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OPTIMAL FEEDBACK CONTROL FOR UNDAMPED WAVE
EQUATIONS BY SOLVING A HJB EQUATION

AXEL KRÖNER∗, KARL KUNISCH† , AND HASNAA ZIDANI ‡

Abstract. An optimal finite-time horizon feedback control problem for (semi-linear) wave equa-
tions is presented. The feedback law can be derived from the dynamic programming principle and
requires to solve the evolutionary Hamilton-Jacobi-Bellman (HJB) equation. Classical discretization
methods based on finite elements lead to approximated problems governed by ODEs in high dimen-
sional spaces which makes the numerical resolution by the HJB approach infeasible. In the present
paper, an approximation based on spectral elements is used to discretize the wave equation. The
effect of noise is considered and numerical simulations are presented to show the relevance of the
approach.

Key words. optimal control, wave equation, Hamilton-Jacobi Bellman equation, spectral ele-
ments
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1. Introduction. In this paper we consider optimal feedback control for one-
dimensional (semi-linear) wave equations. Let Ω ⊂ R

1 be an open interval, T > 0.
We consider control problems of the following type

(1.1)





min
u∈U

J(u) =

∫ T

0

l(y(s), u(s))e−µsds,

d

ds
y(s) = F(y(s), u(s)),

y(0) = y0

for given distributed costs l : L2(Ω)×L2(Ω) → R, discount factor µ, set of admissible
controls U , dynamics F given by a (semi-linear) wave equation, and initial point y0
at time t = 0. The state y is defined as the solution of the wave equation under the
control u. A precise definition is given in the next section.

Although there are many publications for numerical methods for open-loop op-
timal control problems with partial differential equations, there are only few results
on numerical methods for closed-loop optimal control of partial differential equations
which are conceived for nonlinear problems. Riccati-based methods and their nu-
merical approximations for the linear regulator problem in the context of infinite
dimensional systems have received a significant amount of attention in the past. The
linear-quadratic regulator for infinite dimensional, second order (in time) linear oscil-
lators is considered in [19]. In [3] an approximation framework for the computation
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(in finite dimensional spaces) of Riccati operators is presented that converges to the
Riccati operator for the linear regulator problem for a large class of parabolic systems.
In [20] a hybrid method for computing feedback gains in linear quadratic regulator
problems is analyzed which is in particular appropriate when used with large di-
mensional systems like control systems for partial differential equations and in [27] a
regularity result for solutions of Riccati equation is shown which is essential to obtain
a rate of convergence for numerical approximations. A review article on continuous
and approximation theory for Riccati equations can be found in [34].

For recent results on Riccati-based methods in the context of control of partial
differential equations see, e.g., [36], where an explicit solution for Riccati equations
arising in transport theory is considered. In [4] the authors study a Riccati approach
for the two dimensional Navier Stokes equation, and in [39, 13] the authors consider
feedback stabilization for Burgers and Navier-Stokes equations.

For optimal feedback control of partial differential equations based on Hamilton-
Jacobi Bellman (HJB) equations there exists only few publications. Here we mention
some of them. In [16] internal approximation schemes for optimal control problems
in Hilbert spaces are considered and conditions for convergence of the approximate
value function are given. In [21] HJB equations for optimal control problems of semi-
linear parabolic equations are analyzed. For optimal feedback control of the Burgers
equation using proper orthogonal decomposition (POD) we refer to [31, 33]. For an
optimal feedback control approach of an advection-diffusion equation with an adaptive
POD method see [1].

For existing results in the context of feedback control of the wave equation we
refer to [19], for the strongly damped wave equation and the Timoshenko beam to
[25, 24]. For open-loop control of the wave equation see [18, 23, 29, 30, 32] and the
references cited therein.

In this paper we use a feedback law for the semi-discrete problem of (1.1) which
is based on the solution of the corresponding HJB equation. We study the stabilizing
effect of the feedback control with respect to noise effecting the dynamics or the
observation for linear and nonlinear equations. For validation purposes we compare
the results with a linearized Riccati approach. We observe that in the case of the
linear wave equation the HJB and the Riccati approach lead to similar results. In
case of a nonlinear equation the Riccati approach may fail while the HJB approach
still stabilizes the system.

The discretization of partial differential equations in space usually leads to high
dimensional dynamical systems and it is therefore very challenging to solve the corre-
sponding HJB equation (so-called curse of dimensionality). In the last decades, several
theoretical and numerical developments in HJB theory led to powerful and efficient
numerical approaches that can be used for control problems up to 6-dimensional prob-
lems [2, 7, 10, 8, 15, 37, 40]. For higher dimensional problems, various approaches
have been studied in the literature, including model reduction or advanced numerical
schemes as, e.g., sparse grids, see [11]. Finally, we also point out that a general intro-
duction for Hamilton-Jacobi Bellman equations and the numerical treatment can be
found in the monograph [6].

In our approach we overcome the difficulty (curse of dimensionality) by discretiz-
ing the wave equation with spectral elements in space. In many situations already few
basis functions are sufficient to obtain a useful approximation. This choice of basis
functions leads to diagonal stiffness and mass matrices which allow in certain situ-
ations a decomposition of the originally problem in lower dimensional subproblems
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which can be solved in parallel.
The paper is organized as follows. In Section 2 we formulate the continuous control

problem, in Section 3 we present a semi-discretization in space of (semi-linear) wave
equations and formulate the DPP and the corresponding HJB equation, in Section 4
we describe the decomposition in subproblems in case of optimal control of the linear
wave equation, in Section 5 we formulate the discrete scheme for solving the HJB
equation, in Section 6 we formulate the numerical feedback law, and in Section 7 we
present some numerical examples.

