Markov analysis of land use dynamics - A Case Study in Madagascar
Résumé
We present a Markov model of a land-use dynamic along a forest corridor of Madagascar. A first approach by the maximum likelihood approach leads to a model with an absorbing state. We study the quasi-stationary distribution law of the model and the law of the hitting time of the absorbing state. According to experts, a transition not present in the data must be added to the model: this is not possible by the maximum likelihood method and we make of the Bayesian approach. We use a Markov chain Monte Carlo method to infer the transition matrix which in this case admits an invariant distribution law. Finally we analyze the two identified dynamics.
Nous présentons un modèle de Markov d’une dynamique d’utilisation des sols le long d’un
corridor forestier de Madagascar. Une première approche par maximum de vraisemblance conduit à
un modèle avec un état absorbant. Nous étudions la loi de probabilité quasi-stationnaire du modèle et
la loi du temps d’atteinte de l’état absorbant. Selon les experts, une transition qui n’est pas présente
dans les données doit néanmoins être ajoutée au modèle: ceci n’est pas possible par la méthode
du maximum de vraisemblance et nous devons faire appel à une approche bayésienne. Nous faisons
appel à une technique d’approximation de Monte Carlo par chaîne de Markov pour identifier la matrice
de transition qui dans ce cas admet une loi de probabilité invariante. Enfin nous analysons les deux
dynamiques ainsi identifiés.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...