3 3 4 4, , , , 1, 2, 3, 4Q Q Q Q

i iQ P im m m m m m m m      

 
2

2
Q i

i ir
s

m d  

s s s
m d m d s s r m d s s r

s
m d s s r

                         

2 2 2
1 2 3

1 1 2 2 1 2 1.2 3 3 1 3 1.3

11 2
4

4 4 1 4 1.4

, ,
2 2 2

2

F

r r r
Q P

r

s s s
m d s s r m d m d s s r

s
m d s s r

                         

2 2 2
1 2 3

1 1 1 2 1.2 2 2 3 3 2 3 2.3

22 2
4

4 4 2 4 2.4

, ,
2 2 2

2

F

r r r
Q P

r

s s s
m d s s r m d s s r m d

s
m d s s r

                         

2 2 2
1 2 3

1 1 1 3 1.3 2 2 2 3 2.3 3 3

33 2
4

4 4 3 4 3.4

, ,
2 2 2

2

F

r r r
Q P

r

2 2 2
1 2 3

1 1 1 2 2 2 3 3 34 1.4 4 2.4 4 3.4

34 2
4

4 4

, ,
2 2 2

2

F

r r r
Q P

r

s s s
m d s s r m d s s r m d s s r

s
m d

                          

 

    

 
  

 

  

 

1 1 1

1

1 1 2 3 4

2

2
1

1 32
2 1 1 2 1.2 3 1 1 3 1.31

2.3 1 2.4 1 3.4 1.2

3 1 4 1.2 4 1.214 1.2 4 1.4

, , ,

exp /22 1,2 1, 3
exp , ,

2 / / / /

1, 4
; , ,

/ /

k h T

T

P

x x x
h N

x
dx

m

s

m m m m

m y y

p s s s r s s s rs

r rry

s s ss s s r

 






               

   
 



 

    

 
  

 

  

 

2 2 2

2

2 1 2 3 4

2

2
2

2 32
1 2 2 1 1.2 3 2 2 3 2.32

1.3 2 1.4 2 3.4 2.1

3 2 4 2.1 4 2.124 2.1 4 2.4

, , ,

exp /22 2,1 2, 3
exp , ,

2 / / / /

2, 4
; , ,

/ /

k h T

T

P

x x x
h N

x
dx

m

s

m m m m

m y y

p s s s r s s s rs

r rry

s s ss s s r

 






               

   
 


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 

    

 
  

 

  

 

3 3 3

3

3 1 2 3 4

2

2
3

3 32
1 3 3 1 1.3 2 3 3 2 2.33

1.2 3 1.4 3 2.4 3.1

2 3 4 3.1 4 3.134 3.1 4 3.4

, , ,

exp /22 3,1 3,2
exp , ,

2 / / / /

3, 4
; , ,

/ /

k h T

T

P

x x x
h N

x
dx

m

s

m m m m

m y y

p s s s r s s s rs

r rry

s s ss s s r

 






               

   
 



 

    

 
  

 

  

 

4 4 4

4

1 2 34 4

2

2
4

32 4
1 21 4 4 1.4 2 4 4 2.44

1.2 4 1.3 4 2.3 4.1

2 4 3 4.1 3 4.133 4.1 4 3.4

, , ,

exp /22 4,1 4,2
exp , ,

2 / / / /

4, 3
; , ,

/ /

k h T

T

P

x x x
h N

x
dx

m

s

m m m m

m y y

p s s s r s s s rs

r r ry

s s ss s s r

 






                

   
 



where,  , , , , 1, 2, 3, 4 ,a b c d i 

   

0 0

ln , lni i
i ii i

i i

K H
k h

S Sw w

              

1

1

if the option is on the minimum

if the option is on the maximum

  


. 2. .
. ., 1

a cb c a b
b c a b a b a

b a

r r r
r s r

s


  

. 2 2. . . .
.. . . .

.

, 1
a cc d a d b c a b d a

a cc d a b c a b b c a
c a b

r r r r r
r s r r

s

 
   

     
., , ,a ab a b ba b T a bm m m q s r s    ,  

 

 
0

0

, ln
a

a
b

b

S
a b

S

w
w

w

      

 
 

 

  

   
.

.

, 2 , 1
,

, ,/
a a b

a a b a b

a b h a b
a b

a b a bT

rm w
y

q qs s s r

         

 3 1 2 3., ., .; , ,N r r r , where the first three arguments are real numbers and the last three arguments

are ordered correlation coefficients, is the trivariate standard normal cumulative distribution

function, given by the upcoming Proposition 3 .

End of Proposition 1.

Proof of Proposition 1 is given in Appendix 1. The next formula provides the Black-Scholes value of a

‘regular’ (that is, without knock-in or knock-out conditions) call or put on the minimum or the

maximum of four assets. This payoff is tackled not only because it is useful in itself but also because,

combined with Proposition 1, it yields values of up-and-out puts and down-and-out calls on the



10

minimum or the maximum of four assets, by virtue of the simple parity relation : knock-in + knock-out

= regular.

Proposition 2 : The Black-Scholes value, at time 0 0t  , of an option on the minimum or the

maximum of four positively weighted assets        1 2 3 4
1 2 3 4, , ,T T T TS S S Sw w w w with strike prices

1 2 3 4, , ,K K K K , and maturity 0T t is given by :

        1 2 3 4
1 2 3 0 0 0 0 1 2 34 4, , , ; , , , ; , , , ;V S S S S K K K K Tw w w w

  1 1 2 2 3 3 4 4exp rT K Q K Q K Q K Q     

                1 2 3 4
1 1 0 2 2 0 3 3 0 04 41 2 3 4exp exp exp expF F F FT S Q T S Q T S Q T S Qd w d w d w d w       

where 1 2 3 4 1 2 3 4, , , , , , ,F F F FQ Q Q Q Q Q Q Q are as in Proposition 1, with :

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

   

 

   

 

   

1 1

1
1 4

1,2 1, 3 1, 4
, 2,1 , 3,1 , 4,1 ;

1,2 1, 3 1, 4

1,2 1, 3 1, 4 1,2, 3 1,2, 4 1, 3, 4
, , , , ,

1, 2 1, 3 1, 4 1,2 1, 3 1,2 1, 4 1, 3 1, 4

k T
w

T
P N

m m m m
w w

s s ss

q q q s s s

s s s s s s s s s

                               
  

 
   
  

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

   

 

   

 

   

2 2

2
2 4

2,1 2, 3 2, 4
, 1, 2 , 3, 2 , 4, 2 ;

2,1 2, 3 2, 4

2,1 2, 3 2, 4 2,1, 3 2,1, 4 2, 3, 4
, , , , ,

2,1 2, 3 2, 4 2,1 2, 3 2,1 2, 4 2, 3 2, 4

k T

T
P N

m m m m
w w w

s s ss

q q q s s s

s s s s s s s s s

                               
  

 
   
  

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

   

 

   

 

   

3 3

3
3 4

3,1 3,2 3, 4
, 1, 3 , 2, 3 , 4, 3 ;

3,1 3,2 3, 4

3,1 3,2 3, 4 3,1,2 3,1, 4 3,2, 4
, , , , ,

3,1 3,2 3, 4 3,1 3,2 3,1 3, 4 3,2 3, 4

k T

T
P N

m m m m
w w w

s s ss

q q q s s s

s s s s s s s s s

                               
  

 
   
  

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

   

 

   

 

   

4 4

4
4 4

4,1 4,2 4, 3
, 1, 4 , 2, 4 , 3, 4 ;

4,1 4,2 4, 3

4,1 4,2 4, 3 4,1,2 4,1, 3 4,2, 3
, , , , ,

4,1 4,2 4, 3 4,1 4,2 4,1 4, 3 4,2 4, 3

k T

T
P N

m m m m
w w w

s s ss

q q q s s s

s s s s s s s s s

                               
  

 
   
  

1

1

if the option is a put

if the option is a call

  


1

1

if the option is on the minimum

if the option is on the maximum

  


 1,2, 3, 4 ,i   

0

ln i
i i

i

K
k

Sw

    
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     
., , ,a ab a b ba b T a bm m m q s r s    ,  

 

 
0

0

, ln
a

a
b

b

S
a b

S

w
w

w

      

  2 2
., 2x x y x y yx ys s s s r s   ,   2

. . ., , x x y x y x z x z y z y zx y zs s s s r s s r s s r   

 51 2 3 64 4.,., ., .; , , , , ,N r r r r r r , where the first four arguments are real numbers and the last six

arguments are ordered correlation coefficients, is the quadrivariate standard normal cumulative

distribution function, as defined by the upcoming Proposition 3.

End of Proposition 2.

Proof of Proposition 2 is outlined in Appendix 2, which also shows how the cases of an up-and-in/out

call and a down-and-in/out put can be easily dealt with by means of Proposition 1 and Proposition 2.

From a practical point of view, Proposition 1 and Proposition 2 need to be efficiently and accurately

computed. This requirement can be met by applying the following integration rule :

Proposition 3 : Let : , , ,a cb dX X X X be four standard normal random variables ; , , ,a cb du u u u be

four real numbers; and .i jr denote the correlation coefficient between iX and jX , with i and j

taking values in the set  , , ,a b c d . Then,

(i) The joint cumulative distribution function of ,a bX X and cX is given by :

 , ,a a c cb bX u X u X u   

 .3 . ., , ; , ,a c a cb a b b cN u u u r r r

 2
.. .