2. The control problem. In this section we introduce the control problem in
its functional analytic setting. Let

A : H1
0 (Ω)× L2(Ω) → L2(Ω)×H−1(Ω), A =

(
0 id
c∆ 0

)

with the negative Laplacian (−∆): H1
0 (Ω) → H−1(Ω), parameter c > 0, and identity

map id: L2(Ω) → L2(Ω). We consider semi-linear wave equations (written as a first
order system in time) of the following type

(2.1)





d

ds
y(s)−Ay(s)− g(y1(s)) = f̄(s), s ∈ (0, T ),

y(0) = y0

with solution y = (y1,y2)T , t ∈ [0, T ), T > 0, f̄ = (0, f(·))T , f ∈ L2(L2(Ω)), initial
point y0 ∈ H1

0 (Ω)× L2(Ω), and nonlinearity

g : L2(Ω) → { 0 } × L2(Ω), z 7→ (0, g2(z))
T

with

‖g2(z)− g2(w)‖L2(Ω) ≤ Lg ‖z − w‖L2(Ω) ∀z, w ∈ L2(Ω)(2.2)

for Lipschitz constant Lg > 0. We assume that there exists a unique bounded solution
in C([0, T ];H1

0 (Ω)× L2(Ω)).
Remark 2.1. For the linear wave equation (i.e. g ≡ 0) there exists a unique

solution y ∈ C([0, T ];H1
0 (Ω)×L2(Ω)) (see [35, p. 275]). Existence and uniqueness for

the semi-linear wave equation can be shown under further conditions on the nonlinear
source term g, see [41]. The Lipschitz continuity assumption (2.2) of g will be used
for the HJB approach in next section.

To set up a control problem we introduce the set of admissible controls

U = L2((0, T );U)(2.3)

with

U = {u ∈ R
m | ui

a ≤ ui ≤ ui
b for i = 1, . . . ,m }(2.4)

and ui
a, u

i
b ∈ R, i = 1, . . . ,m, m ∈ N. Further, we define the operator

B : Rm → { 0 } × L2(Ω), Bu = (0, ũ)T , ũ =

m∑

i=1

ui sin(πix)(2.5)
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i.e. for every input u ∈ U , the function B is a control of the amplitudes of the basis
modes. Now, consider the distributed cost given by:

l : L2(Ω)2 ×R
N → R, l(z, u) =

1

2
‖Cz − yd‖

2
L2(Ω) +

α

2
‖u‖

2
(2.6)

for parameter α > 0, C = (id, 0), and a given desired state yd ∈ L2(Ω), respectively.
Here, ‖·‖ denotes the Euclidean norm.

Then the control problem is defined as

(2.7)





min
u∈U

∫ T

0

l(y(s), u(s))e−µsds,

d

ds
y(s) = F(y(s), u(s)),

y(0) = y0

for y0 ∈ Y 1, a discount factor µ ≥ 0, and operator F defined by

(2.8) F : Y 1 × L2(Ω) → L2(Ω)× L2(Ω), F(x, u) = Ax+Bu+ g(x1)

with x = (x1, x2)
T ∈ Y 1.

In the sequel, we assume that for each control u ∈ U , there exists a unique state
y solution of (2.7).

3. Semi-discrete formulation and HJB equation. In this section a semi-
discretization in space of the wave equation is presented. This allows to formulate the
dynamic programming principle for the corresponding semi-discrete control problem
and to derive a HJB equation whose solution is the value function of the semi-discrete
problem.

The curse of dimensionality (i.e. the infeasibility to solve high dimensional HJB
equations) requires to consider semi-discrete approximations with low dimensional
discrete dynamical systems. This is the case when discretizing the wave equation by
spectral elements in space. Then the obtained approximated control problem governed
by ordinary differential equations has a reasonable number of state variables which
allow the problem to be solved by a low dimensional HJB equation.

3.1. Discretization in space. For the semi-discretization in space we make the
following ansatz. Let the state be given by yh = (yh1 , y

h
2 ) with

yh1 (x, t) =

N∑

k=1

yh1,k(t)ϕk(x), yh2 (x, t) =

N∑

k=1

yh2,k(t)ϕk(x)(3.1)

for given basis functions ϕk ∈ H1
0 (Ω), k = 1, . . . , N , and set

yh := (y1,1, . . . , y1,N , y2,1, . . . , y2,N )T ∈ L2((0, T );R2N ).

As mentioned above it is important to choose a low order of approximation N , since
the HJB equation that will be associated to the approximated control problem will
be in a 2N -dimensional space, see Section 3.3 where we will specify the choice of the
basis functions in more detail.

Further, we define the stiffness and mass matrices

(3.2)
Ah = ((∇ϕi,∇ϕj)L2(Ω))i=1,...,N,j=1,...,N ,

Mh = ((ϕi, ϕj)L2(Ω))i=1,...,N,j=1,...,N
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with respect to the basis ϕi, i = 1, . . . , N .
We introduce the discrete dynamics

Fh : R
2N ×R

N → R
2N , Fh(z, u) = M−1

h (Ahz +Bhu+ gh (z))(3.3)

with matrices

Mh =

(
Mh 0
0 Mh

)
, Ah =

(
0 Mh

−cAh 0

)
, Bh =

(
0
Mh

)
,

and nonlinearity

gh(z) = (0, gh,2(z))
T , gh,2(z) =



(
(g2(

N∑

k=1

zkϕk), ϕi)L2(Ω)

)

i=1,...,N


 .

and the discrete distributed cost

lh : R
2N ×R

N → R, lh(z, u) =
1

2
(Chz − yhd)

TMh(Chz − yhd) +
α

2
uTu(3.4)

for α > 0, yhd ∈ R
N , where yhd is the vector containing the coordinates of yd with

respect to the spectral basis functions, Ch ∈ R
2N×2N with Ch = (idN , 0)T . Here,

idN denotes the identity on R
N . The Lipschitz continuity of g implies the Lipschitz

continuity of gh. The semi-discrete control problem is given by

(3.5)





inf
u∈U

Jh(u) =

∫ T

0

lh(y
h
x,t(s), u(s))e

−µsds, s.t.

d

ds
yh(s) = Fh(y

h(s), u(s)) for s ∈ (0, T ),

yh(0) = yh0 ,

for initial value yh0 ∈ R
2N . The initial state yh0 is the projection of y0 on the finite

dimensional space Vh × Vh with Vh = span(ϕ1, . . . , ϕN ).
To simplify the notation we will henceforth omit the index h.

