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Abstract

In this paper, we show how to obtain explicit formulae for a variety of popular path-
dependent contracts with complex payoffs involving joint distributions of several extrema.
More specifically, we give formulae for standard step-up and step-down barrier options, as well
as partial and outside step-up and step-down barrier options, involving multiple integrals of
dimensions ranging between three and five. Our method can be extended to other exotic path-
dependent payoffs as well as to higher dimensions. Numerical results show that the quasi
random integration of these formulae involving multivariate distributions of correlated Gaussian
random variables provides option values more quickly and more accurately than Monte Carlo
simulation.
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Introduction

Barrier options are one of the oldest types of options. They are also one of the most popular,

due to their low cost and their strong leverage effect, as well as to the precision and the

flexibility with which they can adapt to investors’ needs or views about the market. As a result,

barrier options are now heavily traded, particularly in the foreign exchange markets. They are

also embedded in a lot of popular structured derivatives in equity and interest rate markets.

There has been quite extensive research dealing with the analytical pricing of barrier options. A

closed form formula for a down-and-out European call option was published by Merton as early

as 1973 (Merton, 1973). An exhaustive list of formulae for standard barrier options was

published by Rich (1994). In the mid-90’s, contributions started to focus on more exotic types

of barrier options, such as partial barrier options (Heynen & Kat, 1995 ; Carr, 1995), outside

barrier options (Bermin, 1995), double barrier options (Kunitomo and Ikeda, 1992 ;

Bhagavatula and Carr, 1995 ; Geman and Yor, 1996). Heynen and Kat (1995) derive formulae

for partial barrier options in a partial-differential-equation framework. Carr (1995) includes

American-type rebates. Bermin (1995) develops a decorrelation approach to reduce the

dimension of the partial outside barrier option pricing problem. Kunitomo and Ikeda (1992)

draw on Levy’s seminal works (1948) to provide a formula for a double barrier option with

curved boundaries. Bhagavatula and Carr (1995) deal with double barrier options by means of

Fourier series, whereas Geman and Yor (1996) apply Laplace transformation.

So far, there are no available formulae for a special type of barrier option that attracts

strong interest among practitioners : step barrier options. These contracts feature sequences of

constant one-sided barriers. They are called step barrier options, because barriers are step

functions of time. When barriers are monotonically decreasing or increasing, we have a standard

step barrier option. There can be gaps during which there is no barrier monitoring. In this case,

the step barrier option is said to be partial. When the asset involved in the payoff is not the same

as the one involved in barrier monitoring, we have an outside step barrier option. The main
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difficulty associated with an analytical valuation of such contracts, in a risk-neutral framework,

is that they involve joint distributions of extrema over various time intervals that are currently

not explicitly known. Furthermore, the dimension of the pricing problem quickly increases.

Consequently, it is assumed that these contracts have to be numerically priced. When the

dimension of the problem is greater than three, Monte Carlo simulation is thought to be the only

tractable method, as its convergence rate is independent of dimension, contrary to a grid-based

approach.

The purpose of this paper is to show that this valuation problem can be analytically solved, by

providing explicit formulae for all kinds of step barrier options, whether they are standard, non-

standard, partial or outside contracts, in dimensions that range between three and five, knowing

that the method we use can be applied to higher dimensions (sections 1, 2, 3). Then, by using

simple low discrepancy sequences to perform quasi random integration, this paper aims at

showing that the numerical implementation of these exact formulae is both more efficient and

more accurate than alternative advanced or plain Monte Carlo simulation methods (section 4).

1. Analytical framework

It is assumed that the underlying asset follows a geometric brownian motion :

t t t tdS S dt S dWm s  (1)

The parameters m and s are constant, and s is positive. The option life starts at time 0 and that

its expiry is T. tW is Brownian motion defined on a probability space  , ,tF P , where

 ,t sF W s ts  is the natural filtration of tW .

According to the risk-neutral valuation approach, at the contract inception 0t  , the no-

arbitrage value of a European call option with path-dependent conditions 1 2, ,..., mA A A is given

by the discounted expectation of its payoff under the equivalent martingale measure, conditional

on the information available at time 0t  :

     11 0,...,, , , , , ,...,
m

rT Q
m T A Ae C S T K r A A E S K S1s d

    
 

(2)
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where K is the strike price, r is the riskless rate, d is a dividend rate, QE is the expectation

operator under the equivalent martingale measure, Q , and  .1 is the indicator function taking

value 1 if the conditions inside the brackets are met and value zero otherwise.

Equivalently, we have :

     11 0,..., ,, , , , , ,...,
m

rT Q
m T A A Ke C S T K r A A E S K S

TS1s d 
     

   

2

1 1

2
0 ,..., , ,..., ,

T

m m

r T W
Q Q

A A K A A KE S e KE
T TS S1 1

s
d s

       
 

 
 
         
   

   

2

1 1

2
,..., , ,..., ,

T

m m

T W
Q Q

A A K A A KFE e KE
T TS S1 1

s
s 

 

 
          
 
 

(3)

where  
0

r T
F S e

d
 is the risk-neutral forward price.

Let us define a new measure Q such that :

2

2
T

T

T W

F

dQ
e

dQ

s
s 




(4)

Then, according to Girsanov theorem, we have :

     1 1 1, , , , , ,..., . ,..., , . ,..., ,rT
m m T m Te C S T K r A A F Q A A X k K Q A A X ks d     (5)

with :    0 0ln / , ln /T TX S S k K S 

Similarly, we have the following expression for a path-dependent put option :

     1 1 1, , , , ,..., . ,..., , . ,..., ,rT
m m T m Te P S T K r A A K Q A A X k F Q A A X ks d     

Hence, it suffices to calculate probabilities under the Qmeasure : a simple change of drift

from 2 / 2rm d s   to 2 / 2rm d s   will provide the corresponding probabilities under the

Q measure.