2

exp /2
, ;

2

au

c a cb a b b c a

c a c ab a

x u x u x
N dx

r rr

s s sp


        (4)

   
.

2 2
. .

.

exp /2 exp /2

2 2

b a b

a b a

u x

u
c a c b c a

c a bx y

x y u x y
N dy dx

r

s
r r

sp p



 

                    

  (5)

(ii) The joint cumulative distribution function of , ,a cbX X X and dX is given by :

 , , ,a a c cb b d dX u X u X u X u    

 .4 . . . . ., , , ; , , , , ,a c a cb d a b a d b c b d c dN u u u u r r r r r r

 2
. ... . . .

3
. . .

exp /2
, , ; , ,

2

au
c d a bc a cb a b d a d b c a b d a

c a c ab a d a b d a b d a b

x u x u xu x
N dx

rr r r rr

s s s s s sp


         
 (6)
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   
. . .. .

2 2
. .

2 1/2 1/22 2
. .
2 2

.

exp /2 exp /2
, ;

2 2
1 1

b a b

a b a

u x
d a d b d ac a c b c au

d a b d a bc a c a

x y b c a b d a

c a d a b

u xu x yy
x y

N

r

s
r rrr

s ss s

p p r r

s s



 

                                        

 

. . . .

. .

1/21/22 2
. .
2 2

.

1 1

c d a b b c a b d a

c ad a b d a b

b c a b d a

c a d a b

dy dx

r r r

s s s

r r

s s

                                    

(7)

     

. .

1/22
..
21

2 2 2exp /2 exp /2 exp /2

2 2 2

c a c b c a

c a c a

b c ab a b

c aa b a

u x
y

u x

u

x y z

x y z

rr

s s

rr

s s

p p p




      

  

 
                          

  

. .. . . .

. . . .

1/2 1/21/22 2 2
. . .
2 2 2

. .

. . . .

. .

2
.
2

1 1 1

1

1

c d a bd a d b d a b c a b d a

c ad a b d a b d a b d a b

b d a b c a b d a

c ad a b d a b

c d a b b c a b d a

c ad a b d a b

b c a

c a

u x
y

z

N

rr r r r

s s s s s

r r r

s s s

r r r

s s s

r

s


 


                    




 
 

1/22

1/21/2 2
.
2

.

1 b d a

d a b

r

s

                                                                             

dz dy dx

                                                                                          

(8)

End of Proposition 3.

Proof of Proposition 3 is outlined in Appendix 3, which also discusses its numerical implementation.

The above formulae give the no-arbitrage prices of knock-in/out call or put options on the best

or the worst of four assets, under the modeling assumptions described at the beginning of this Section.

As the latter account for a complete market, dynamical hedging seems the natural course of action. It

suffices to differentiate the valuation formula with respect to the relevant parameters, to obtain the

amount of each underlying asset that the replicating portfolio should be invested in. Likewise, the

availability of a valuation formula allows to monitor positions easily by analytically extracting the

sensitivities of the option price with respect to the various risk factors. Of course, the usual issues

associated with dynamical hedging will have to be taken into consideration, such as transaction costs.

It must be stressed that the presence of knock-in/out barriers compounds the hedging problem, as it is
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well known that deltas can get out of control near the barrier. Practical hedges, such as trading call

spreads in the region of the barrier, can help mitigate the problem in these instances. More material on

this important topic can be found in Carr et al. (1998).

Let us now illustrate how option prices are affected by changes in volatility and correlation

parameters. The market is made up of four risky assets denoted by :        1 2 3 4, , ,S S S S , paying out no

dividend rate, and a riskless bond. The initial price, i.e. at time 0t , of all risky assets is 100 (monetary

units), and there is a unique weight on all stocks equal to 1 . Call options are specified as either OTM

(out of the money) when struck at 105K  , or as ATM (at the money), or as ITM (in the money)

when struck at 95K  . Expiry is one year. Option values are computed in four different settings : (i)

low volatility and low correlation ; (ii) low volatility and high correlation; (iii) high volatility and low

correlation; (iv) high volatility and high correlation. In each setting, the prices of six different products

are compared :

(i) 2  asset call option on maximum, whose payoff reads      1 2max ,T TS S K


 ;

(ii) 4 asset call option on maximum, whose payoff reads          1 2 3 4max , , ,T T T TS S S S K


 ;

(iii) 4 asset down-and-in call option on maximum, with a unique barrier 95H  , whose payoff

reads    
0
inf tT t T

S K S H


 
  , where TS refer to the best performer of the four assets at the

option expiry ;

(iv) 4 asset down-and-out call option on maximum, with a unique barrier 90H  , whose payoff

reads  
0
inf tT t T

S K S H


 
     ;

(v) 4 asset equally-weighted basket call option, whose payoff reads

        1 2 3 41

4 T T T TS S S S K
 

    
 

;

(vi) 4 asset zero-strike spread option, whose payoff reads

                 1 2 3 4 1 2 3 4max , , , min , , ,T T T T T T T TS S S S S S S S

For the comparison between the 2  asset call and the other 4 asset call options not to be distorted,

the volatilities of  3S and  4S are taken to be identical to the volatilities of  1S and  2S ,

respectively. In the “low volatility” environment, the volatilities of  1S ,  2S ,  3S and  4S are,

respectively : 1 2 30.16, 0.15, 0.16s s s   and 4 0.15s  ; in the “high volatility”

environment, we have : 1 2 30.42, 0.48, 0.42s s s   and 4 0.48s  .

In order to define a consistent correlation matrix in a simple manner, we refer to a stylized stock

market comprising “defensive” and “cyclical” stocks :  1S and  4S are defensive,  2S and  3S

are cyclical; thus, there is negative correlation between  1S and  2S ,  1S and  3S ,  3S and  4S ;
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there is positive correlation between  1S and  4S ,  2S and  3S . In the “low correlation” setting,

the correlation matrix is given by table 1.

Table 1. Correlation parameters used in the computations reported in tables 3 and 5 (“low correlation”)

Asset 1 Asset 2 Asset 3 Asset 4
Asset 1 1 - 0.18 - 0.2 0.15
Asset 2 - 0.18 1 0.1 - 0.22
Asset 3 - 0.2 0.1 1 - 0.24
Asset 4 0.15 - 0.22 - 0.24 1

In the “high correlation” setting, the coefficients of the previous correlation matrix are simply

multiplied by 2 so as not to change the structure of the correlation between the asset returns and thus

allow meaningful comparison. This yields the values reported in table 2. The numerical values

obtained for the option prices are reported in tables 3, 4, 5 and 6.

Table 2. Correlation parameters used in the computations reported in tables 4 and 6 (“high correlation”)

Asset 1 Asset 2 Asset 3 Asset 4
Asset 1 1 - 0.36 - 0.4 0.3
Asset 2 - 0.36 1 0.2 - 0.44
Asset 3 - 0.4 0.2 1 - 0.48
Asset 4 0.3 - 0.44 - 0.48 1

Table 3. Prices of various multiasset options with low volatility and low correlation a

OTM ATM ITM
2-asset call option on maximum 11.195 15.048 19.357
4-asset call option on maximum 17.644 22.269 27.006
4-asset down-and-in call option on maximum 4.835 6.494 8.230
4-asset down-and-out call option on maximum 16.738 20.954 25.246
4-asset basket call option 2.676 5.704 9.787

4-asset spread option 33.181 33.181 33.181

a This table presents several option values, whose parameters and contract specifications are defined in Section 1 after the end
of Proposition 3. All best-of option prices were obtained using the formulae provided in propositions 1, 2 and 3. Basket and
spread option prices were obtained using 5,000,000 Monte Carlo simulations.

Table 4. Prices of various multiasset options with low volatility and high correlation a

OTM ATM ITM
2-asset call option on maximum 11.535 15.527 19.948
4-asset call option on maximum 18.089 22.803 27.573

4-asset down-and-in call option on maximum 5.068 6.772 8.483
4-asset down-and-out call option on maximum 17.112 21.407 25.756
4-asset basket call option 2.064 5.276 9.668
4-asset spread option 33.984 33.984 33.984

a Same as Table 3
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Table 5. Prices of various multiasset options with high volatility and low correlation a

OTM ATM ITM
2-asset call option on maximum 32.974 36.335 39.929
4-asset call option on maximum 54.629 59.036 63.561
4-asset down-and-in call option on maximum 37.793 41.237 44.797
4-asset down-and-out call option on maximum 29.733 31.606 33.491
4-asset basket call option 8.065 10.462 13.365
4-asset spread option 95.231 95.231 95.231

a Same as Table 3

Table 6. Prices of various multiasset options with high volatility and high correlation a

OTM ATM ITM
2-asset call option on maximum 33.847 37.344 41.079
4-asset call option on maximum 55.802 60.350 64.996