3.2. Dynamic programming principle and Hamilton-Jacobi Bellman
equation. For x ∈ R

2N and t ∈ [0, T ), we consider the parameterized control prob-
lem:

(Px,t)

inf
u∈U

∫ T

t

lh(yx,t(s), u(s))e
−µsds,

d

ds
yx,t(s) = Fh(yx,t(s), u(s)) for s ∈ (t, T ),

yx,t(t) = x.

In the above problem, the notation yx,t denotes the solution of the ODE system that
starts in the position x at time t. To the family of problems (Px,t), we consider the
value function v : R2N × [0, T ] → R that associates to each initial condition (x, t) the
infimum value of the problem (Px,t):

v(x, t) = inf(Px,t).
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The value function v satisfies the dynamic programming principle (DPP), see [6, p.
154-155]

(3.6) v(x, t) = inf
u∈U

(∫ τ

t

eµ(t−s)lh(yx,t(s), u(s))ds+ eµ(t−τ)v(yx,t(τ), τ)

)
,

for τ ∈ [t, T ], t ∈ [0, T ].
From the DPP we derive the value function v is given as the viscosity solution of

the evolutionary Hamilton-Jacobi Bellman (HJB) equation, cf. [6, p. 155],

(3.7)

{
−∂tv(x, t) + µv(x, t) +H(x,∇xv(x, t)) = 0 (x, t) ∈ R

2N × (0, T ),

v(x, T ) = 0 x ∈ R
2N ,

with Hamiltonian

(3.8)
H : R2N ×R

2N −→ R,

H(x, p) = sup
u∈U

(
−Fh(x, u)

T p− lh(x, u)
)
.

Moreover, from [26] we know that v is the unique viscosity solution of (3.7) with
quadratic growth.

Finally, let us point out that by straightforward calculations, the Hamiltonian
can be reformulated as:

(3.9) H(x, p) =

(
− xT (M−1

h Ah)
T p− (M−1

h g(x1))T p− u(p)T (M−1
h Bh)

T p

− (
1

2
(Chx− yhd)

TMh(Chx− yhd))−
α

2
u(p)Tu(p)

)

with

u(p) := argmaxu∈U

(
−Fh(x, u)

T p− lh(x, u)
)
= P[ua,ub]

(
−
1

α
M−1

h BT
h p

)
(3.10)

for any p ∈ R
2N , and projection P[ua,ub] defined by

P[ua,ub](z) = ẑ, ẑi = min(ui
b,max(ui

a, zi))

for z ∈ R
2N . In case of inactive control constraints this reduces to

H(x, p) = −xT (M−1
h Ah)

T p− (M−1
h g(x1))T p− (

1

2
(Chx− yhd)

TMh(Chx− yhd))

+
1

2α
pTBBT p

with B = M−1
h Bh.

3.3. Spectral elements. In general it is very challenging to solve the HJB (3.7)
in high dimensions. To obtain a low dimensional problem we use spectral elements
for the discretization of the wave equation in space. This allows to use only few basis
functions to obtain an appropriate approximation. Spectral elements play an impor-
tant role and are widely used for the numerical discretization of partial differential
equations, see, e.g. [14, 22, 38] and in the context of optimal control [17]. To discretize
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the wave equation by spectral elements we specify the domain Ω = (0, 1) and choose
the basis functions by

ϕk(x) = sin(kπx), k = 1, . . . , N, x ∈ Ω.

The corresponding mass and stiffness matrix are diagonal and are given by

Mh = diag
(
(1/2)k=1,...,N

)
, Ah = diag

((
1

2
(kπ)

2

)

k=1,...,N

)
.

The following numerical example shows, that for the corresponding open-loop control
problem only few spectral basis functions are necessary to obtain a good approxima-
tion.

Example 3.1. We consider problem (2.7) and allow that the distributed costs

also depend on time. We choose T = 1, Ω = (0, 1), µ = 0, c = 1, and the distributed

costs as

l : L2(Ω)× L2(Ω)× [0, T ] → R,

l(z, u, t) =
1

2
‖z − yd(t)‖

2
L2(Ω) +

α

2
‖u‖

2
L2(Ω)

with α = 1, and the desired state by

yd(z, t) = (t− T )4z3(1− z)3 + 24z3(1− z)3 − 12(t− T )2(6z(1− z)3 − 18z2(1− z)2

+ 6z3(1− z))− 12(t− T )2(6z(1− z)3 − 18z2(1− z)2 + 6z3(1− z))

+ (t− T )4
(
−18(1− z)2 + 216z(1− z)− 54(1− z)2 − 72z2

)
.

The initial values are given by

x(z) = (T 4z3(1− z)3,−4T 3z3(1− z)3)T .

The constraints on the control are chosen in such a way that they remain inactive.

Then the exact state is given by

y∗(z, t) = ((t− T )4z3(1− z)3, 4(t− T )3z3(1− z)3)T .

For N=5 spectral basis functions the error between the exact solution y∗ and the nu-

merical approximation ỹ is ‖ỹ − y∗‖L2(L2(Ω)) ≈ 1.29 · 10−4. For time discretization a

Crank Nicolson scheme is applied with temporal mesh parameter k = 1.0 · 10−4. This

example shows that already few spatial basis functions lead to a good approximation

of the state.

Remark 3.2. As already known and mentioned earlier in the paper, the theory
of the HJB equation approach is valid in any dimension. However, in practice, the
implementation of the method in high dimension requires, in general, a huge numerical
effort (data storage and computing time).

Several works have dealt with model reduction of optimal control problems gov-
erned by partial differential equations leading to a reduced controlled system that
can be studied numerically by using the HJB approach, see, e.g., [33] and [31], where
proper orthogonal decomposition (POD) is applied to reduce the dimension of the un-
derlying dynamical system, and in [1], where for adaptively chosen small time horizons
the dynamical system is reduced by POD.