In general, the greater the number of path dependent conditions, the higher the

dimension of the solution will be.



5

Low-dimensional problems can be solved in terms of univariate or bivariate standard Gaussian

distribution functions,  N a and  2 , ;N a b r respectively. This is the case for standard barrier and

lookback options, as well as for partial or outside barrier options. If we want to find closed form

formulae for more complex path-dependent options, we need to use higher-dimensional

Gaussian distributions.

In general, if  1,..., nX X X is a vector of n joint standardized Gaussian random variables with

a symmetric, positive-definite  n n matrix of variances and covariances  , then the density of

X is given by :

 
   

1

2

1 / 2
,...,

2

TX X

n n

e
f x x

Detp







(6)

where TX is the transpose of X ,  Det  is the determinant of  and 1 is the inverse of  .

For example, if we denote by 12 23,  and 13r the correlation coefficients between three

standardized Gaussian random variables 1 2,X X and 3X , it is easily shown, by applying formula

(6), that the joint density of 1 2,X X and 3X is given by :

 

   

2 2 2
1 2 3 4 5 6

1
2 2 2

2

12 23 13 3/ 2
( , , ; , , )

2

a b c ab bc ac
e

f a b c
Det

l l l l l l

r
p

     

  


(7)

with :

       

2 2 2
23 13 13 23 1212

1 2 3 4

1 1 1

Det Det Det Det

r r rr
l l l l

   
      

       
13 12 23 12 23 13

5 6
Det Det

r r
l l

    
   

 

(8)

and

 Det   2 2 2
12 23 13 12 23 131 2r r r      (9)

However, using these general multinormal expressions becomes analytically cumbersome and

computationally inefficient as the dimension of the integral rises. Actually, simplified

expressions can be used when dealing with the finite-dimensional distributions of geometric

Brownian motion GBM. Let  .Q refer to the equivalent martingale measure, let  0ln /t tX S S ,
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and let 0T , 1T , 2T , 3T be three different dates during the option life  0 3,T T , such that :

0 1 2 3T T T T   .

By using the Markov property of Brownian motion, as well as the independence of Brownian

increments, one can write :

 
1 2 3

, ,T T TQ X a X b X c   =

 

 
 

2 2

1 1 2 2
12

1 1 2 2

2
12

2

2 1
3 2

2 2 3 21 2 122 1

x T x T y T y T

T T T T

a b
c T T ye

N dydx
T TT T

m m m m

s s s s

r
m

sps r

                                                  






    
 

   
  (10)

where 12 1 2/T T  and  .N is the univariate standard Gaussian distribution.

Manipulating this triple integral and standardizing it yields :

 
1 2 3

, ,T T TQ X a X b X c   

 

 
 

 

    

2 22
12 2331 2

2 2
31 2 12 23

-
2 2 1 2 1

3/2 2 2
12 232 1 1

y x z yc T xa T b T

TT T
e

dzdydx

mm m

ss s r r

p r r

  
 

 

    
   (11)

which can be written in a more compact form as :

31 2
3 12 23

1 2 3

, , ,
c Ta T b T

N
T T T

mm m

s s s

     
  

(12)

where 23 2 3/T T 

Similarly, if 4 3T T , we have :

 
1 2 3 4

31 2 4
4 12 23 34

1 2 3 4

, , , ; , ,

, , ,T T T T

c Ta T b T d T
N

T T T T

Q X a X b X c X d

mm m m

s s s s

       
  

    

 

 
 

 
 

 

     

2 2 22
12 23 3431 2 4

2 2 2
31 2 4 12 23 34

-
2 2 1 2 1 2 1

2 2 2 2
12 23 342 1 1 1

x w y x z yc T wa T b T d T

TT T T
e

dzdydxdw

mm m m

ss s s r r r

p r r r

    
  

  

   



  
    (13)

with : 34 3 4/T T 
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More generally, it is easily shown that given  0 1 2, , ,..., dT T T T with : 0 1 2 ... dT T T T    , and

d  , the density of the d correlated Gaussian random variables  0ln /
i iT TX S S is given by :

 

   
   

   

1 2

2
2

22 2
1,2 1 1,2 1 2 2 , 1 1 , 12

1 2

1 1arccos 2 arccos
2 2

, 1

, ,...,

exp 2 arcsin exp

d

d
k k k k k k

T T T d

x x x x x x

k k

P X dx X dx X dx

r r r r

p r

          

                                             


  

    

1

2

d

k

 




(14)

where , / ,a b a b a bT T T Tr   and the notation  .  refers to the first-order derivative of  .

Alternatively, the finite-dimensional distribution of order d of arithmetic Brownian motion

with drift m and volatility s , is given by :

 
1 21 2, ,...,

dT T T dQ X x X x X x  

1 1 2 2
12 23 1,

1 2

, ,..., , ,...,d d
d d d

d

x Tx T x T
N

T T T

mm m
r

s s s


      
  

 

 

      

2
2 1

1 , 111 1 2 2
2

11 2 , 1
2 2 1

1 1
/2 2 2 2

12 23 1,

... ...

2 1 1 ... 1

d
k k k kd d

kd k k

y yx T yx T x T

TT T

d d
d

d d

e
dy dy dy

  

mm m

ss s r

p r r r


 

 

 
 





   





  
   (15)

We will now show, in sections 2 and 3 of this paper, how to use these finite-dimensional

distributions to value step barrier options.