4-asset down-and-in call option on maximum 38.226 41.865 45.589
4-asset down-and-out call option on maximum 30.525 32.383 34.256
4-asset basket call option 6.497 8.938 11.969
4-asset spread option 97.342 97.342 97.342

a Same as Table 3

In general, best-of call options will be attractive when at least one of the underlying assets has

performed very well at expiry. No wonder that adding more assets increases the value of these

instruments, as manifest when comparing two-asset call options on maximum and four-asset call

options on maximum, particularly when there is some negative correlation between the underlying

assets’ returns, because then bad surprises will go along with good ones. To mitigate the deterrent

effect of higher prices on investors’ demand resulting from the introduction of a larger number of

assets in the payoff, knock-in/out barriers are welcome. Compared with a regular four-asset best-of

call, the price cut caused by a knock-in barrier provision is, in percentage, 70.98 % in Table 3, and

70.51 % in Table 4, averaging across all strikes. Of course, investors must be aware that the knock-in

provision makes their claim riskier. One way to assess this increased risk is to compare the probability

of reaching the breakeven point and thus having positive return on investment at expiry when holding

the regular contract and when holding the knock-in contract. The breakeven point is the premium of

the option accrued at the riskless rate (in the risk-neutral world) until expiry. In the low volatility/high

correlation environment, for instance, the probability of reaching the breakeven point for the holder of

a regular at-the-money four-asset best-of call, that is, the probability that the maximum of the four

assets at expiry is greater than 123.972, is 43.58% in the risk-neutral world 1; while the probability of

reaching the breakeven point for the holder of a down-and-in at-the-money four-asset best-of call, that

is, the probability that the maximum of the four assets at expiry is greater than 107.119 and that it has

dipped below 95 prior to expiry, is equal to 31.958%. This is only a moderate increase in risk, whereas

the reduction in the cost of the option is dramatic, which will make the knock-in contract look very

attractive to a lot of investors.
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If we now turn to the high volatility environment, the average price cut caused by a knock-out barrier

provision is 46.45% in Table 5 and 46.31 % in Table 6, when compared with a regular four-asset best-

of call. In the high volatility/high correlation environment, the probability of reaching the breakeven

point for the holder of a regular at-the-money four-asset best-of call, that is, the probability that the

maximum of the four assets at expiry is greater than 163.444, is 39.51% in the risk-neutral world;

while the probability of reaching the breakeven point for the holder of a down-and-out at-the-money

four-asset best-of call, that is, the probability that the maximum of the four assets at expiry is greater

than 134.043 and that it has not dipped below 90 prior to expiry, is equal to 33.92%. Thus, the price

cut is not as dramatic as in the previous example, but it is still big and, considering the modest increase

in risk entailed, there is little doubt that the introduction of the knock-out provision will be viewed as a

good opportunity by many investors.

With regard to volatility, the sensitivity of knock-in/out best-of options is always positive. It is very

high for knock-in options, as greater volatility increases not only the likelihood of ending up in-the-

money but also the chances of being activated prior to expiry. Tables 5 and 6 show that, despite a

sharp increase in value with regard to the low volatility environment, the price reduction with respect

to regular 4-asset best-of options remains significant. In the risk-neutral world, the probability that the

down-and-in call option on maximum will expire worthless due to non-activation is 20.828% (Table

5) or 21.407% (Table 6). The risk born by the investor is thus relatively weak, which makes these

options quite attractive, in view of their relatively cheap price, compared with regular 4-asset best-of

contracts. The effect of increased volatility on knock-out best-of call options is more ambiguous. The

sensitivity of the latter is positive but substantially lower and less linear than that of knock-in

contracts. This is because increased volatility raises the odds of knocking-out before expiry. But when

volatility is low and the risk of knocking-out thus weak, there is not much difference between knock-

out best-of prices and regular best-of prices (Tables 3 and 4); to attain substantial price reduction, the

option contract should then locate the barrier nearer to the spot.

Knock-in/out best-of options depend positively on correlation, but only moderately. Particularly when

volatility is low, the change in price resulting from an increase in correlation is quite small. The

introduction of barriers does not alter this apparently weak functional dependence of best-of options

on the overall level of correlation, since the latter phenomenon can be oberved as well with regular

best-of contracts. The current modest numerical experiment thus suggests that mispricings caused by

errors in terms of the magnitude of correlation inputs might not be overstated, or at least that they will

not weigh as heavily as errors in the magnitude of volatility inputs.

It can also be observed that spread options are very expensive, which makes their marketing uneasy,

while basket call options are cheap, due notably to the smoothing effect of averaging at expiry. For the

return of the basket call option to become attractive, it is not required that one of the underlying assets

perform very well, but that all underlying assets perform reasonably well (as far as an equally

weighted basket is concerned). Thus, this kind of option will be well suited to an upward market with
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moderate volatility, even if the trend is not pronounced. A necessary condition to attain maximum

payoff is that assets be positively correlated. On another hand, negative correlation, although

precluding maximum payoff at expiry, will provide protection in adverse market conditions. This

explains the slightly negative sensitivity of basket call options to an increase in correlation in Tables 4

and 6.

SECTION 2 - THE VALUE OF AN OPTION ON THE BEST OR THE WORST OF TWO

ASSETS WITH CORRELATED JUMP DIFFUSIONS AND A STOCHASTIC TERM

STRUCTURE OF INTEREST RATES

A rather stringent assumption made in Section 1 is that asset price paths are continous. In

effect, it is well-known that asset price paths exhibit jumps, which results in higher prices than those

generated by a Black-Scholes model, especially for short-lived, out-of-the-money options. The

assumption of continuous asset price paths is necessary to achieve analytical tractability while

introducing knock-in/out features in a multi-asset setting. When dealing with standard best-of/worst-of

options, that assumption can be relaxed without having to resort to slow and inaccurate numerical

approximations for pricing and hedging purposes.

Furthermore, the use of a constant riskless interest rate in Section 1, may lead to non-negligible pricing

errors as the option maturity increases, making a case for the introduction of a stochastic yield curve.

The goal of this section is to show how to price regular best-of/worst-of contracts in closed form with

a model designed to fit market data better than standard Black-Scholes. In the sequel,  i
tW stands for

a standard Brownian motion and the the constant correlation coefficient between  i
tW and  j

tW is

denoted by .i jr , as in section 1. The riskless interest rate is now driven by the following two-factor

time-dependent Vasicek-type stochastic differential equation :

      1 2
r rt t t tdr a b t r dt dW dWs s    (9)

where   2, ra s   and  b t is a deterministic function of t satisfying a linear growth condition.

The choice of this model for the riskless interest rate is motivated by several reasons. First, principal

component analysis shows that at least two factors are needed to capture the main changes in the yield

curve (Martellini and Priaulet, 2003). Note that it would be straightforward, in our setting, to

incorporate three or even four factors, at the cost of making formulae more cumbersome. Second,

making the drift of the riskless rate time-dependent enables to make the model consistent with the

currently observed yield curve by choosing an appropriate fitting function  b t . Third, the mean-

reverting feature is confirmed by statistical data. Finally, the model is tractable, making it possible to

derive explicit pricing formulae.
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Let Q be the equivalent martingale measure under which the numeraire is the money market account

tb , defined by
0

exp

t

st r dsb
      
 . Under Q , the dynamics of the two underlying asset prices,  1

tS

and  2
tS , are driven by :
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Justification for (10) and (11), in terms of the pricing measure, is provided in Appendix 4. Meanwhile,

let us define the notations used : 1Ss is the constant diffusive volatility of  1S and 2Ss is the

constant diffusive volatility of  2S ; 1d and 2d are constant payout rates associated with assets  1S

and  2S , respectively;  1
tN and  2

tN are two Poisson processes with intensities 1l and 2l which

admit the following decompositions :

           1 1 12 2 2 12,t t t t t tN Z Z N Z Z    (12)

where    1 2,t tZ Z and  12
tZ are independent Poisson processes with intensities ' '

1 2,l l and '
12l

respectively. Thus,  1
tN and  2

tN have positive correlation given by :

 

  

'
12

1.2 ' ' ' '
1 12 2 12

N l
r

l l l l


 
(13)

Let n   ,     inf 0,i i
n tt N nt    and  i

nU be a sequence of independent, identically

distributed random variables taking values in  1,  . Then,    
    

 
1,

i i
nn

i i
nt

n

I U t
t t

   is a right-

continuous process providing the magnitudes of the jumps of asset  i
tS . Set :     ln 1i i

n nJ U  .

Assume that  i
nJ is normally-distributed with mean ix and variance 2

ie . Then,

    2exp /2 1i
n i i iE U k x e   (14)

It is assumed that all Brownian and compound Poisson processes implied by the model are defined on

an adequate probability product space in which the smallest s algebra generated by the random

variables  i
sW ,  i

sN , for s t , and     i i
n tU n N , for 1n  is denoted by t .

Thus, the model used in this section is a two-dimensional combination of Merton (1976) and Hull and

White (1990). The classical jump-diffusion framework by Merton (1976) is extended to a bivariate

setting allowing for correlation between the jumps of the stocks. As shown in Appendix 4, three major

assumptions make it possible to end up with a closed form formula : (i) the jump sizes are lognormally

distributed, (ii) the jump processes are of finite activity, (iii) interest rates are Gaussian. The most
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stringent hypothesis of the model, however, and consequently its main weakness, is probably that the

diffusive volatilities of the stocks remain constant. To try and overcome this limitation, the option

position will have to be monitored with regularly updated implied volatility inputs.