Note also that, it would be interesting to reduce the dimension not in the defi-
nition of the control problem, but in the HJB equation associated to it. However, for
such a nonlinear PDE the analysis of reduction techniques is still an open problem,
see [11] for a method based on sparse grids.
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4. Decomposition in two dimensional subproblems. The discretization by
spectral elements leads to diagonal mass and stiffness matrices, i.e. the set of basis
functions is an orthogonal basis with respect to the L2(Ω)- and H1

0 (Ω)-inner product.
In certain situations this allows to decompose the 2N -dimensional HJB equation in N
2-dimensional decoupled HJB equations which can be solved in parallel. In this section
we assume that the problem is of linear-quadratic type with possibly constraints on
the control, i.e.

(4.1)





min
u∈U

Jh(x, t, u) =

∫ T

t

lh(yx,t(s), u(s))e
−µsds, s.t.

d

ds
yx,t = M−1

h (Ahyx,t +Bhu) ,

yx,t(t) = x.

We introduce N subproblems defined, for i = 1, . . . , N by

(4.2)





vi(ẑ, t) = min
u(·)∈Ui

1

2

∫ T

t

(
1

2
‖z1i (s)‖

2 + αu2(s)

)
e−µsds,

żi(s) = Aizi(s) +Bu(s),

zi(t) = ẑ,

for zi = (z1i , z
2
i )

T and with Ui = L2((0, T );Ui) for Ui = {u ∈ R | ui
a ≤ u ≤ ui

b } and

Ai =

(
0 1
ai 0

)
, B =

(
0
1

)
,

and where ai = (M−1
h Ah)ii. For every i = 1, · · · , N , the value functions vi of the

subproblem (4.2) satisfies the following HJB equation:

(4.3)

{
−∂tvi(z, t) + µvi(z, t) +Hi(z,∇zvi(z, t)) = 0 (z, t) ∈ R

2 × (0, T ),

vi(z, T ) = 0 z ∈ R
2

with Hi(z, p) := supu∈Ui
(−(Aiz + Bu)T p − 1

2 (
1
2‖z‖

2 + αu2)) for z, p ∈ R
2. There

holds the following relation between the value function of problem (4.1) and the value
functions of the subproblems (4.2).

Theorem 4.1. Let vi be the solution of the subproblem (4.2) for i = 1, . . . , N
and let v be the solution of (4.1). Then there holds the relation

v(x, t) =
N∑

i=1

vi

([
xi

xi+N

]
, t

)
for every t ∈ (0, T ), x =




x1

...

x2N


 ∈ R

2N .

Proof. The arguments are straightforward since in the present case (when g ≡ 0)
the controlled system can be split into N decoupled systems. Also the minimisation
over the control set U can be split into N independent minimisation problems.
The above result means that instead of solving (3.7), one can solve N independent
2-dimensional HJB equations (4.3) with different data. These computations can be
done in parallel, which has as consequence a significant reduction of the computational
effort (in term of data storage and of cpu time).

Remark 4.2. It is well-known that in general the stiffness matrix for spectral
elements is ill-conditioned. By the decomposition the drawback of this property is
reduced since in every subproblem only two dimensional matrices are considered.
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5. Discretization of the HJB. Several discretization schemes for HJB equa-
tions have been studied in the literature. For an overview on finite differences schemes,
we refer to [37]. Another recent reference [15] gives an overview on semi-Lagrangian
schemes and the features of this class of methods. For a finite element approach we
refer to [28], and for discontinuous Galerkin methods to [7]. Another class of anti-
diffusive methods have also been studied in [8, 12]. Here, we use a finite difference
scheme method, more precisely, an ENO scheme for space discretization is coupled
with a Runge-Kutta time discretization scheme of second order.

5.1. Numerical scheme.. Following [37, 10] we shortly recall the scheme for
a given continuous Hamiltonian H : R2N × R

2N → R. For given temporal mesh
parameter ∆t and spatial mesh parameter ∆x = (∆x1, . . . ,∆x2N ) we define a spatial
mesh

G = {xI = (I1∆x1, · · · , I2N∆x2N ) for I ∈ Z
2N }

and temporal mesh

t = t0 < t1 < · · · < tM = T, tj+1 − tj = ∆t, j = 0, . . . ,MT − 1, MT ∈ N.

Further, we introduce difference quotients for x ∈ G by

D+v(x) = (D+
x1
v(x), . . . , D+

x2N
v(x)), D−v(x) = (D−

x1
v(x), . . . , D−

x2N
v(x))

with

D±
xi
v(xI) = ±

v(xIi,±)− v(xI)

∆x

and Ik,± = (i1, . . . , ik−1, ik ± 1, ik+1, . . . , i2N ). Then the Lax-Friedrichs scheme for
the HJB equation reads as follows: vMI = 0 for every I ∈ Z

2N , and

vn−1
I = vnI −∆tµvnI −∆tHLF (xI , D

+vn(xI), D
−vn(xI)) for n = M, · · · , 1

with Lax-Friedrichs Hamiltonian

HLF (x, p
+, p−) = H(x,

p+ + p−

2
)−

2N∑

i=1

Ci(x)

2
(p+i − p−i )(5.1)

and the stabilizing functions Ci(x) satisfying

max
p∈R2N

∣∣∣∣
∂H

∂pi
(x, p)

∣∣∣∣ ≤ Ci(x)

for i = 1, . . . , 2N . It is well-known that the Lax-Friedrichs scheme is monotone and
the convergence is of first order as far as the CFL condition

kmax
x∈G

(
2N∑

i=1

Ci(x)

∆xi

)
≤ 1

is satisfied.
An ENO scheme can be obtained by considering a variant of the LF scheme

vn−1
I = vnI −∆tµvnI −∆tHLF (xI , D̃

+vn(xI), D̃
−vn(xI)),

where D̃±vn(xI) are higher approximations of the gradient ∂xi
v coupled with a Runge-

Kutta time discretization scheme of second order, see [10, 37]. Convergence of this
method is not proved but various numerical examples confirm its relevance.
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5.2. Boundary condition for HJB equation on the computational do-
main. Since the HJB is defined on the full space we have to define a bounded com-
putational domain K × (0, T ), with K ⊂ R

2N , to solve the problem numerically. For
simplicity K will be chosen as

K := Π2N
i=1[ci, di],

and the considered grid is as follows:

G0 = {xI = (c1 + (I1 − 1)∆x1, · · · , c2N + (I2N − 1)∆x2N ) for I ∈ Π2N
i=1[1,Mi] } ,

with ∆xi :=
di−ci
Mi−1 . However, due the boundedness of K an appropriate choice of a

boundary condition is required to get a well define numerical scheme.
When a strong invariance condition

Fh(x, u) · n(x) < 0 ∀x ∈ ∂K, ∀u ∈ U,

(with exterior normal n to the boundary of K at x) is satisfied then all trajectories
starting in D will remain within Ω forever, see [6, p. 485]. In this case, there is no
need to impose a boundary condition. However, the strong invariance condition is
very restrictive and cannot be insured even in the simple case when g ≡ 0.