2. Standard step-up and step-down barrier options

The analytical valuation of a d dimensional standard step-up barrier option involves the

calculation of the distribution of d increasing maxima and terminal value of a geometric

Brownian motion. Likewise, valuing a d dimensional standard step-down barrier option

involves the calculation of the distribution of d decreasing minima and terminal value of a

geometric Brownian motion.
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Let us focus on an up-and-out put option with four different barriers over four intervals of the

option life :        0 1 1 2 2 3 3 4, , , , , , ,T T T T T T T T , where 0T is the beginning of the option life and 4T is the

expiry. We name our four barriers : 1 2 3 4, , ,H H H H . Since we are dealing with a standard step-up

barrier option, we have : 1 2 3 4H H H H   (but we shall see in section 3 that we could choose

another combination).

To find a formula for the value of this option, we need to know the joint probability, under the

equivalent martingale measure, that the maximum value of the underlying asset during

 0 1,T T will not hit 1H and that the maximum value during  1 2,T T will not hit 2H and that the

maximum value during  2 3,T T will not hit 3H and that the maximum value during  3 4,T T will

not hit 4H and that the value of the underlying asset at expiry 4S will be lower than the strike

price K . That is, we need to know the value of :

 1 2 3 4
0 1 1 2 2 3 3 4 4, , , ,Q M h M h M h M h X k     (16)

where    0 0ln / , ln / ,T TX S S k K S   0ln /i ih H S and
 

 
,

sup
a b

b
a t

t T T

M X




Graph 1, in appendix 1, gives an illustration of this problem.

The formula for :  
1

1
0 1, TQ M h X k  is a classical result that is assumed to be known (see,e.g.,

Karatzas & Shreve [1991]).

Using the Markov property of brownian motion and the independence of brownian increments,

the second maximum can be dealt with in the following way :

 
2

1 2
0 1 1 2, , TQ M h M h X k   =

       
1

1 2 11 0 1 1 21 2
, ,T T

h
Q Q

TX h M h X k M h
E E X u u du1 1

   


  
     
    



(17)

where :

 

 
     

2 2

1 1 1

1 112

22

1 1 2
22 2

1 1

2

2 1 2 2 1

2 1 2 1

2 2

2

u T u h T

T Th

h u

e e
u e

T T

k u T T k h u T T
u N e N

T T T T

m m
ms s

s

m

s

s p s p

m m

s s

                    



  

                 
       

(18)
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Using identities (A.1), (A.2) and (B.1) in appendix 3, the following solution can be obtained :

 

22

1 2 12 2

2

1 1 2 1 1 2 2
2 12 2 12

1 2 1 2

2 2

1 1 1 2 1 1 2 1 2
2 12 2 12

1 2 1 2

2
, ,

2 2 2
, ,

h

h h h

h T k T h T k h T
N e N

T T T T

h T k h T h T k h h T
e N e N

T T T T

m

s

m m

s s

m m m m

s s s s

m m m m

s s s s



               
      

                    
      

(19)

where 12 1 2/T T  as in section 2.

The next step is to find :  
3

1 2 3
0 1 1 2 2 3, , , TQ M h M h M h X k    . This probability can be

formulated as the following conditional expectation :

   1 2 3
2 0 1 1 2 2 32 3

2, , ,T T

Q Q

X h M h M h X k M h
E E X1 1

    

  
  
    

(20)

Building on our acquired knowledge of  
2

1 2
0 1 1 2, , TQ M h M h X k   , the following integral

form of the problem can be written down :

   1 2 3
2 0 1 1 2 2 32 3

2, , ,T T

Q Q

X h M h M h X k M h
E E X1 1

    

  
   
    

       

   
 

   

1 2 1 2
22

1 2 1 2
1 2 12 2

2

1 2

2 2

3 4

; ;

; +

h h h h
h

h h h h
h h h

u v v dvdu e u v v dvdu

e u v v dvdu e u v v dvdu

   

   

m

s

m m

s s

   

 


   

    

     

   

   

(21)

where :

 
     32

2

3 2 3 3 2

3 2 3 2

2h vk v T T k h v T T
v N e N

T T T T

m

s
m m

s s

                 
       

(22)

 

 

 

 
2 2 2 2

2 1 2 2 11 1

1 2 1 1 2 1

21 1

2 2

1 2
2 2

1 2 12 ( )

v u T T v u h T Tu T u T

T T T T T T
e e

u v u v
T T T

m mm m

s s s s

s p s

                                                                                           
      

 1 2 12 ( )T T Tp 
(23)

 

 

 

 
2 2 2 2

1 2 1 2 1 2 11 1

1 2 1 1 2 1

2 2 21 1

2 2

3 4
2

1 2 12 ( )

v u h T T v u h h T Tu T u T

T T T T T T
e e

u v u v
T T T

m mm m

s s s s

s p

                                                                                       
      

 2
1 2 12 ( )T T Ts p
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Using identities (A.3) and (B.3) in appendix 3, one can obtain the following explicit expression

composed of eight terms involving a special form of the trivariate gaussian cumulative

distribution :

 
3

1 2 3
0 1 1 2 2 3, , , TQ M h M h M h X k    

22

2

3 2 31 1 2 2 1 1 2 2
3 12 23 3 12 23

1 2 3 1 2 3

2
, , , , , ,

hk T k h Th T h T h T h T
N e N

T T T T T T

m

s
m mm m m m

s s s s s s

                   
      

(24)

12

2

1 31 1 2 1 2
3 12 23

1 2 3

22
, , ,

h k h Th T h h T
e N

T T T

m

s
mm m

s s s

         
  

 2 12

2

2 1 31 1 1 2 2
3 12 23

1 2 3

2 22
, , ,

h h k h h Th T h h T
e N

T T T

m

s
mm m

s s s

           
  