It must be stressed that, due to the introduction of jumps, the market is now incomplete. This means

that perfect hedging is not possible. The classical argument by Merton (1976) is to assume that jump

risk is diversifiable and therefore not rewardable with excess return. However, since industry wide and

country wide shocks do exist, there are clearly times when this assumption is flawed. The literature on

mean-variance hedging (Schweizer, 1992) and quantile hedging (Föllmer and Leukert; 1999) can be

consulted for alternative approaches.

Proposition 4 can now be stated.

Proposition 4

Under the above assumptions, the value, at current time 0 0t  , of a call or a put option on the

maximum or the minimum of two positively weighted assets  1
1 TSw and  2

2 TSw with strike prices

1 2,K K and maturity 0T t is given by :
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    
1

, 1 a T tA t T e
a

  

 
 

        
2

2
1.22

1 2
, 1 1 1

2

T u

ra u s aT aT

t t

C t T a e b s ds du T e e
a aa

s
r   

           
 

      , exp , , , 0tB t T A t T r C t T t T     , is the price, at time t , of a zero-coupon bond

maturing at time T

All other symbols that have not been defined in section 2 are the same as in section 1.

End of Proposition 4.

Proof of Proposition 4 is provided in Appendix 4.

The numerical implementation of Proposition 4 is easy. Using a standard algorithm to compute the

bivariate normal integrals, such as Drezner and Wesolowsky (1990), or its improved version by Genz

(2004), option prices are obtained in usually less than one second as convergence of the infinite series

is reached with very few iterations for realistic parameters. This should be all the more emphasized as,

alternatively, a Monte Carlo simulation for the model under consideration is slow and quite involved

to implement.

To illustrate the impact of the introduction of jumps and stochastic interest rates, Proposition 4 is now

applied to compute option prices and compare them with prices obtained in a Black-Scholes

framework. Two risky assets, paying out no dividend rate, each having weight equal to 1, start at an

initial price of 100 (monetary units). The diffusive volatilities of asset 1 (parameter 1Ss ) and asset 2

(parameter 2Ss ) are 25% and 28%, respectively. As two-asset options are structured in order to take

advantage of correlation, our two stocks are supposed to have negative diffusive correlation. Also, in

accordance with observed data, it is assumed that the two main factors driving the yield curve are

negatively correlated. The current value of the instantaneous riskless rate (parameter 0r ) is 3%, its

long-term “equilibrium” value (parameter  b t ) is a constant also equal to 3%, and the mean-

reversion speed (parameter a ) is 60%. The constant riskless rate used in the Black-Scholes model is

the current rate of 3%.

At-the-money and out-of-the-money best-of call option values, with both short and long maturities (3-

month and 2-year, respectively), are computed in four different settings :

(i) low jump intensity and constant short-term interest rate

(ii) low jump intensity and stochastic short-term interest rate

(iii) high jump intensity and constant short-term interest rate

(iv) high jump intensity and stochastic short-term interest rate

Besides, two kinds of jumps can be considered : idiosyncratic and systemic ones. The former refer to

company-specific events, not affecting the market nor the industry as a whole. This kind of jumps is
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diversifiable. Within our model, purely idiosyncratic risk can be specified by setting the parameter '
12l

equal to zero. In contrast, systemic jumps affect all stocks, such as during stock market crashes. Such a

risk can be specified by adjusting the parameter '
12l .

The magnitude of the parameters '
1l and '

2l priced by the option dealer can be interpreted as a

measure of the imperfect diversification of his/her portfolio. If the latter is adequately diversified,

those parameters should be close to zero. In this case, the compound Poisson processes driving the

discontinuous dynamics of the two stocks tend to have the same intensity '
12l .

The magnitude of the parameter '
12l can be interpreted as a measure of imperfect hedging due to the

discontinuities in the underlying assets’ paths. As imperfect hedging is almost surely inevitable, '
12l

should always be positive. Too low a value for '
12l should be regarded with suspicion by risk

managers.

The numerical values obtained for option prices are reported in table 7. It is assumed that the option

dealer’s portfolio is perfectly diversified, so that he/she prices no idiosyncratic risk.

Table 7. Prices of two-asset best-of call options with systemic jumps only a

3-month expiry
at-the-money
2-asset best-of call
option

3-month expiry
out-of-the-money
2-asset best-of call
option

( 1 2 110K K  )

2-year expiry
at-the-money
2-asset best-of call
option

2-year expiry
out-of-the-money
2-asset best-of call
option

( 1 2 110K K  )

Black-Scholes 10.684 4.266 33.439 26.280
low intensity jumps
constant short-term
interest rate

11.335 5.113 36.116 29.036

low intensity jumps
stochastic short-
term interest rate

11.312 5.084 34.065 27.062

high intensity
jumps
constant short-term
interest rate

12.961 6.831 40.643 34.370

high intensity
jumps
stochastic short-
term interest rate

12.934 6.804 38.754 32.296

a Prices were computed by means of Proposition 4. Low intensity jumps are specified by setting '
1 0l  ,

'
2 0l  and '

12 0.35l  . High intensity jumps are specified by setting '
1 0l  , '

2 0l  and '
12 1l  . The jump

parameters are 1 2 0x x  , 1 0.2e  and 2 0.3e  . The stochastic short-term interest rate is assumed to have

a volatility of 12%. The correlation parameters driving the Brownian motions are the following : 1.2 0.25r   ,

1.3 0.25r   , 1.4 0.26r  , 2.3 0.24r  , 2.4 0.28r   , 3.4 0.4r   . All other parameters and contract

specifications are given in Section 2 after the end of Proposition 4.
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One can notice that the impact of jumps is substantial, especially on out-of-the-money short-maturity

options. Not taking the stochastic nature of interest rates into account, the price increase for the latter

type of contract, compared to the Black-Scholes value, is equal to 19.85% when jumps have low

intensity, and it reaches 60.13% when jumps have high intensity. This simple example hints at the

extent to which certain options may be underpriced when assuming that asset paths are purely

continuous. At the other end of the options’ spectrum, when jumps have low intensity and the contract

is at-the-money, the price increases are “only” 6.09% (3-month expiry) and 8% (2-year expiry). It

must be stressed that, while the increase in the option premium resulting from the introduction of

jumps is a growing function of time-to-expiry, it is nevertheless primarily dependent on the

moneyness of the contract. Obviously, these features make jump-diffusion modeling an appropriate

candidate to account for the famous “smile” effect observed in the options’ markets.

If we now look at the impact of stochastic interest rates, we can see that it is rather negligible for short

maturities. However, as maturity increases, it becomes quite significant. Thus, the discrepancy

between prices computed with jumps and prices computed with jumps and stochastic interest rates is

as high as 6% for two-year-expiry options, whether at-the-money or out-of-the-money, although the

volatility parameter assigned to the short rate is quite low. It is therefore spurious to ignore the fact

that interest rates are stochastic, not only when dealing with fixed income products, as is unanimously

acknowledged, but also when dealing with equity options, which is less frequently taken into

consideration in practice. The fact that option prices decrease due to the introduction of stochastic

interest rates in table 7 is not true in general, but relies on the specification of parameters 0r ,  b t and

a ; if one takes  
0r b t , best-of call option prices will increase at a rate proportional to a .

Conclusion

In this paper, fully explicit valuation formulae are obtained for knock-in/out options on the

maximum or the minimum of up to four assets, as well as for regular best-of/worst-of options in a

framework allowing for correlated jumps and stochastic interest rates. It is shown how analytical

tractability can be attained in a context where numerical approximations are often alleged to be the

only resort. However, a number of issues are only touched upon. In particular, the formulae in this

paper inevitably rely on the quality of the parameter estimation of the underlying model. This is a

particularly important matter in the case of multiasset options as correlations between asset prices are

notoriously unstable. Cointegration and copulae are two alternative approaches that have been shown

to be generally more robust than linear correlation to measure the linkage between several financial

prices, but there is currently no known way to obtain analytical prices and hedge ratios using these

statistical techniques. One can also try a stochastic correlation model, as explained in Da Fonseca et
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al. (2007). Eventually, the demand for closed form formulae from practitioners remains strong, at least

as reliable benchmarks against which they can test more general models.

Appendix 1

Proof of Proposition 1 is provided for an up-and-in put on the minimum of four assets. The method

involved in the other cases is identical.

Within an arbitrage-free framework, the fair value of an option, in a complete market, is the

expectation at present time, under the equivalent martingale measure, of its discounted payoff at

expiry (Harrison and Pliska, 1981).

Let  , , ,a b c d be a sequence of distinct positive integers taking values in the set  1,2, 3, 4 . Define :

 

               

0

, , ,

sup , , , ,a a a b a c a d
a a a a a a c at T T T T T T Tb d

t t T

I a b c d

S H S K S S S S S Sw w w w w w w w
 

        
   





Then, the valuation of an up-and-in put on the minimum of four assets requires the computation of the

following expectations:

  , , ,Q I a b c d (15)

 

  , , ,a
TQ S I a b c d (16)

for the following sequence of parameters :

     1, 2, 3, 4 , 2, 1, 3, 4 , 3, 1, 2, 4 ,a b c d a b c d a b c d           

 4, 1, 2, 3a b c d   

 .Q is the expectation operator under the risk-neutral measure defined by taking the riskless rate as

numeraire. Actually, it suffices to calculate (15). It will be shown later in this section how appropriate

changes of numeraire yield (16).