Here, we introduce an artificial boundary condition by setting the second deriva-
tive on the boundary to zero:

∂xxv(x, t) = 0 ∀(x, t) ∈ ∂Ω× (0, T ).

This means that at a time step tn, for n = MT , · · · , 1, if xI ∈ ∂Ω, then there exists
i such that Ii = 1 or Ii = Mi. In this case the upwind derivatives on the boundary
should be defined as:





D±
xi
v(xI) =

v(xIi,+)− v(xI)

hi

if Ii = 0;

D±
xi
v(xI)) = −

v(xIi,−)− v(xI)

hi

if Ii = Mi.

Since the value function is continuous, this approximation is reasonable. For a
more sophisticated treatment of the boundary condition using state constraints we
refer to [2].

6. Reconstruction of the trajectory. For the reconstruction of the trajecto-
ries we formulate a feedback law based on the HJB approach and present different
numerical realizations. This approach is applicable on a large class of (nonlinear)
problems without modifications of the general setting.

Notice that besides the HJB approach, to study optimal feedback control problems
for nonlinear dynamical systems, it is possible in some situations to use a Riccati based
approach. In this case, a Riccati feedback operator can be derived from the linearized
state equation. This approach has been considered, for instance, in [39] to study
boundary control problems governed by Navier Stokes equation. In [13] the authors
consider an infinite horizon problem and propose a method using formally a quadratic
Taylor approximation of the solution of the HJB equation. For a non-autonomous
system that appears in the internal stabilization of Navier Stokes equation to a non-
stationary solution a feedback law satisfying a differential Riccati equation can be
found in [5].
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According to the HJB approach and its associated dynamic programming princi-
ple, the optimal feedback control u∗

x for state x at time t ∈ [0, T ) satisfies

u∗
x = argmin

u∈U [t,t+τ]

(
e−µτv (yx,t(t+ τ), t+ τ)) +

∫ t+τ

t

eµ(t−s)lh(yx,t(s), u(s))ds

)
(6.1)

for τ ≥ 0 with t+ τ ≤ T , see [6, p. 149/155], and

U [t,t+τ ] = {u : [t, t+ τ ] → R
N | ∃w ∈ U : w|[t,t+τ ] = u } .

The feedback operator K is defined as

(6.2)
K : R2N × (t, T ) −→ U,

(x, τ) 7→ K(x, τ) = u∗
x(τ).

Once the feedback operator is defined, to reconstruct the optimal trajectory start-
ing in x0 at the initial time 0, one needs just to solve the dynamical system

y′(s) = Fh(y(s),K(y(s), s)), y(0) = x0, s ∈ (0, T ].

To realize the feedback law (6.2) numerically there are several methods. We give
an overview about three of them. Let v∆ be the discrete value function computed by
on G0 by the ENO scheme described in Section 5.

1. The dynamics and distributed cost are given in a separable form, i.e.

F(z, u) = F (z) +Bu, l(z, u) = j(z) +
α

2
uTu

with F : R2N → R
2N , matrix B ∈ R

2N×N , and j : U → R as it is the case in
the problem under consideration. If the value function satisfy v ∈ C1(R2N )
the feedback operator is determined by the projection of the gradient of the
value function on the set of admissible controls (cf. (3.10)), i.e.

K(x, t) = P[ua,ub]

(
−
1

α
BT∇xv(x, t)

)
.(6.3)

Since only an approximation v∆ of v can be computed, an approximation of
the feedback can be given by:

K∆(x, t) = P[ua,ub]

(
−
1

α
BT∇xv

∆(x, t)

)
,(6.4)

where the gradient ∇xv
∆ can be approximated component-by-component by

a central difference quotient.
2. The control minimizing the Hamiltonian H can be saved at every time point

and in every mesh point of G0 when solving the HJB equation. For all xI ∈ G0,
k ∈ { 0, . . . ,MT }, we set

K∆(xI , tk) = argmax
u∈U

(−Fh(xI , u)
T∇xv

∆(xI , tk) + lh(xI , u)),

where v∆ denotes the discrete value function. This leads to a set of discrete
controls {uI }I∈Z2N ,xI∈K

whose elements correspond to the mesh points. The
advantage of this approach is that it gives directly the set of discrete controls
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without any additional effort. A drawback of this approach is that this set
has to be saved and could be very large (as big as the set of all stored values
of the value function). Furthermore, to compute a feedback control which
corresponds to a state which is not a mesh point in G0 one has to compute
the control by an interpolation method. This procedure requires the feedback
control operator K to be continuous, which usually is not the case.

3. In this approach the dynamic programming principle is directly used to re-
construct the trajectories, i.e. using a discrete version of (6.1). We choose
the feedback control by

(6.5)

u∗
x(tk) = argmin

u∈U

(
[v∆](x+∆tFh(yx,tk(tk), u)) + ∆tlh(yxI ,tk(tk), u)

)
,

=: argmin
u∈U

G(x, yx,tk(tk), u).

Here, [·] is an interpolation of the value function v∆ on G0. A broadly used
method to determine the argmin consists in choosing a finite set Ufinite ⊂ U
and computing the argmin with respect to this set by evaluating the expres-
sion G(xI , yx,tk(tk), u) for all u ∈ Ufinite and taking the control value which
minimizes the expression, see [6, p. 475]. If the state space is low dimen-
sional, the approach works well. But in case of higher dimensions or a large
control set Ufinite the approach is only feasible in combination with a strategy
which reduces the number of evaluations of G(xI , yx,tk(tk), u) in each time
step. If the problem can be decomposed as described in Section 4 the number
of evaluations reduces strongly.