32

2

3 31 1 2 2
3 12 23

1 2 3

2
, , ,

h k h Th T h T
e N

T T T

m

s
mm m

s s s

       
  

 3 22

2

3 2 31 1 2 2
3 12 23

1 2 3

2 2
, , ,

h h k h h Th T h T
e N

T T T

m

s
mm m

s s s

          
  

 3 12

2

3 1 31 1 2 1 2
3 12 23

1 2 3

2 22
, , ,

h h k h h Th T h h T
e N

T T T

m

s
mm m

s s s

           
  

 3 1 22

2

3 2 1 31 1 2 1 2
3 12 23

1 2 3

2 2 22
, , ,

h h h k h h h Th T h h T
e N

T T T

m

s
mm m

s s s

              
  

where it is recalled that :

 

 

 
 

 

    

2 22
12 23

2 2
12 23

-
2 2 1 2 1

3 12 23
3/2 2 2

12 23

, , ,
2 1 1

y x z yx

a b c
e

N a b c dzdydx

r r

p r r

 
 

 



  
 

   (25)

as was shown in section 1. Knowing this probability would be enough to value a three-

dimensional standard step up-and-out put option. But, to value a four-dimensional standard step

up-and-out put option, we need to add the condition that : 4
3 4M h , as well as the condition

that :
4TX k . This is done by solving :

   1 2 3 4 33 0 1 1 2 2 3 3 43 4
, , , ,T T

Q Q
TX h M h M h M h X k M h

E E X1 1
     

  
  
    

=
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3 31 2 1 2

22

2

1 2
h hh h h h

h

u v w w dwdvdu e u v w w dwdvdu

     

m

s



     

              (26)
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(27)

and :
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Using identities (A.4) and (B.5) in appendix 3, we obtain an explicit expression composed of

sixteen terms involving the quadrivariate standard gaussian distribution :
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h h h h T k h h Th T h T
e N

T T T T

m

s
m mm m

s s s s

              
  

 3 12

2

3 1 3 3 1 41 1 2 1 2
4 12 23 34

1 2 3 4

2 2 22
, , , , ,

h h h h T k h h Th T h h T
e N

T T T T

m

s
m mm m

s s s s
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 3 1 22

2

3 2 1 3 3 2 1 41 1 2 1 2
4 12 23 34

1 2 3 4

2 2 2 2 22
, , , , ,

h h h h h h T k h h h Th T h h T
e N

T T T T

m

s
m mm m

s s s s

                   
  

42

2

3 31 1 2 2 4 4
4 12 23 34

1 2 3 4

2
, , , , ,

h h Th T h T k h T
e N

T T T T

m

s
mm m m

s s s s

         
  

 4 22

2

3 2 31 1 2 2 4 2 4
4 12 23 34

1 2 3 4

2 2 2
, , , , ,

h h h h Th T h T k h h T
e N

T T T T

m

s
mm m m

s s s s

             
  

 4 12

2

3 1 31 1 2 1 2 4 1 4
4 12 23 34

1 2 3 4

22 2 2
, , , , ,

h h h h Th T h h T k h h T
e N

T T T T

m

s
mm m m

s s s s

              
  

 4 1 22

2

3 2 1 31 1 1 2 2 4 2 1 4
4 12 23 34

1 2 3 4

2 22 2 2 2
, , , , ,

h h h h h h Th T h h T k h h h T
e N

T T T T

m

s
mm m m

s s s s

                 
  

 4 32

2

3 3 4 3 41 1 2 2
4 12 23 34

1 2 3 4

2 2
, , , , ,

h h h T k h h Th T h T
e N

T T T T

m

s
m mm m

s s s s

            
  

 4 3 22

2

3 2 3 4 3 2 41 1 2 2
4 12 23 34

1 2 3 4

2 2 2 2
, , , , ,

h h h h h T k h h h Th T h T
e N

T T T T

m

s
m mm m

s s s s

                
  

 4 3 12

2

3 1 3 4 3 1 41 1 2 1 2
4 12 23 34

1 2 3 4

2 2 2 22
, , , , ,

h h h h h T k h h h Th T h h T
e N

T T T T

m

s
m mm m

s s s s

                 
  

 4 3 2 12

3 2 1 3 4 3 2 1 41 1 2 1 22

1 2 3 44

12 23 34

2 2 2 2 2 22
, , ,

, ,

h h h h

h h h T k h h h h Th T h h T

T T T Te N
m

s

m mm m

s s s s
  

             
 
   
     

where we recall that :

 

 

 
 

 
 

 

     

2 2 22
12 23 34

2 2 2
12 23 34

2 2 1 2 1 2 1

4 12 23 34
2 2 2 2

12 23 34

, , , , ,
2 1 1 1

x w y x z yw

a b c d
e

N a b c d dzdydxdw

r r r

p r r r

  
   

  

 

   
  

    (30)

The same method can be applied to value all other standard step-up or step-down barrier

options. As a second example, we provide in appendix 2 the formula for a down-and-out call

option with four decreasing down-barriers during the option life.
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3. Partial and outside step barrier options

As mentioned earlier, the sequence of monitored barriers needs not be monotonically

increasing or decreasing. Besides, monitoring needs not start at the beginning of the option life

nor does it have to end at expiry. For example, we may want to value a forward-start early-

ending down-and-out call option with monitoring of three different barriers 1 2 3, ,H H H over

three intervals of the optionlife :      1 2 2 3 3 4, , , , ,T T T T T T with : 0 1 2 3 4 5T T T T T T     , where 5T is

the option expiry. This time we choose : 1 2 2 3 3 1, ,H H H H H H   , instead of having :

1 2 3H H H  , as illustrated by graph 3 in appendix 1.