Let  . stand for the probability operator. Under the historical measure, using elementary

conditioning, one can write :

               

0

sup , , , ,a a a b a c a d
a a a a a a c at T T T T T T Tb d

t t T
S H S K S S S S S Sw w w w w w w w

 

         

        , , ,P P P P
a a cb dm m m m where    

2

, , , ,
2

P i
i i i i a b c d

s
m a d   

           

0 0

sup , sup ,a a b a a a
a a a a a a a a at tT T T Tb

t t T t t T
S H S K S S S H S Kw w w w w w

   

                     

           

0

, sup ,c a b a a a
c a a a a a atT T T T Tb

t t T
S S S S S H S Kw w w w w w

 

        
(17)
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               

0

, , sup ,d a c a b a a a
a c a a a a a atT T T T T T Td b

t t T
S S S S S S S H S Kw w w w w w w w

 

         

Let  
 

 

0

ln
i

i t
t i

S
X

S

    
 . Integrating with respect to all admissible values of  a

TX ,  b
TX ,  c

TX and

 d
TX , and applying the Markov property of diffusion processes    ,b c

t tX X and  d
tX , eq. (17) turns

into :

        , , ,P P P P
a a cb dm m m m 

   

   

    
0, , ,

sup ,
a

a a a

k

a a b a
a a at T T Tb

t t T
x a b x a c x a d

X h X dx X dx X dx
w w w

  

 
   

           

               , , ,c b a d c b a
c a c aT T T T T T Tb d bX dx X dx X dx X dx X dx X dx X dx         (18)

c ad bdx dx dx dx

In eq. (18),    

0

sup ,a a
a at T

t t T
X h X dx

 

      
and     b a

aT TbX dx X dx   are the derivatives of

known cumulative distribution functions (cf., e.g., Karatzas and Shreve, 1991). The densities

      ,c b a
c aT T TbX dx X dx X dx    and         , ,d c b a

c aT T T Td bX dx X dx X dx X dx     ,

however, are not standard results. To find the former, let us define ,aX bX and cX as three correlated

standardized normal random variables and write cX as a linear combination of aX and two

independent standardized normal random variables bX and cX defined on the same probability space

as bX and cX :

1 2 3c a cbX X X Xl l l   (19)

The real coefficients 1 2,l l and 3l are to be determined. From the definition of linear correlation, we

obtain :

 
 . .1 1

cov ,
cov ,a c

a c a a a c
a c

X X
X Xr l l r

s s
    (20)

 
   . 2. .

cov ,
cov , cov ,

cb
a a c ab c a b b a b b

cb

X X
X X X Xr r r s l

s s
  

.. .
2 .

a cb c a b
b c a

b a

r r r
l r

s


   (21)

The coefficient .b c ar in (21) is the correlation between bX and cX conditional on aX .

Since  0,1cX N and ,aX bX and cX are mutually independent, we have :
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2 2 2 2 2
. .3 3. . .1 1a c a cb c a b c a c a br r l l r r s        (22)

where .c a bs is the standard deviation of cX conditional on aX and bX .

Equation (19) can now be rewritten as :

.
. . .

ab a b
c a c a cb c a c a b

b a

X X
X X X

r
r r s

s

      
(23)

Thus, given aX and bX , cX is normally distributed with mean .
. .

ab a b
a c a b c a

b a

X X
X

r
r r

s

     
and

standard deviation .c a bs . Hence, the density of cX conditional on aX and bX writes :

 
,

,
c a b

c a a b bX X X
f x X dx X dx  

 
2

.
. . .2

.

1
exp / 2

2

ab a b
c a c a b c a c a b

b ac a b

x x
x x

r
r r s p

ss

                     
(24)

Considering now four correlated standard normal random variables , ,a cbX X X and dX , it can be

shown in a similar manner that :

. .
.. . . . .

a ab a b b a b
a c a c ad a d b d a c d a b b c a

b a b a

X X X X
X X X X

r r
r r r r r

s s

                   

. .d a b c dXs (25)

where : dX is an independent standard normal random variable defined on the same probability space

as dX ; the coefficient
.. . . .

. .
.

a cc d a d b c a b d a
c d a b

c a b

r r r r r
r

s

 
 is the correlation between cX and

dX

conditional on aX and
bX ; and the coefficient  

1/22 2 2
. . . . . .1d a b c a d b d a c d a bs r r r    is the

standard deviation of
dX conditional on ,a bX X and cX .

Hence, the density of
dX conditional on ,a bX X and cX writes :

 
, ,

. .

1
, ,

2a cd b
a a c cd b bX X X X

d a b c

f x X dx X dx X dx
s p

    
(26)

2
. .

.. . . . .2
. .

1
exp

2

a ab a b b a b
a c a c ad a d b d a c d a b b c a

b a b ad a b c

x x x x
x x x x

r r
r r r r r

s ss

                                          

It is apparent that this method of generating joint densities of several correlated normal random

variables easily extends to higher dimensions.

Substituting (24) and (26) into (18) and then performing the necessary calculations, one can obtain :

        , , ,P P P P
a a cb dm m m m 
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   

 

 

 
 

 

 

 

2

2

32
..

. .. .

. .. .

exp /22 , ,
exp , ,

2 / // /

,
; , ,

/ /

P
a a a

a

k h T

TP
a

a
a c a cc aaa b a b a b

c d a bb c a b d a

c aa d a b d a bd a b d a d

x a b x a c x
h N

a d x
dx

m

s
m y y

p s s s rs s s rs

rr ry

s s ss s s r

 



          

 
 


(27)

Under Q , a routine change of measure yields :    
2

, , , ,
2

Q i
i ir i a b c d

s
m d    , so that :

           , , , , , ,Q Q Q Q
a a cQ b dI a b c d m m m m   (28)

We now turn to the calculation of  

  , , ,a
TQ S I a b c d . In order to be able to use the

multidimensional version of Girsanov’s theorem, we apply the previous orthogonalisation results to

express the stochastic differential equations for        1 2 3 4, , ,t t t tS S S S under Q in terms of four

mutually independent standard Brownian motions        1 2 3 4, , ,t t t tW W W W , defined on the same

probability space as        1 2 3 4, , ,t t t tW W W W :

 

     
1

1
1 11

t
t

t

dS
r dt dW

S
d s   (29)

 

       
2

1 2
2 2 1.2 2 2 12

t
t t

t

dS
r dt dW dW

S
d s r s s    (30)

 

         
3

1 2 3
3 3 1.3 3 2.3 1 3 3 1.23

t
t t t

t

dS
r dt dW dW dW

S
d s r s r s s     (31)

 

           
4

1 2 3 4
4 4 1.4 4 2.4 1 4 3.4 1.2 4 4 1.2.34

t
t t t t

t

dS
r dt dW dW dW dW

S
d s r s r s r s s      (32)

The first expectation to calculate is :     1 1, 2, 3, 4TQ S a b c d     . A standard use of

Girsanov’s theorem yields :

       
1

1 1, 2, 3, 4 1, 2, 3, 4
F

TQ QS a b c d a b c d            where
1FQ is the

risk-neutral measure under which asset  1S is chosen as numeraire (often called the  1
tS forward

neutral measure), so that     111
1

F
t tdW d W ts  , where

 
11 F

tW is a standard Brownian motion

under
1FQ .

The second expectation to calculate is :     2 2, 1, 3, 4TQ S a b c d     . After solving eq.

(30), one can define a new measure
2FQ , equivalent to Q , such that :     211

2 1.2
F

t tdW d W ts r 

and     222
2 2 1

F
t tdW d W ts s  , where

 
21 F

tW and
 

22 F
tW are independent standard Brownian

motions under
2FQ .
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Similarly, to calculate the third expectation, that is :     3 3, 1, 2, 4TQ S a b c d     , one can

solve eq. (31) and then identify a new measure
3FQ , equivalent to Q , such that :

    311
3 1.3

F
t tdW d W ts r  ,     322

3 2.3 1
F

t tdW d W ts r  and

    333
3 3 1.2

F
t tdW d W ts s  , where the processes

     
3 3 31 2 3
, ,

F F F
t t tW W W are mutually

independent standard Brownian motions under
3FQ .

Eventually, to calculate the last expectation, that is :     4 4, 1, 2, 3TQ S a b c d     , one can

solve eq. (32) and, again, use Girsanov’s multidimensional theorem to turn to the  4
tS forward

measure,
4FQ by the following transformations :

    411
4 1.4

F
t tdW d W ts r  ,     422

4 2.4 1
F

t tdW d W ts r  ,

    433
4 3.4 1.2

F
t tdW d W ts r  and     444

4 4 1.2.3
F

t tdW d W ts s  , where the processes

       
4 4 4 41 2 3 4
, , ,

F F F F
t t t tW W W W are mutually independent standard Brownian motions under

4FQ .

Then, by substituting the relevant Brownian motions  1 aF
tW and   aa F

tW ,  2, 3, 4a  , into

equations (29)-(32), one easily checks that :

 

     , , , , , ,
Fa

a
TQ QS I a b c d I a b c d   

22 2

..