In all the simulations performed in this paper, we apply the first of these three methods
assuming that the value function is sufficiently smooth. This method gives us a direct
formula for the feedback control and saves much computational time in comparison
to the third option.

7. Numerical examples. Several numerical examples are presented studying
the stabilizing effect of the feedback control. For solving the HJB equation we use the
software package ROC-HJ-Solver, see [9], which is parallized with OpenMP. For the
reconstruction of the feedback controls and the corresponding trajectories MATLAB
is used.

In the first three examples we consider an optimal feedback control problem for
the linear wave equation and in the fourth one an optimal control problem for a
semi-linear wave equation. In all examples we set Ω = (0, 1), µ = 0, yd = 0.

7.1. Linear wave equation - without noise. In this example we consider the
control problem under consideration for the linear wave equation with data

c = 0.025, T = 8, y0(z) =

(
5∑

i=1

0.3 sin(iπz), 0

)T

, z ∈ Ω(7.1)

and α = 0.1. To validate the numerical algorithm we compare the trajectory we obtain
via the HJB approach with the trajectory via the Riccati approach. The differential
Riccati equation for the problem is given by

−P ′(t) = ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q, P (T ) = 0(7.2)

with Q = Mh, R = α idN , A = M−1
h Ah, and B = M−1

h Bh. The feedback operator
for the Riccati approach which maps the optimal state at time t namely y∗(t) to the
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corresponding optimal control u∗(t) is given by

K(t) = −R−1BTP (t).

For the reconstruction of the trajectories via the HJB approach we choose the
first method presented in Section 6. The computational domain for the HJB equation
is chosen to be K = [−1, 1]10. For the temporal discretization we choose the mesh
size ∆t = 2 · 10−3. For the spatial discretization we choose a mesh uniform in every
spatial direction with the following numbers of discretization points

10× 16× 30× 50× 60× 10× 16× 30× 50× 60.

That means for the spatial directions which correspond to higher modes we use more
grid points. Further, we decompose the equation in subproblems as described in
Section 4. For the discretization of the dynamical system as well as the Riccati
equation (7.2) we apply a explicit Euler scheme and set the temporal mesh parameter
to kds = 10∆t = 0.02.

In Figure 7.1 we see the first and fifth component of the state y1 and velocity
y2 obtained by the HJB (blue curves) and the Riccati (red curves) approach and the
corresponding components of the feedback control of these two approaches. The other
components show a corresponding behaviour, therefore we skip the plots here. For the
chosen discretization both approaches lead to nearly the same results. If we choose
finer spatial and temporal mesh sizes when solving the HJB equation the trajectory of
the HJB approach approximates the trajectory of the Riccati approach more closely.
Further numerical experiments show that for a fixed and sufficiently small temporal
mesh size the discretization of the subproblems for the higher modes require a finer
spatial mesh to obtain a good approximation. The corresponding state and velocity of
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Fig. 7.1: Components of the trajectory and the feedback control via HJB (blue) and Riccati
(red) approach, (α = 0.1)

the wave equation which correspond to the computed trajectories are shown in Figure
7.2. The example confirms that the chosen boundary condition described in Section
5.2 leads to appropriate numerical results.

7.2. Linear wave equation - with noise. We study the stabilizing effect of
the feedback control on the trajectories in presence of random noise which either
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(a) HJB approach

(b) Riccati approach

Fig. 7.2: State and velocity of the wave equation by the HJB and Riccati approach, (α = 0.1)

effects the dynamics or the observation. In this example we choose the parameter
α = 0.01 which will lead to a stronger decrease of the trajectories to zero than in the
previous example.

7.2.1. Noise in the dynamics. The noise enters the dynamics, i.e. we consider

yt = Fh(y, u) +M−1
h Bhδ, δ = (δ1, . . . , δ5)

T(7.3)

with random functions δi : [0, T ] → [δa, δb], i = 1, . . . , 5, for δa, δb ∈ R. The value
function is, of course, computed for the dynamical system without noise and the
feedback law is applied to the state resulting from the perturbed system. For data as
in (7.1) we compute the numerical solution of (7.3) for noise scaled to the following
interval

(7.4) δi(s) ∈ [−4, 4], i = 1, . . . , 5, s ∈ (0, T ].

For solving the HJB equation we proceed as in the previous example. The components
of the corresponding trajectory and feedback control are presented in Figure 7.3.
Again, the blue curves are the components of the trajectory computed via the HJB
approach (the corresponding Riccati approach leads to quite similar results, why
we omit the corresponding curves here). The red curves we obtain by the Riccati
approach applied to the equation without noise. If we plug the resulting control in
the perturbed system we obtain the green curves. In contrast to the latter control
we see that the feedback control stabilizes the dynamical system. The components
y2,i, i = 1, . . . , 5, are more susceptible to noise than y1,i, since the noise enters the
corresponding right hand sides.

In Figure 7.4(a) and 7.4(b) the state and velocity for the HJB and Riccati ap-
proach are shown, respectively. Both approaches drive the state and velocity to zero.
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Fig. 7.3: Noise in the dynamics: Components of the trajectory and the feedback control
via the HJB (blue) approach for the problem with noise and via the Riccati approach (red)
for the equation without noise as well as the components of the trajectory (green) when
applying the optimal control of the noise free system to the perturbed system, (α = 0.01).

We compare these results with the state and velocity when applying the optimal con-
trol for the noise free dynamics to the perturbed system, see Figure 7.4(c). In this
case the control fails to drive state and velocity to zero.

7.2.2. Noise in the observation. The noise enters the observation, i.e. we
consider the disturbed feedback law

u(s) = K∆(x(s) + δ(s)e10, s), e10 = (1, . . . , 1)T

with noise δ(s) : (0, T ] → R. In Figure 7.5 we see the components of the trajectory
and the control. Although we apply the feedback operator on the perturbed state
the resulting control stabilizes the trajectories. Numerical examples show that the
amplitude of the oscillations increase with the amplitude of the noise. We have to
choose the noise level smaller than in the first example namely δ(s) ∈ [0.01, 0.01]. The
noise has a much stronger effect on the trajectory than in the previous examples. As
in the previous example the HJB and Riccati approach for the system with noise lead
to very similar curves.