To value this option, we need to calculate :

 
5

2 3 4
1 1 2 2 3 3m ,m ,m , TQ h h h X k    with 1 2 2 3 3 1, ,h h h h h h  

which is equal to :

 
3 4 5

2 3 4
1 1 2 2 3 3 3 3m , m , m , ,T T TQ h h X h h X h X k      (31)

Note that we must impose the condition that :
3 3TX h , in this case.

To find this probability, we first solve :

   2 11 1 11 2
m ,T T

Q Q
TX h h X k

E E X1 1
  

  
  
    

, then : (32)

   2 3 21 1 1 2 12 3
,m m ,T T

Q Q
TX h h h X k

E E X1 1
   

  
  
    

,then : (33)

   2 3 4 33 1 1 2 2 3 33 4
,m ,m m ,T T

Q Q
TX h h h h X k

E E X1 1
    

  
  
    

, and eventually : (34)

   2 3 4 43 1 1 2 2 3 3 3 54 3
,m ,m , ,m TT T

Q Q
TX kX h h h X h h

E E X1 1
    

  
  
    

(35)

The result is a sum of eight terms involving the quintivariate standard gaussian distribution :

 
3 4 5

2 3 4
1 1 2 2 3 3 3 3m , m , m , ,T T TQ h h X h h X h X k      

3 3 3 4 51 1 1 2
5 12 23 34 45

1 2 3 4 5

, , , , , , ,
h T h T k Th T h T

N
T T T T T

m m mm m

s s s s s

              
  

(36)
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12

2

3 1 3 3 1 4 1 51 1 1 2
5 12 23 34 45

1 2 3 4 5

2 2 2
, , , , , , ,

h h h T h h T k h Th T h T
e N

T T T T T

m

s
m m mm m

s s s s s

                 
  

22

2

3 2 3 3 2 4 2 51 1 1 2
5 12 23 34 45

1 2 3 4 5

2 2 2
, , , , , , ,

h h h T h h T k h Th T h T
e N

T T T T T

m

s
m m mm m

s s s s s

                  
  

 2 12

3 2 1 3 3 2 1 4 2 1 51 1 1 22

1 2 3 4 55

12 23 34 45

2 2 2 2 2 2
, , , ,

, , ,

h h

h h h T h h h T k h h Th T h T

T T T T Te N
m

s

m m mm m

s s s s s


              
 
   
      

32

2

3 3 3 4 3 51 1 1 2
5 12 23 34 45

1 2 3 4 5

2
, , , , , , ,

h h T h T k h Th T h T
e N

T T T T T

m

s
m m mm m

s s s s s

               
  

 3 12

2

3 1 3 3 1 4 3 1 51 1 1 2
5 12 23 34 45

1 2 3 4 5

2 2 2 2
, , , , , , ,

h h h h T h h T k h h Th T h T
e N

T T T T T

m

s
m m mm m

s s s s s

                  
  

 3 22

2

3 2 3 3 2 4 3 2 51 1 1 2
5 12 23 34 45

1 2 3 4 5

2 2 2 2
, , , , , , ,

h h h h T h h T k h h Th T h T
e N

T T T T T

m

s
m m mm m

s s s s s

                   
  

 3 2 12

3 2 1 3 3 2 1 4 3 2 1 51 1 1 22

1 2 3 4 55

12 23 34 45

2 2 2 2 2 2 2
, , , ,

, , ,

h h h

h h h T h h h T k h h h Th T h T

T T T T Te N
m

s

m m mm m

s s s s s
 

              
 
   
      

where :

 

 

 
 

 
 

 
 

 

      

2 2 2 22
12 23 34 45

2 2 2 2
12 23 34 453 51 2 4

2 2 1 2 1 2 1 2 1

5 1 2 3 4 5 12 23 34 45
5/2 2 2 2 2

12 23 34 45

, , , , , , ,
2 1 1 1 1

v u w v x w y xu

u uu u u
e

N u u u u u dydxdwdvdu

r r r r

p r r r r

   
    

   

 

    
   

    

(37)

We may also require that the monitored barriers be outside barriers. This can be easily

done in our analytical framework.

Let us take the example of an up-and-out put option written on an asset S with strike K , expiry

3T and three outside barriers 1 2 3, ,H H H (with 1 2 3H H H  ) monitored with respect to another

asset V . Both S and V follow geometric brownian motion with risk-neutral drift sm and vm

respectively, and volatility ss and vs respectively. S and V have correlation coefficient q .
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To value this option, we need to find :

     

3

1 2 3
0 1 1 2 2 3, , ,

V V V

TQ M h M h M h X k
        

(38)

with :

 

 
  0

,

sup ln /

a b

Vb
a t

t T T

M V V


 ,  0ln /i ih H V ,  0ln /k K S and  
3 3 0ln /T TX S S (39)

In terms of conditional expectation, this probability can be expressed as :

        31 2 3
30 1 1 2 2 3 33

, , ,
V V V

T
T

Q Q
TX kM h M h M h Y h

E E Y1 1        
   

 
  
  
   

  

(40)

with :  
3 3 0ln /T TY V V

We know how to calculate

     1 2 3
0 1 1 2 2 3 33

, , ,
V V V

T

Q

M h M h M h Y h
E 1       

   

 
 
 
 
  

(41)

Now,   3
3T

Q
TX k

E Y1


 
 
  

is the expectation, under the equivalent martingale measure, of the

logarithm of a geometric Brownian motion
3TS conditional on the logarithm of another

correlated geometric brownian motion
3TV . The risk-neutral joint density of

3TX and
3TY is :

   
 

