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Abstract

Motivated by applications in energy management, this paper presents the Multi-Armed
Risk-Aware Bandit (MaRaB) algorithm. With the goal of limiting the exploration of
risky arms, MaRaB takes as arm quality its conditional value at risk. When the user-
supplied risk level goes to 0, the arm quality tends toward the essential infimum of the
arm distribution density, and MaRaB tends toward the MIN multi-armed bandit algo-
rithm, aimed at the arm with maximal minimal value. As a first contribution, this paper
presents a theoretical analysis of the MIN algorithm under mild assumptions, establishing
its robustness comparatively to UCB. The analysis is supported by extensive experimen-
tal validation of MIN and MaRaB compared to UCB and state-of-art risk-aware MAB
algorithms on artificial and real-world problems.

Keywords: Multi-armed bandits, Risk awareness, Risk aversion, Conditional Value at
Risk, Max-min, Energy policy

1. Introduction

The multi-armed bandit (MAB) framework has been intensively investigated in the last
decade, handling the exploration vs exploitation dilemma through diverse selection rules,
e.g. the upper confidence bound (UCB) criterion (Auer et al., 2002), KL-UCB (Maillard
et al., 2011) or Thompson sampling (Chapelle and Li, 2011). The rise of MAB studies is
explained as they tackle the rigorous analysis of algorithms in a both simplified and chal-
lenging setting. On the one hand, the MAB framework defines a simplified reinforcement
learning problem (Sutton and Barto, 1998; Szepesvari, 2010), where the state space involves
a single state. On the other hand, MAB is concerned with lifelong learning, and the op-
timization of the policy return while learning it. RL classically distinguishes the learning
phase, and the production phase where the learned policy is applied. Most generally MAB
makes no such distinction and aims at minimizing the cumulative regret suffered compared
to the oracle strategy, during the whole learning/production life of the MAB system.

This paper specifically focuses on application domains where the exploration of the
environment involves hazards and risks. Examples of such domains are energy management
and robotics. In robotics, policies learned using a generative model of the environment
(e.g. a simulator) happen to be inaccurate when ported on the actual robot, a phenomenon
known as reality gap. On the other hand, training the robot in-situ entails significant risks
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due to mechanical fatigue and hazards. In the domain of energy management, simulators
define noisy optimization problems as they must reflect the large variance of the energy
load, demand and price along time; in the meanwhile, exploratory policies face huge losses
if insufficient supply must be compensated for by buying additional energy.

In risky environments, the goal becomes to learn a policy which achieves some trade-
off between exploration, exploitation and safety: while the goal is to minimize the regret
through a standard exploration vs exploitation trade-off, one also wants to minimize the
risk incurred by the learned policy and/or to maximize the safety of the learning agent.
Risk minimization is also enforced by considering short time horizons.

The importance of risk minimization, either within the MAB setting (Sani et al., 2012;
Maillard, 2013) or generally in reinforcement learning (Moldovan and Abbeel, 2012b) has
been recently acknowledged (section 2). A new algorithm, the multi-armed risk-aware ban-
dit (MaRaB) algorithm, is presented in section 3. MaRaB aims at the arm with maximal
conditional value at risk level α (CVaRα), where CVaRα is the expected policy return in the
prescribed quantile. When α goes to 0, MaRaB tends toward the MIN multi-armed bandit
algorithm, aimed at the arm with maximal minimal value. A theoretical analysis of the
MIN algorithm shows that it achieves logarithmic regret under mild assumptions (section
4). Extensive empirical validation on artificial problems shows that MaRaB less explores
the arms with low distribution tails compared to UCB and (Sani et al., 2012), at the expense
of a moderate regret increase compared to UCB. A real-world problem related to battery
management with a stochastic demand is also considered to investigate the robustness of
the approach (section 5). The paper concludes with a discussion and some perspectives for
further research.

2. State of the art

After introducing the multi-armed bandit (MAB) formal background and referring the
reader to (Robbins, 1952; Auer et al., 2002) for a comprehensive presentation, this sec-
tion briefly reviews the state of the art related to risk-aware MAB strategies.

2.1. Formal background

A multi-armed bandit problem involves K independent arms, each of which has an unknown
reward distribution with bounded discrete or continuous support. The literature mostly
considers two settings, that of Bernoulli distributions where the i-th arm yields reward 1
with probability µi and reward 0 otherwise, and that of distributions with support [0, 1],
with mean µi and standard deviation σi. Let T denote the time horizon. At each time step
t = 1 . . . T , a MAB algorithm selects an arm it and receives reward rit,ni,t

, drawn after the
it-th distribution, where ni,t denotes the number of times the i-th arm has been selected
up to time t. The choice is made upon the basis of the empirical estimates of the K arm
distributions so far, the empirical mean estimate µ̂i,t (µ̂i,t =

1
ni,t

∑u=ni,t

u=1 ri,u) and possibly

the empirical variance estimate σ̂i,t (σ̂i,t
2 = 1

ni,t

∑u=ni,t

u=1 (ri,u − µ̂i,u)
2). The MAB goal is

to maximize the sum of gathered rewards along learning, or equivalently to minimize the
cumulative regret suffered compared to the oracle strategy, which plays the best arm i∗ in
each time step. One distinguishes the theoretical cumulative regret at time t, denoted Rt,
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and the empirical cumulative regret, denoted R̂t, respectively defined as:

Rt = t× µi∗ −
K∑

k=1

nk,tµk R̂t = t× µi∗ −
K∑

k=1

nk,tµ̂k,t

We will use the theoretical cumulative regret in the algorithm analysis (section 4). Theo-
retical or empirical cumulative regrets will be used to experimentally assess the algorithms
performance (section 5), granted that the difference |Rt−R̂t| is in O(log(t)) (Coquelin and
Munos, 2007).