7.3. Linear wave equation - control of high order system. In Example 3.1
we saw that we can expect a good approximation when discretizing the wave equation
with 5 basis functions as we did in the previous examples. However, when considering
nondiagonal operators Bh or nonlinear problems the decomposition in subproblems
is no longer possible since the equations of the corresponding dynamical system are
coupled. In these cases we restrict the discretization to 3 basis functions for the state
and for the velocity, because of the curse of dimensionality, which results in a six
dimensional dynamical system. Nevertheless we can use the feedback control of this
low order system to control a corresponding high order system. In the following we
present an example, where we see the effects of the feedback control obtained from a
low order system on a high order one.

For the high order system we use a finite element discretization. For given τ > 0



16 Axel Kröner, Karl Kunisch, Hasnaa Zidani

(a) HJB approach

(b) Riccati approach

(c) Comparative solution

Fig. 7.4: Noise in the dynamics: State and velocity of the wave equation via the HJB and
Riccati approach as well as the state and velocity of a noisy dynamical system controlled by
the optimal control of the noise free problem, (α = 0.01).

we define the spatial mesh

xi = iτ,

with i = 0, . . . , q, q = 1/τ and consider a standard linear finite element space

V H
τ = {φ ∈ C0(Ω) | φ|Iq ∈ P1(Iq), Iq = [iτ, (i+ 1)τ ], i = 0, . . . , q − 1 } ,

where P1(Iq) consist of linear functions on Iq. Further we define the stiffness matrix
AFEM and mass matrix MFEM as in (3.2) with respect to the finite element basis
and the corresponding discrete dynamics FFEM as in (3.3) with gh ≡ 0. Then the
semi-discrete system is given by

(7.5)





d

ds
yτx,t = FFEM

τ (yτx,t, u
τ ) + (0,MFEM)T δ(s)e, s ∈ (0, T ],

yτx,t(0) = x
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Fig. 7.5: Noise in the observation: Components of the trajectory and the feedback control
via the HJB approach (blue) for the system with noise and via the Riccati approach (red)
for the equation without noise as well as the components of the trajectory (green) when
applying the optimal control of the noise free system to the perturbed system, (α = 0.01)

with noise δ : [0, T ] → R, e ∈ R
q−1, e(i) = 1 for i = 1, . . . , q − 1, and initial point

x ∈ R
q−1. For the time discretization we apply a Crank-Nicolson scheme and use the

same temporal mesh as for the low order system.
To set up an algorithm to compute the feedback control for the full order system

we introduce the projection on the low dimensional space

PL : V H
τ → R

3, φ 7→ PLφ

with

(PLφ)i = 2

∫

Ω

φ(x) sin(iπx)dx, i = 1, 2, 3

and the pointwise evaluation operator

E : C(Ω) → V H
τ , E(φ) = φ̄, φ̄i = φ(xi), i = 1, . . . , q − 1, φ ∈ C(Ω).(7.6)

The feedback rule for the full order system is presented in Algorithm 1.
For the numerical example we choose the data as follows

c = 0.025, T = 8, y0(z) = (1.5 sin(πz) + sin(2πz) + sin(3πz), 0)T , z ∈ Ω(7.7)

with α = 0.1. We solve the HJB equation on K = [−2.5, 2.5]6 with ∆t = 2 · 10−3.
For the discretization in space we choose a spatial mesh with the following numbers
of discretization points

4× 8× 20× 4× 8× 20.

For the discretization of the wave equation we set the temporal step size to kds = 0.02
and τ = 1/32.

In Figure 7.6 we compare the components of the trajectory and control for the
HJB and Riccati approach. For the chosen discretization of the HJB equation we
observe very similar results for both approaches. In Figure 7.7 we see the optimal
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Algorithm 1 Feedback control for full order system

1: Set n = 0.
2: Initial data: yL0 = PL(yH0 ) for initial data yH0 ∈ V H

τ .
3: Repeat
4: Compute the low order feedback control

uL
n = K∆(yLn , nkds).

5: Compute the high order feedback control

uH
n = E

(
3∑

i=1

uL
n,iϕi

)
.

6: Time step for high order system

yHn+1 = yHn +
kds
2

(FFEM
τ (yHn+1, u

H
n ) + FFEM

τ (yHn , uH
n )).

7: Project yHn+1 in the low dimensional space

yLn+1 = PL(yHn+1).

8: n = n+ 1.
9: Until nkds = T .

state and velocity of the low order system and the full order system without noise.
As one can expect the results are the same. For the case with noise δ(s) ∈ [−10, 10],
s ∈ (0, T ], we see in Figure 7.8 the state and velocity for the uncontrolled full order
system and when applying the feedback control. In contrast to the uncontrolled case
the state and velocity are stabilized by the feedback control.

If the initial data of the full order problem has components not lying in the low
dimensional subspace they cannot be controlled as we see in Figure 7.9 where we
choose the initial data as

y0(z) = (1.5 sin(πz) + sin(2πz) + sin(3πx) + sin(4πz), 0)T , z ∈ Ω.

We observe that the component of the solution with respect to the fourth basis func-
tion remains in the system.

Next, let the control act only on an open subset ω of Ω, i.e.

Bω = χωB

with characteristic function χω of ω. We choose ω = (0, 0.75) and obtain a discrete
operator given by

Bω
h = (0, B2)

T , B2 =




0.455 0.075 −0.079
0.075 0.375 0.135
−0.079 0.135 0.349


 .

This leads to a dynamics given by

Fh(x, u) = M−1
h (Ahx+Bω

hu) .
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Fig. 7.6: Components of the trajectory and the control of the HJB (blue curves) and Riccati
(red curves) approach
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(a) Low order system
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(b) High order system

Fig. 7.7: State and velocity for low order system and full order system without noise in the
dynamics

The functions pi(x) = χω sin(iπx), i = 1, 2, . . . , are not eigenfunctions of the Lapla-
cian. Therefore, since in every time step we project the state in the low dimensional
space there will always remain components which cannot be controlled as wee see in
Figure 7.10 where the state, velocity and control for the low and the full order system
are shown for data as given (7.7).