2 2

3 3 3 3
2

3 3 3 3

3 3

1
2

2 1

, 2
3

,
2 1

V V S S

V V S S

T T

a T a T b T b T

T T T T

X Y
s v

e
f a b

T

m m m m
q

s s s sq

ps s q

                                                              



(42)

Hence, the density of
3TX conditional on

3TY is :

   

 

 

 

2

3 3

2 2
3

3 3

2 1

2
32 1

S
S V

V

S

T T

b T a T

T

X Y
S

e
f b a

T

s
m q m

s

q s

s p q

       








(43)

i.e.,    3 3 3

2 2
3 3 3 1S

T T S T V S
V

X Y T Y T T
s

m q m s q
s

        
  (44)
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where  refers to the univariate Gaussian distribution with mean  3 3 3
S

S V
V

T Y T
s

m q m
s

  and

variance  2 2
3 1STs q . Then, performing the necessary calculations, one can obtain :

        31 2 3
30 1 1 2 2 3 33

, , ,
V V V

T
T

Q Q
TX kM h M h M h Y h

E E Y1 1        
   

 
  
  
   

  

1 1 2 2 3 3 3
4 12 23

1 2 3 3

, , , , ,V V V S

V V V S

h T h T h T k T
N

T T T T

m m m m
q

s s s s

        
  

(45)

22

2 2 3

1 1 2 2 3 2 3
4 12 23

1 2 3 3

2
2

, , , , ,
V

V

S
Sh

V V V V

V V V S

k h T
h T h T h h T

e N
T T T T

m

s

s
q m

m m m s
q

s s s s
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2 1 3

1 1 2 1 2 3 1 3
4 12 23

1 2 3 3

2
2 2

, , , , ,
V

V

S
Sh

V V V V

V V V S

k h T
h T h h T h h T

e N
T T T T

m

s

s
q m

m m m s
q

s s s s
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2
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V

V

S
Sh h

V V V V

V V V S

k h h T
h T h h T h h h T

e N
T T T T

m

s

s
q m

m m m s
q

s s s s
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2 3 3

1 1 2 2 3 3
4 12 23

1 2 3 3

2

, , , , ,
V

V

S
Sh

V V V V

V V V S

k h T
h T h T h T

e N
T T T T

m

s

s
q m

m m m s
q

s s s s
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V

V
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Sh h
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k h h T
h T h T h h T
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T T T T

m

s

s
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2
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, ,

V
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S
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e N
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m

s
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In the case of outside barriers, we have to resort to a new convolution of normal distribution

functions, slightly different from the one given in section 1. This is because we are now faced

with two different kinds of correlation coefficients : the first one  12 23,  , which is the one

we have dealt with so far, is purely path-dependent ; the second one  q measures a correlation

of returns between two assets. As a result, we obtain the following minor modification :

 

 

 
 

 
 

 

     

2
2 22 312 23

2 2 2
12 23

2 2 1 2 1 2 1

4 12 23
2 2 2 2

12 23

, , , , ,
2 1 1 1

z T yx w y xw

a b c d
e

N a b c d dzdydxdw

q

r r q

q
p r r q

 
   

  

 

  
  

    (46)

Note too that the final option valuation formula implies a new change of measure. As shown in

section 1, the option value is :

     

     

3
3

3
3

1 2 3
0 1 1 2 32

1 2 3
0 0 1 1 2 32

. , , ,

, , ,S

V V VrT
T

V V VT
T

e K Q M h M h M h X k

S e Q M h M h M h X kd





        

         


(47)

As before, we have : 2
S S Sm m s  . However, application of Girsanov theorem shows that :

V V S Vm m qs s  .

4. Numerical results

The formulae given in the previous sections would be of little use if their

implementation did not provide fast and accurate option values. This raises the question of

how to perform the numerical integration implied by the computation of the special forms

of multivariate Gaussian distributions involved. As the dimension of the integrals is quite

moderate, one can turn to low discrepancy sequences.

The fundamentals of quasi random integration are very well covered, for instance, in

Niederreiter (1992). It has been shown by Paskov (1996) that the Sobol algorithm (Sobol,

1967) performs particularly well when applied to financial problems. Faure sequences have
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also been proved to be a judicious choice (Faure, 1982 ; Boyle et al., 1996). There is

evidence that Halton sequences (Halton, 1960) are slightly less reliable than Sobol or Faure

sequences in high dimensions. However, they have the attraction of simplicity, and since we

are dealing here with five-dimensional integrals at most, they can be used without

significant loss of precision, as will be verified in a moment.

To put our analytical approach to the test, we are indeed going to compare the Halton quasi

random integration of our formulae with Monte Carlo simulation results. We choose to

implement conditional Monte Carlo because, in our experience, it consistently outperforms

alternative Monte Carlo variance reduction techniques, such as matching moments,

stratification or importance sampling. Good references on conditional Monte Carlo are El

Babsiri and Noël (1998) or Andersen (1998). In particular, El Babsiri and Noël (1998) show

how generating extrema over a certain period by their own law, conditional on the simulated

terminal value of the underlying asset over the given period, substantially increases the

speed and the accuracy of Monte Carlo simulation, and their method will be followed here.

To further reduce variance, we combine conditional Monte Carlo with antithetic variates,

and we call this « advanced Monte Carlo », as opposed to « plain Monte Carlo » in which

the asset price path is dicretized in time without applying any variance reduction technique

and the extrema are monitored four times per business day (which is inefficient and biased

high).