2

.

, ,
2 2 2

2

a cb
a a a c c a c a cb b b a b

a

d
ad d d a d

r r r

r

ss s
m d m d s s r m d s s r

s
m d s s r

                          

(33)

Appendix 2

First, proof of Proposition 2 is outlined. The case of a put option on the minimum of four

assets is dealt with. The three other cases can be handled in the same way. The valuation of a put

option on the minimum of four assets requires the computation of the following joint probability :

 

   

   

   

 

 

   

   

 

 

   

   

 

 

00

0 0 00

00 00

0 0 00

ln ln , ln ln ,

ln ln , ln ln

ba a b
aT T b

a a ab a
a aT

da c a dc
cT T d

c a a ad a
a aT T

SS S SK

S S SS S
P

SS S S SS

S S S SS S

w

w w

ww

w w

                                

                            

        

(34)

for the following sequence of parameters :  1, 2, 3, 4a b c d    ,

   2, 1, 3, 4 , 3, 1, 2, 4 ,a b c d a b c d         4, 1, 2, 3a b c d    . These

are cumulative distribution functions of four normally distributed random variables and they are
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quadrivariate normal. By solving equations (29) – (32), the expectation and the variance of

 

   

( )
0

0

ln
i j

T
j i

T

S S

S S

      
,    , , , ,i j a b c d , i j , are easily found to be :  i j Tm m and

 2 2
.2i i j i j j Ts s s r s  , respectively. It is then straightforward to deduce the correlation

coefficients between
 

 

0

ln
a

T
a

t

S

S

     
,

   

   

0

0

ln
a b

T
b a

T

S S

S S

     
,

   

   

0

0

a c
T
c a

T

S S

S S

    
and

   

   

0

0

ln
a d

T
d a

T

S S

S S

     
. Applying the changes

of measure defined in the proof of Proposition 1, one can obtain Proposition 2.

It is important to notice that the cases of an up-and-in/out call and a down-and-in/out put can

be easily dealt with using Proposition 1 and Proposition 2. This is achieved by performing appropriate

decompositions of the relevant payoffs. For example, take an up-and-in call on the maximum of four

assets. The following expectation has to be worked out :

  

       

       

0
, sup , ,

,

a a a b
a a a a atT T Tb

t Ta
a aTQ a c a d

a c aT T T Td

S K S H S S
E S K

S S S S

w w w w
w

w w w w

 

          
        

 (35)

The indicator function inside the expectation operator in (35) can be expressed as the following

difference :

              , , ,a a b a c a d
a a a a c aT T T T T T Tb dS K S S S S S Sw w w w w w w   

              
0
sup , , ,a a b a c a d

a a a a c at T T T T T Tb d
t T

S H S S S S S Sw w w w w w w
 


    

 

                
0

, sup , , ,a a a b a c a d
a a a a a a c atT T T T T T Tb d

t T
S K S H S S S S S Sw w w w w w w w

 

      
 (36)

 1 2 3I I I 

1I is the indicator function of the set of events defining a call on the maximum of four assets; the

expectation    1
a

a aTQE S K Iw  is therefore given by Proposition 2.

3I is the indicator function of the set of events defining an up-and-out put on the maximum of four

assets; the expectation    3
a

a aTQE S K Iw  is thus given by Proposition 2 (to value a put on the

maximum of four assets) minus Proposition 1 (to value an up-and-in put on the maximum of four

assets).

2I is identical to :

                
0

, sup , , ,a a a b a c a d
a a a a a a c atT T T T T T Tb d

t T
S H S H S S S S S Sw w w w w w w w

 
     (37)
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The expectation    2
a

a aTQE S K Iw  is thus given by Proposition 2 (to value a put on the

maximum of four assets) minus Proposition 1 (to value an up-and-in put on the maximum of four

assets), taking i ik h in  , , , ,a ci b dP m m m m  1,2, 3, 4i  .

Similarly, the valuation of a down-and-in put on the maximum of four assets requires the calculation

of :

   a
a a TQE K Sw

              , , ,a a b a c a d
a a a a c aT T T T T T Tb dS K S S S S S Sw w w w w w w    (38)

                
0
inf , , , ,a a a b a c a d

a a a a a a c at T T T T T T Tb dt T
S H S H S S S S S Sw w w w w w w w

 
      

                
0
inf , , , ,a a a b a c a d

a a a a a a c at T T T T T T Tb dt T
S H S K S S S S S Sw w w w w w w w

 

      


and, again, all three expectations are obtained by using Propositions 1 and 2.

Appendix 3

Proof of Proposition 3 is outlined. By definition of conditional probability, the joint cumulative

distribution function of , ,a cbX X X and dX is given by :

 .4 . . . . ., , , ; , , , , ,a c a cb d a b a d b c b d c dN u u u u r r r r r r

     ,
a cb du uu u

a a a a c c a ab b b bX dx X dx X dx X dx X dx X dx


             (39)

 , ,c c a a c ad d b b d bX dx X dx X dx X dx dx dx dx dx    

Substituting the relevant conditional densities given by (24) and (26) into (39), and then performing a

little algebra, one can obtain Proposition 3.

Note that the representation of the trivariate normal integral in terms of the bivariate normal integral in

eq. (4) was provided by Owen as early as 1956 (Owen, 1956).

We focus on the numerical implementation of the quadrivariate normal integral, as the trivariate

normal integral has already been studied (Genz, 2004). From Proposition 3, it can be observed that

there are three different ways of computing the quadrivariate normal integral : by integrating the

trivariate or the bivariate or the univariate normal integral. Extensive testing shows that it is

surprisingly simple to obtain a very high degree of accuracy. Indeed, it suffices to integrate the

univariate normal integral by means of a sixteen-point Gauss-Legendre quadrature. This is due mainly

to the smoothness of the integrand. Even though this implementation implies a triple quadrature, the

function evaluations are so elementary and the number of points is so moderate that computational

time is less than one second on an ordinary personal computer. To assess the accuracy of this
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implementation, we first tested the rare cases where analytical results are known in terms of the

arcsine function. They are orthant probabilities where the correlation matrix takes on a very specific

form. For instance, it can be shown (Kotz et al., 2000) that :

   
4

1 1 1
0, 0, 0, 0; , 0, , , , arcsin

2 24 4
N r r r r r

p
    (40)

    
2

4

1 1
0, 0, 0, 0; , 0, 0, 0, 0, arcsin

4 2
N r r r

p
  (41)

We computed (40), (41) and a couple of other similar cases for hundreds of randomly drawn values of

r and compared with the results obtained with our implementation of Proposition 3. The results

always matched to at least 1210 accuracy. To test general correlation matrices, we carried out a

second series of tests consisting of a comparison with a powerful adaptive integration scheme referred

to as CUHRE (Berntsen et al., 1991) 2. The CUHRE algorithm was selected because it has been shown

to be extremely reliable in moderate dimensions (Hahn, 2005). For hundreds of randomly drawn

correlation matrices, the results always matched to at least 1010 accuracy.

In view of such a level of efficiency and accuracy, and considering the simplicity of the quadrature

rule, it seems to us that the analytical formulae provided by Proposition 1 and Proposition 2 can be

rightfully regarded as “closed form” as the existing valuation formulae involving univariate or

bivariate normal distributions.

One can notice that the formulae written down in Proposition 1 and Proposition 2 display a structure

and repetitive patterns that make an extension to a greater number of assets relatively easy as far as the

analytics are concerned. The real question is how to compute mutivariate normal cumulative

distributions when the number of assets grows. This is a big issue in numerical integration (Kotz et al.,

2000). In Genz (1992), it is argued that an accuracy to two or three decimal digits can be reached in

one or two seconds for problems with as many as ten variables.

Appendix 4

Proof of Proposition 4 is provided for a call on the maximum of  1
1 TSw and  2

2 TSw . One can

expand the value of such an option as follows :

 
 

   

   

   

 

 

1 1 2 2
1 0 01 2

1 1 1 2 1 1
0 0 0 01 10

exp ln ln , ln ln

T

T T
t TQ

T

S K S S S
E r dt S

S S S S S

w
w

w w

                                                              
 

 

   

   

   

 

 

1 1 2 2
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1 1 1 2 1 1
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exp ln ln , ln ln

T

T T
tQ

T

S K S S S
K E rdt

S S S S S

w

w w

                                                               
 
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 
 

   

   

   

 

 

2 2 1 1
2 0 02 1

2 2 2 1 2 2
0 0 0 02 20

exp ln ln , ln ln

T

T T
t TQ

T

S K S S S
E rdt S

S S S S S

w
w

w w

                                                               
  (42)
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 

 
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                                                               
 

1 1 2 3 2 4. .E K E E K E  

To justify the dynamics of  1
tS and  2

tS given by equations (10) and (11), under Q , the following

lemma is introduced :

Lemma 1

Using the assumptions and notations defined at the beginning of section 2, let  , 0tS t  be a

process driven by : t
t t t t

t

dS
dt dW I dN

S
m s



   , with 0 t T    , where tm is a continuous

t  adapted process such that the latter stochastic differential equation possess a unique, strong,

global solution. Then,
0

exp

T

tT TS rdt S
      
  is a martingale if and only if t trm lk  .