7.4. Semilinear wave equation - with noise. In this example we consider
an optimal control problem for a semilinear wave equation. Let the dynamics F be
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(a) Uncontrolled full order system with noise
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(b) Controlled full order system with noise

Fig. 7.8: Uncontrolled and controlled state and velocity for full order system with noise in
the dynamics
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Fig. 7.9: State and velocity of the full order system with initial data x(z) = (1.5 sin(πz) +
sin(2πz) + sin(4πz), 0)T not lying in the low order subspace

given as in (2.8) with

g(y) =
1

2
(0, y3)T , y ∈ L2(Ω).(7.8)

Since we consider the HJB equation on a bounded domain we can without loss of
generality replace g by a Lipschitz continuous function satisfying (2.2). We set c =
0.025, T = 4, and α = 0.1. Using (3.1) for N = 3 we have for the nonlinear term

∫

Ω

gh,2(y
h
1 (x, t))

Tϕ(x)dx = N(yh1 )(t), ϕ = (ϕ1, ϕ2, ϕ3)
T ,
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(c) High order system - state, velocity

Fig. 7.10: Local control of the low and high order system
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with yh1 = (y1,1, y1,2, y1,3)
T . We compare the results with a linearized Riccati ap-

proach. We solve the differential Riccati equation for the linearized state equation
(cf. Section 6), i.e. we consider

zt −M−1
h Ahz −M−1

h 3ȳ2z = M−1
h Bhu.

and linearize around the target ȳ = 0.
For the discretization of the HJB equation we choose the computational domain

as

[−2, 2]× [−1, 1]× [−1, 1]× [−4, 4]× [−1, 1]× [−1, 1]



22 Axel Kröner, Karl Kunisch, Hasnaa Zidani

and the numbers of discretization points as

10× 8× 16× 10× 8× 16.

For time discretization we set ∆t = 3.2 · 10−3. For the discretization of the wave
equation we choose kds = 3.2 · 10−2.

We consider two different initial values

ỹ0(z) =

(
1.8 sin(πz) + 0.8 sin(2πz) + 0.5 sin(3πz)
1.8 sin(πz) + 0.5 sin(2πz) + 0.8 sin(3πz)

)
,

ŷ0(z) =

(
1.5 sin(πz) + 0.5 sin(2πz) + 0.5 sin(3πz)

1.5 sin(πz)

)

for z ∈ Ω.

7.4.1. Stabilization via HJB approach for initial data ỹ0 (linearized Ric-
cati approach fails). The linearized Riccati approach fails to stabilize the system
for initial data ỹ0. It leads to a blow up in finite time as we can see in Figure 7.11(a).
This is due to the fact that the initial data is not in the set [−1, 1]6, which leads to a
stronger dominance of the nonlinear term. Nevertheless, the HJB approach stabilizes
the system, see Figure 7.11(b).
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Fig. 7.11: Components of the trajectory for the linearized Riccati approach and HJB
approach for nonlinear dynamics with initial point y0 = ỹ0.

For noise δi : [0, T ] → [−3, 3], i = 1, 2, 3, effecting the dynamics as

yt = Fh(y, u) +M−1
h Bhδ, δ = (δ1, δ2, δ3)

T(7.9)

Figure 7.12 shows the components of the trajectory.

7.4.2. Stabilization via HJB approach for initial data ŷ0 (linearized Ric-
cati approach works). Finally, we consider the problem with noise in the dynamics
for initial point ŷ0. The components of the trajectory are shown in Figure 7.13. For
t > 2.5 the state is already close to zero and in particular smaller than 1 which implies
that the linear term becomes dominant and the nonlinear very small. The influence
of the nonlinear term is hence very small and thus the two feedback laws lead to
similar curves. Thus in this case the initial point is sufficiently close to zero so that
the Riccati approach still works.
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Fig. 7.12: Components of the trajectory for the HJB approach for nonlinear dynamics with
noise
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Fig. 7.13: Components of the trajectories and the feedback control for the HJB (blue) and
linearized Riccati approach with (green) and without (red) noise for nonlinear dynamics with
initial point y0 = ŷ0.
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[30] A. Kröner, K. Kunisch, and B. Vexler, Semi-smooth Newton methods for optimal control of the

wave equation with control constraints, SIAM J. Control Optim. 49 (2011), no. 2, 830–858.
[31] K. Kunisch, S. Volkwein, and L. Xie, HJB-POD based feedback design for the optimal control

of evolution problems, SIAM J. Appl. Dyn. Syst. 4 (2004), 701–722.
[32] K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation, its regularization

and optimality system, ESAIM Control Optim. Calc. Var. 19 (2013), 317–336.
[33] K. Kunisch and L. Xie, POD-based feedback control of the Burgers equation by solving the

evolutionary HJB equation, Comput. Math. Appl. 49 (2005), 1113–1126.
[34] I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Applications to

Boundary/Point Control Problems: Continuous Theory and Approximation Theory, vol.



Optimal feedback control for wave equations 25

164, Springer-Verlag, 1991, 160 pp.
[35] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications

Vol. I, Springer-Verlag, Berlin, 1972.
[36] V. Mehrmann and H. Xu, Explicit solutions for a Riccati equation from transport theory, SIAM

J. Matrix Anal. Appl 30 (2008), no. 4, 1339–1357.
[37] S. Osher and C.-W. Shu, Essentially nonoscillatory schemes for Hamilton-Jacobi equations,

SIAM J. Numer. Anal. 28 (1991), no. 4, 907–922.
[38] A. T Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expan-

sion, J. Comput. Phys. 54 (1984), no. 3, 468 – 488.
[39] J.P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations,

SIAM J. Control Optim. 45 (2005), no. 3, 790–828.
[40] J. A. Sethian, Fast marching methods, SIAM Rev. 41 (1999), no. 2, 119–235.
[41] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Annales

de l’I.H.P. section C 10 (1993), no. 1, 109–129.