We start with the implementation of the formula for a four-dimensional step down-and-out

call option given in appendix 2. The dimension, here, is quite moderate, but the fact that we

have 32 terms to compute (16 terms under the Qmeasure and 16 terms under the

Q measure) makes the issue of efficiency not so trivial. Our Monte Carlo estimator, after

n simulations, will be given by :

         1 2 3 44 1 2 3 40 1 1 2 2 3 3 4
, , ,Q

T T T T Tm H m H m H m H
E S K S S S S

+
1 1 1 1
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2

1 1 14

4 1 2 3 41 2 3 4

4 2ln / ln / ln / /

, , ,
11

1
1

i i i i
j j jT T T Tj j j j

i i i i
T T T T

n H S S S H S T
irT

T S H S H S H S H
ji

e S K e
n

1
s

  

                              

   


               

 

(48)

where  i
tS denotes the value of tS randomly drawn at simulation n° i

The results are provided in Table 1. One can observe the quality of convergence of quasi

random integration of analytical formulae, using only a small sample of Halton points,

which makes it extremely fast to compute, even on an ordinary personal computer. In

contrast, convergence is much slower with Monte Carlo simulation.

Due to its intrinsic uncertainty, the accuracy of Monte Carlo simulation should obviously be

gauged with respect to analytical values, provided that the process of quasi random

integration does not alter the exact theoretical solutions. One way to estimate the possible

distorsion created by quasi random integration is to use it to compute option values that can

be computed otherwise with great precision, so that we have a benchmark at our disposal.

This the case for one-dimensional options, as we can rightfully trust our numerical estimates

of the univariate gaussian distribution. However, our test of quasi random integration will

be biased if we simply perform one-dimensional quasi-random integration, because then we

shall not feel entitled to extrapolate our findings to the behaviour of quasi random

integration in dimension four. A possible solution is to compute four-dimensional formulae

which exactly converge to one-dimensional formulae. For example, a step down-and-out

call option with H1=90, H2=90, H3=90 and H4=90, should have exactly the same value as

that of a standard down-and-out call option with H=90. Table 2 shows the results of this

simple test. They confirm the robustness of quasi random integration. Almost

instantaneously, we obtain a price whose divergence from the calibrating exact price is less

than 0.003%. In contrast, using advanced Monte Carlo, the immediate price we obtain

exhibits an awful divergence of 11.9% from the calibrating exact price. After performing

two million simulations, that divergence has shrunk to 0.008%, but the procedure is

extremely time-consuming and cannot be applied in real trading time.
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In Table 3, we turn to the implementation of the formula for a four-dimensional step

up-and-out put option given in section 2. Again, we test the precision of quasi random

integration by using it compute the value of the same step up-and-out put option with all

four barriers fixed at 120, which should be strictly equal to a standard up-and-out put option

with a knock-out barrier at 120. This time, the quasi instantaneous analytical price we

obtain diverges from the exact calibrating price from 0.002% (Table 4).

In Table 5, we implement the formula for a forward-start early-ending three-step down-

and-out call option given in section 3. As one more dimension is involved, we increase the

size of our samples of Halton quasi random points. As a result, computational time is

slightly longer, but it remains extremely efficient compared with Monte Carlo simulation.

Of course, computational time could be cut simply by using more hardware resources.

Eventually, in Table 6, we implement the formula for an outside three-step up-and-out

put option given in section 3.
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Table 1 : four-dimensional standard step down-and-out call option

Number of
simulations /
Halton points

Volatility
= 18%

Volatility
= 25%

Volatility
= 32%

Computational
Time
(PIII 1 GHz)

Standard error
(for simulation)

QRA
50,000

11.42 11.42 11.26 00 : 18’

QRA
10,000

11.37 11.42 11.29 00 : 04’

AMC
2,000,000

11.41 11.40 11.26 03 : 07’ 0.0067

AMC
200,000

11.19 11.56 11.06 00 : 16’ 0.0604

PMC
100,000

11.76 12.01 11.92 18 : 23’ 0.1242

Inputs : S = 100 ; K = 100 ; r = 0.06 ;  = 0.02 ; T1 = 0.6 ; T2 = 1.2 ; T3 = 1.8 ; T4 = 2.4
H1 = 90 ; H2 = 84 ; H3 = 80 ; H4 = 76 ; QRA = Quasi Random Analytical (Halton) ;
AMC = Advanced Monte Carlo simulation ; PMC = Plain Monte Carlo simulation

Table 2 : four-dimensional step down-and-out call option theoretically equal to a
standard down-and-out call option

Exact value QRA
10,000

QRA
50,000

AMC
10,000

AMC
50,000

AMC
2,000,000

4-D step
DOC

10.46 10.49 10.44 9.35 9.40 10.38

Inputs : S = 100 ; K = 100 ; r = 0.06 ;  = 0.02 ; T1 = 0.6 ; T2 = 1.2 ; T3 = 1.8 ; T4 = 2.4
H1 = 90 ; H2 = 90 ; H3 = 90 ; H4 = 90 ; volatility = 32%

Table 3 : four-dimensional standard step up-and-out put option

Number of
simulations /
Halton points

Volatility
= 18%

Volatility
= 25%

Volatility
= 32%

Computational
Time
(PIII 1 GHz)

Standard error
(for simulation)

QRA
50,000

5.60 7.70 9.14 00 : 18’

QRA
10,000

5.59 7.71 9.17 00 : 04’

AMC
2,000,000

5.64 7.74 9.14 03 : 09’ 0.0044

AMC
200,000

5.82 7.58 9.26 00 : 16’ 0.0592

PMC
100,000

6.02 7.08 9.52 18 : 28’ 0.1308

Inputs : S = 100 ; K = 100 ; r = 0.06 ;  = 0.02 ; T1 = 0.6 ; T2 = 1.2 ; T3 = 1.8 ; T4 = 2.4
H1 = 120 ; H2 = 122 ; H3 = 125 ; H4 = 128
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Table 4 : four-dimensional step up-and-out put option theoretically equal to a
standard up-and-out put option