Proof of Lemma 1

tTE S 
 
 

       
2

10

exp exp 1
2

T

t

t T N

s s st t tiT
i Nt

E r ds S r ds T t W W U
s

m s
 

                           
  

       
2

1

exp 1
2

tT

t

T N N

s st tT N i
it

S E r ds T t W W U
s

m s





                


   
1

exp 1
T

t

T N

s st i
i Nt

S r ds E Um
 

                


     exp

T

s st i

t

S r ds T t E Um l
          


   exp

T

s st

t

S r ds T tm l k
          


It is clear then that t trm lk  is a necessary condition for the discounted asset value to be a

martingale.

End of Proof of Lemma 1.
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Then, we begin by calculating 2E . By taking the stochastic differential of  exp tat r and integrating

it on  0,t , equation (9) easily yields :

 
 

       1 2
0

0 0 0

t t t

at a t u a t u a t u
r u r utr r e a e b u du e dW e dWs s            (43)

The time integral of tr on  0,T is normally distributed since tr is a Gaussian process.

Fubini’s theorem yields :
0

T

rtE rdt m
 
   
  
 , as given by Proposition 4.

The variance of
0

T

tr dt can be written as :  
0 0 0

var cov ,

T T t

ut tr dt r r dudt
 
   
  
   . Introduce the

following lemma :

Lemma 2

Let   1 , 0uW u  and   2 , 0uW u  be two standard Brownian motions with constant correlation

coefficient r . Let  1
uX and  2

uX be two left-continuous processes adapted to the natural filtration,

u ,generated by  1
uW and  2

uW ,and such that   
21

0

T

uE X du
 
    
  
 and   

22

0

T

uE X du
 
    
  
 .

Then, for 0 t T  , we have :

            1 1 2 2 1 2

0 0 0

cov ,

t T t

u u u u u uX dW X dW E X X dur
 
   
  
  

Proof of Lemma 2

The processes   1 , 0uX u  and   2 , 0uX u  are predictable with respect to u , the smallest

s  algebra generated by     1 2,u uW W . Furthermore, the inequalities   
21

0

T

uE X du
 
    
  
 and

  
22

0

T

uE X du
 
    
  
 hold. Therefore the integrals    1 1

0

t

u uX dW and    2 2

0

t

u uX dW , 0 t T  ,

are defined, and they are martingales with respect to u . We have :

                   1 1 2 2 1 1 2 2 2 2

0 0 0 0

cov ,

t T t t T

u u u u u u u u u u

t

X dW X dW E X dW X dW X dW
                    
     (44)

First, note that :
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               1 1 2 2 1 1 2 2

0 0

t T t T

u u u u u u u u t

t t

E X dW X dW E E X dW X dW
     
          
          
    

       1 1 2 2

0

0

t T

u u u u t

t

E X dW E X dW
   
       
      
   (45)

Next,  1
uX and  2

uX can be approximated by the following simple left-continuous processes :

         

0 0 0 0

1 1 2 2,n n
t t t tX X X X 

and, for 0u  :

    
   

 
    

   
 

1 1

1 1
1 1 2 2

, ,
0 0

,n n n n
i ii i

n n
n n

u ui it t t t
i i

X u X uq q
 

 

 
  

    (46)

where :

(i)   n
it is a sequence of partitions of  00 , nt t t  with

 

    1
0,..., 1
sup 0n n

n ii
i n

t td 
 

   as

n   ,

(ii)  1
iq and  2

iq are constants if     1 2,u uX X is a pair of deterministic processes or square

integrable
it
 adapted random variables if     1 2,u uX X is a pair of stochastic processes.

If  1
uX and  2

uX are square integrable, then it is a classical result from the theory of continuous-time

processes that    1 1

0

t

u uX dW and    2 2

0

t

u uX dW can be approximated by       
1

1
1 1 1

0

lim
ii

n

t tin
i

W Wq









and       
1

1
2 2 2

0

lim
ii

n

t tin
i

W Wq







 respectively, where the approximating sums converge in mean

square (Lipster and Shiryayev, 1989) . Hence, as 0nd  ,

                     
1 1

1 1
1 1 2 2 1 1 1 2 2 2

0 00 0
i ji j

t t n n

u u u u t t t ti j
i j

E X dW X dW E W W W Wq q
 

 

 

   
        
    

  

                           
1 1 1 1

1 1 1
1 2 1 1 2 2 1 2 1 1 2 2

0 0 0
i i i ji i i j

n n n

t t t t t t t ti i i j
i i j

j i

E W W W W E W W W Wq q q q
   

  

  


             

1 2S S (47)

             
1 1

1 1
1 2 1 1 2 2

2
0 0

i j i ji j

n n

t t t t t ti j
i j

j i

S E E W W W Wq q
 

 


 



            

               1 1

1 1
1 2 1 1 2 2

0 0
i i ji j i j

n n

t t t t ti j t t
i j

j i

E E E W W W Wq q
 

 


 



                
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               1 1

1 1
2 1 1 1 2 2

0 0
j i ji j j i

n n

t t t t tj i t t
i j

j i

E E E W W W Wq q
 

 


 



                (48)

Denoting by   2 , 0tW t  a standard Brownian motion independent of  1, 0tW t  defined on the

same filtered probability space as   2 , 0tW t  , one can write :

         
1 1

1 1 2 2

i ji jt t t tE W W W W
 

    

             
1 1 1

1 1 1 2 2 1 2 21 1
i j ji j jt t t t t tE W W W W W Wr r r r

  

         

               

1 1 1 1

1 1 1 1 1 1 1 1cov , cov , cov , cov ,
j i i ji j i jt t t t t t t tW W W W W W W Wr r r r

   

                     
(49)

If i and j are two natural integers such that i j , then   sup 1 0
i

i j   ; similarly, if j i ,

then   sup 1 0
j

j i   . Thus,

         
       

1 1

1 1 2 2

1 1 1 1 0

i ji jt t t t

i i j ji i j ji j i j

E W W W W

t t t t t t t tr r

 

   

    

         
(50)

Hence, 2 0S  . Eventually,

             
1 1

1
1 2 1 1 2 2

1
0

i i ii i

n

t t t t ti i
i

S E E W W W Wq q
 





            

                 
1 1 1

1
1 2 1 1 1 2 2 1 2 2

0

1 1
i i ii i i

n

t t t t t ti i
i

E E W W W W W Wq q r r r r
  





               

           
1 1

1 2 1 2
1 1

0 0

n n

i i i i i ii i
i i

E t t E t tq q r r q q
 

 
 

       (51)

where the last sum converges to     1 2

0

t

u uE X X dur .

End of proof of Lemma 2.

Using Lemma 2 :

       
2

1.2cov , 1r a u t a u t
utr r e e

a

s
r     (52)

so that :

      
2

2
1.22

0

2 1 2
var 1 1 1

2

T

r aT aT
tr dt T e e

a aa

s
r  

 
        
  
 (53)

Then, from the formula for the moment generating function of a normal random variable, we get

      , exp , ,tB t T A t T r C t T   as given by Proposition 4.

Applying Ito’s lemma to   ln ,B t T and then integrating on  0,t , one can obtain, under Q :
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     , 0, ,tB t T B T L t Tb (54)

with :

 

       
 

     

22
1 21.2

1.2
0 0

2 2
2 12 2

2 1

0 0

1
1 , ,

2
, exp

, ,
2

t t
r

r s

t t
r

r s

A s T dW A s T ds

L t T

A s T dW A s T ds

s r
s r

s s
s s

                    

 

 

where  2
tW denotes a standard Brownian motion independent of  1

tW , as in section 1. Thus, using a

change of numeraire :

 
 

   

   

   

 

 

1 1 2 2
0 01 2

2 1 1 2 1 1
0 0 0 01 1

,
ln ln , ln lnT T

Q
t T

S K S S SB t T
E E

S S S S S

w

b w w

                                                   


 

 

   

   

   

 

 

1 1 2 2
0 01 2

1 1 2 1 1
0 0 0 01 1

0, ln ln , ln ln
T

T T
B

T

S K S S S
B T

S S S S S

w

w w

                                               
(55)

where
TB is the risk-neutral measure under which the numeraire is the zero-coupon bond, whose

Radon-Nikodym derivative is given by :

 ,TB

t

d
L t T

dQ




By Girsanov’s theorem, we have :

        1 1
1.21 ,B

rt tdW dW A t T dts r   (56)

      2 2
2 1 ,B

rt tdW dW A t T dts s 

where   1 B
tW and   2 B

tW are independent standard Brownian motions under
TB .

Using an extended Fubini’s theorem to interchange the order of a stochastic and a classical integral :

           1 2

0 0 0

1 / 1 /
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r r rt t tr dt e a dW e a dWm s s         

          
law

2 1 2
1.2 2 1

2 1
1 1 1

2
r aT aT

r T TT e e W W
a aa T

s
m r s         (57)

Given  1
TN and  2

TN , one can now solve equations (10) and (11) under
TB . Equation (11), for

example, yields:

          2 2
0 1.4 1.2 2 1 2.4 12exp 1/ 1 1 aT

r rT SS S a e Tm s s r r s r      

         2 2 1
2 2 2 1.2 1.42 2/2 1B

rT TS ST N Wl k s x s r s r      (58)

             2 3 4 2 2
2 1 2.4 1 3.4 1.2 4 1.2.3 22 2 2

B B B
rT T T TS S SW W W Ns s s r s r s s e f    

where :
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the processes    1 , 0B
tW t  ,    2 , 0B

tW t  ,    3 , 0B
tW t  and    4 , 0B

tW t  are

mutually independent standard Brownian motions under
TB ; the variable rs is equal to :

   22 1
1 1

2
r aT aT

r T e e
a aa T

s
s       ; and f is an independent standard normal

random variable.

Then, it only remains to compute the covariance between     1 1
0ln /TS S and

   

   

1 2
0

2 1
0

ln T

T

S S

S S

     
to obtain

2E . The calculation of 4E is similar.

The next step in the proof of Proposition 4 is to calculate 1E and 3E in equation (42). This could be

achieved by a new change of measure but the application of Girsanov’s theorem is more involved here

because of the jump components before the indicator functions inside 1E and 3E . Instead, one can

draw on the joint normality of all the random variables featured inside 1E and 3E to easily terminate

the calculation by means of the following lemma :

Lemma 3

Let    2 2, , ,X X Y YX N Y Nm s m s  and  2,Z ZZ N m s be three normal random variables

with constant correlation coefficients denoted by . . ., ,X Y X Z Y Zr r r . Let a and b be two real numbers.

Then,

    exp ,E X Y a Z b 

2
. .

2 .exp , ;
2
X Y X Y X Y Z X Z X Z

X Y Z
Y Z

a b
N

s m r s s m r s s
m r

s s

                

Proof of Lemma 3

Let , ,X Y Zf denote the joint density of ,X Y and Z . Then,

    exp ,E X Y a Z b 

 
, , , ,

a b

x
X Y Z

x y z

e f x y z dzdydx



  

    (59)

Using eq. (24) :

    exp ,E X Y a Z b 

2 2

2 .

1 1
exp

2 2

2

X Y X
a b X Y

X Y XY X

X Y Y Xx y z

x y x
x

m m m
r

s s ss

ps s s



  

                                 


   (60)



38

2

2 . . .
.

.

1 1
exp

2

2

Z X Y X
X Z Y Z X X Y

Z X Y X Y XZ X Y

Z Z X Y

z x y x

dzdydx

m m m m
r r r

s s s s ss

s s p

                                   


Apply the following chain of changes of variables :

. .
ˆ ˆ, , , ,X Y Z

X X Y X X Z X
X Y Z

x y z
x y x x y y z

m m m
s r s r s

s s s

  
           

and then use the identity :

   
, , ,, , ,X Y Z Y Zf x y z dx f y z







to obtain Lemma 3.

End of proof of Lemma 3.

To calculate 1E , it suffices to apply Lemma 3 under the Q measure with :

 

 

 

 

   

   

1 1 1 2
0

1 1 2 1
0 0 00

ln , ln , ln

T

T T T
t

T

S S S S
X rdt Y Z

S S S S

                                        
 (61)

Indeed, the integral
0

T

tr dt is normally distributed and its expectation and variance have already been

computed. The sum  

 1

1

1

TN

n
n

J

 is normal too, with expectation equal to  1

1TN x and variance equal to

 1 2
1TN e . Hence, the three random variables , ,X Y Z are jointly normal and, by rewriting

     1 2 3, ,T T TW W W as linear combinations of independent standard Brownian motions

     1 2 3, ,T T TW W W , as shown in section 1, one can find strong solutions to stochastic differential

equations (10) and (11) under Q , from which the expectation and variance of , ,X Y Z are obtained.

Then, it only remains to compute    cov , , cov ,X Y X Z and  cov ,Y Z to be supplied with all the

inputs required by Lemma 3.

Likewise, to calculate 3E , one can apply Lemma 3 under the Q measure with :

 

 

 

 

   

   

2 2 2 1
0

2 2 1 2
0 0 00

ln , ln , ln

T

T T T
t

T

S S S S
X rdt Y Z

S S S S

                                        
 (62)

Eventually, Proposition 4 is obtained by summing 1 2 3 4. .E K E E K E   over the joint law of

    1 2,T TN N , which is the product of the laws of    1 2,T TZ Z and  12
TZ .
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Notes

1. This probability would be computed by an investor in the “real” world, not in the risk-neutral world; this

would imply to introduce a positive equity premium reflecting risk aversion.

2. The implementation of the CUHRE algorithm that we relied on is the one featured in the computer algebra

system Maple

References

Berntsen J., Espelid T.O. and Genz, A. (1991), Algorithm 698: DCUHRE-An Adaptive

Multidimensional Integration Routine for a Vector of Integrals, ACM Transactions on Mathematical

Software, 17, 452-456

Black F. and Scholes M. (1973), The Pricing of Options and Corporate Liabilities, Journal of

Political Economy, 81, 637-659

Boyle P.P. (1989), The Quality Option and the Timing Option in Futures Contracts, Journal of

Finance 44, 101-113

Boyle P.P., Evnine J. and Gibbs S. (1989), Numerical Evaluation of Multivariate Contingent Claims,

The Review of Financial Studies, 2, 241-250

Boyle P. P. and Tse Y.K. (1990), An Algorithm for Computing Values of Options on the Maximum

or Minimum of Several Assets, The Journal of Financial and Quantitative Analysis, Vol. 25, No. 2,

215-227

Carr P., Ellis K. and Gupta V. (1998), Static Hedging of Exotic Options, Journal of Finance 53,

1165-1190

Christoffersen P. and Jacobs K. (2004), The Importance of the Loss Function in Option Valuation,

Journal of Financial Economics, 72, 291-318

Clark C. (1961), The Greatest of a Finite Set of Random Variables, Operations Research 9, 145-162

Da Fonseca J., Grasselli M. and Tebaldi C. (2007), Option Pricing When Correlations Are

Stochastic: an Analytical Framework, Review of Derivatives Research, Vol. 10, Number 2, 151-180

Detemple J., Feng S. and Tian W. (2003), The Valuation of American Call Options on the Minimum

of Two Dividend-paying Assets, The Annals of Applied Probability, Vol. 13, No. 3, 953-983

Drezner Z. and Wesolowsky G.O. (1990), On the Computation of the Bivariate Normal Integral,

Journal of Statistical Computation and Simulation, 35, 101-107

Driessen J., Maenhout P. and Vilkov G. (2005), The Price of Correlation Risk : Evidence from

Equity Options, Journal of Finance, forthcoming

Dumas B., Fleming J. and Whaley R. (1998), Volatility Functions : Empirical Tests, The Journal of

Finance, vol. LIII, 6



40

Fengler M.R. and Schwendner P. (2004), Quoting Multiasset Equity Options in the Presence of

Errors from Estimating Correlations, The Journal of Derivatives, Summer

Föllmer H. and Leukert P. (1999), Quantile Hedging, Finance and Stochastics, 3, 251-273

Geman H., El Karoui N. and Rochet J.C. (1995), Changes of Numeraire, Changes of Probability

Measure and Option Pricing, J.Appl.Prob. 32, 443-458

Genz A. (1992), Numerical Computation of Multivariate Normal Probabilities, J. Comp. Graph Stat.

1, 141-149

Genz A. (2004), Numerical Computation of Rectangular Bivariate and Trivariate Normal and t

Probabilities, Statistics and Computing, 14, 151-160

Hahn T. (2005), CUBA – a Library for Multidimensional Numerical Integration, Computer Physics

Communication, Vol. 168, Issue 2, 78-95

Harrison J.M. and Pliska S. (1981), Martingales and Stochastic Integrals in the Theory of Continuous

Trading, Stochastic Processes and Their Applications, 11, 215-260

Hull J. and White A. (1990), Pricing Interest Rate Derivative Securities, Review of Financial Studies,

3, 573-592

Johnson H. (1987), Options on the Maximum or the Minimum of Several Assets, The Journal of

Financial and Quantitative Analysis, Vol. 22, No. 3, 277-283

Karatzas I. and Shreve S.E. (1991), Brownian Motion and Stochastic Calculus, Springer-Verlag,

New York

Kotz S., Balakrishnan N. and Johnson Norman L. (2000), Continuous Multivariate Distributions

Volume 1 : Models and Applications, second edition, Wiley-Interscience

Lipster R.S. and Shiryayev A.N. (1989), Theory of Martingales, Kluwer Academic, Dordrecht

Martellini L., Priaulet P. and Priaulet S. (2003), Fixed-Income Securities, John Wiley & Sons Ltd,

UK

Merton R.C. (1976), Option Pricing When Underlying Stock Returns Are Discontinuous, Journal of

Financial Economics, 3, 125-144

Owen D.B. (1956), Tables for Computing Bivariate Normal Probabilities, Annals of Mathematical

Statistics, 27, 1075-1090

Schweizer M. (1992), Mean-variance Hedging for General Claims, Annals of Applied Probability,

Vol.2, no.1, 171-179

Stulz R. (1982), Options on the Minimum or the Maximum of Two Risky Assets : Analysis and

Applications, Journal of Financial Economics, 10, 161-185

Tong Y.L. (1990), The Multivariate Normal Distribution, Springer-Verlag, New York and Berlin