Exact value QRA
10,000

QRA
50,000

AMC
10,000

AMC
50,000

AMC
2,000,000

4-D step
UOP

8.92 8.94 8.89 9.27 8.98 8.94

Inputs : S = 100 ; K = 100 ; r = 0.06 ;  = 0.02 ; T1 = 0.6 ; T2 = 1.2 ; T3 = 1.8 ; T4 = 2.4
H1 = 120 ; H2 = 120 ; H3 = 120 ; H4 = 120 ; volatility = 32%

Table 5 : forward-start early-ending three-step down-and-out call option

Number of
simulations /
Halton points

Volatility
= 18%

Volatility
= 25%

Volatility
= 32%

Computational
Time
(PIII 1 GHz)

Standard error
(for simulation)

QRA
200,000

10.45 11.67 12.95 01 : 06’

PMC
1,000,000

10.50 11.78 13.09 58 : 33’ 0.014

QRA
100,000

10.40 11.62 12.91 00 : 42’

Inputs : S = 100 ; K = 100 ; r = 0.06 ;  = 0.02 ; T1 = 0.3 ; T2 = 0.6 ; T3 = 0.9 ; T4 = 1.2
T5 = 2 ; H1 = 92 ; H2 = 85 ; H3 = 88

Table 6 : outside three-step up-and-out put option

Number of
simulations /
Halton points

Correlation
= - 0.5

Correlation
= 0

Correlation
= 0.5

Computational
Time
(PIII 1 GHz)

Standard error
(for simulation)

QRA
10,000

1.01 1.52 1.91 00 : 03’

QRA
100,000

1.01 1.51 1.91 00 : 30’

AMC
2,000,000

1.06 1.51 1.93 01 : 54’ 0.002

AMC
200,000

1.07 1.54 1.95 00 : 16’ 0.008

Inputs : S = 15 ; K = 18 ; V = 100 ; H1 = 125 ; H2 = 130 ; H3 = 135
r = 0.06 ; S = 0.27 ; S = 0.01 ; V = 0.32 ; V = 0.02 ; T1 = 0.5 ; T2 = 0.8 ; T3 = 1.5
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Conclusion

This paper has shown ways to obtain explicit formulae for a variety of barrier options

with complex payoffs involving joint distributions of several extrema. Combined with quasi

random integration, analytical formulae provide extremely fast and accurate option values,

compared with Monte Carlo simulation. They can also provide exact hedge ratios by mere

differentiation. Probably most important of all, analytical solutions tell us how the various

parameters affect the solution and bring out the interrelationships among them.

More sophisticated stochastic processes may be required to model the motion of the underlying

asset, making it impossible to find explicit solutions when joint extrema are involved. Still,

analytical formulae remain valuable as accurate benchmarks to test more general numerical

schemes.

In the cases that have been covered, only one barrier, whether down-and-out or up-and-out, or

no barrier at all, is monitored at any one time. One may need to value partial double barrier

options with periods when two barriers, one down-and-out and the other up-and-out, are

simultaneously monitored. Classical examples are the so-called « hot dog » or « corridor »

options with double barriers that change as step functions of time. Exact values can be found for

these contingent claims too. However we would not recommend the use of analytical pricing in

this case. Indeed, such formulae involve products of infinite series, so that the number of terms

increases very quickly, which makes it cumbersome to calculate analytically and inefficient to

compute numerically.
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APPENDIX 1 : GRAPHS

Graph 1 : four-dimensional standard step up-and-out option

T0 T1 T2 T3 T4

Graph 2 : four-dimensional standard step down-and-out option

T0 T1 T2 T3 T4

Graph 3 : forward-start early-ending three-step down-and-out option

T0 T1 T2 T3 T4 T5
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APPENDIX 2 : FORMULA FOR THE PRICE OF A FOUR-DIMENSIONAL

STANDARD STEP DOWN-AND-OUT CALL OPTION

At expiry 4T , a four-dimensional European standard step down-and-out call option pays

off :  
4TS K


 , provided that the barrier 1H is not crossed before 1T and that the barrier 2H is

not crossed between 1T and 2T and that the barrier 3H is not crossed between 2T and 3T and

that the barrier 4H is not crossed between 3T and the option expiry 4T , with :

1 0 2 0 3 0 4 0, , ,H S H S H S H S    , and : 1 2 3 4H H H H   .

As shown in section 1, finding a formula for the price of a four-dimensional European standard

step down-and-out call option involves computing the following joint cumulative distribution :
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By successively solving :
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(52)

by means of the method explained in section 2 of this paper, using identities (A.5), (A.6) and

(B.2) in Appendix 3 at stage (i), identities (A.7) and (B.4) in Appendix 3 at stage (ii), identities
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(A.8) and (B.6) in Appendix 3 at stage (iii), one can obtain a closed form expression made up of

sixteen terms involving the quadrivariate standard gaussian distribution :
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where the function  4 12 23 34N a b c d      has been defined in Section 1

APPENDIX 3 : USEFUL IDENTITIES

In the following, , , ,u v w x are variables of integration, , , ,l a b g are arbitrary integers

indexing barrier level, and 1 2 3 4, , ,    are any real numbers. There is a one-to-one

correspondence between each operator  or  appearing on the left-hand side of every identity

and each symmetrical operator appearing on the right-hand side of the same identity

(symmetrical meaning here in the same order of appearance). To make sure that these notations

are clear, proposition A.3) is expanded at the end of this list into the two identities it is

equivalent to.

These straightforward identities, which can easily be verified, are helpful to simplify multiple

integrals that are frequently encountered in multidimensional barrier option pricing. They are

readily extended to higher dimensions.
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For example, proposition A.3) is expanded into :
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