Regret minimization is known to be an exploitation vs exploration trade-off problem:
the best empirical arm should be selected often to maximize the actual gathered reward
(exploitation); but some exploration is also required to actually identify the best arm. Two
prominent MAB strategies are the ǫ-greedy strategy, which selects the best empirical arm
with probability 1 − ǫ and uniformly selects another arm with probability ǫ, and the cel-
ebrated upper confidence bound (UCB) strategy proposed by Auer et al. (2002), which

selects at time t the arm maximizing criterion µ̂i,t + C
√

log(t)
ni,t

, with C > 0 a parameter

controlling the exploration vs exploitation tradeoff. Another strategy is the KL-UCB strat-
egy (Maillard et al., 2011). While the ǫ-greedy strategy suffers a linear regret, UCB and
KL-UCB suffer a logarithmic regret, which is known to be optimal (Lai and Robbins, 1985).
KL-UCB further improves on UCB as it yields the optimal regret rate.

2.2. Related work

An emerging trend in the field of reinforcement learning and MAB is concerned with the
risk issue, when the exploring agent might face hazards going beyond mere under-optimal
performances. In such cases, mottos such as Optimism in front of the Unknown! attached
to the UCB strategy, are inappropriate. A first issue concerns the definition of risks. Sev-
eral definitions have been proposed to account for risk awareness and risk aversion, taking
inspiration from the literature in economics (Arrow, 1971).

The first criterion referred to as mean-variance (MV) (Markowitz, 1952) considers a
weighted sum of the reward expectation µ of the policy and its estimated standard deviation.
Formally, the goal is to find a policy minimizing σ2 − ρµ, where ρ > 0 increases like the
user’s risk tolerance.

The conditional value at risk (CVaR) considers the quantiles of the reward distribution.
Formally, let 0 < α < 1 be the target quantile level. The associated quantile value vα is
defined if it exists as the maximal value such that X is less than vα with probability α
(Pr(X < vα) = α, with X the reward random variable). The remainder of the paper only
considers continuous distributions, where vα is always defined; the conditional value at risk
α noted CVaRα is then defined as the average reward conditionally toX < vα: CVaRα[X] =
IE[X|X < vα]. Note that when the quantile level α goes to 0, CVaRα maximization coincides
with the standard max-min strategy, aimed at the arm with maximal minimum reward.
CVaR maximization thus defines a relaxation of the max-min strategy, with quantile level
α as relaxation parameter.

Another criterion, the rank dependent utility (Quiggin, 1993) inspired from the prospect
theory due to Tversky and Kahneman (1979), is meant to model the distorted perception of
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probabilities, e.g. the over-estimation of rare events, through weighting the event rewards
with a (non-linear) function of their rank. The RDU criterion will not be considered further
as it relies on a complex specification of the risk aversion, whereas the above MV and CVaR
criteria involve a single scalar parameter, respectively ρ and α.

Risk aversion has been considered in the MAB setting, only tackling the mean-variance
criterion to our best knowledge (Sani et al., 2012). Two algorithms are proposed. The first
one, referred to as MV-LCB, aims at minimizing the MV cumulative regret. It proceeds by
adapting the UCB approach in the finite horizon T context, selecting in each step t the arm

maximizing σ̂i,t
2−ρµ̂i,t−(5+ρ)

√
log( 1

δ
)

2ni,t
, where δ is adjusted depending on the time horizon T .

As shown by Sani et al. (2012), this selection rule leads to upper-bounding the theoretical

cumulative regret (related to the MV criterion) Rt/t by O( log
2(t)
t ). A simpler strategy

referred to as ExpExp decouples the exploration and the exploitation phases. All arms are
uniformly launched during the exploration phase, and the arm with optimal empirical MV
is selected ever after during the exploitation phase, with an O(KT− 1

3 ) regret bound if the
length τ of the exploration phase is fixed to K( T

14)
2/3.

Risk issues have also been considered in the neighbor field of reinforcement learning in
the last years. A first strategy relies on reversibility constraints, i.e. only visiting states s
such that one can always get back from s to the initial state (Moldovan and Abbeel, 2012a).
In a further work, Moldovan and Abbeel (2012b) proceed by considering an exponential
utility function, where the policy return J is replaced by expression exp{J/θ}. Parameter
θ reflects the user’s risk tolerance, akin the ρ parameter in the mean var setting, with the
difference that ρ is weighted by the empirical standard deviation of the rewards.

Another approach due to Mannor and Tsitsiklis (2011) formalizes risk-aware reinforce-
ment learning as a multi-objective RL problem, aimed at simultaneously maximizing the
cumulative reward and minimizing the cumulative standard deviation.

3. Overview of MaRaB

This section describes the Multi-Armed Risk-Aware Bandit (MaRaB) algorithm, with same
notations as in section 2.1.

The arm quality is set to its conditional value at risk α, where parameter α (0 < α < 1) is
set by the user. After Chen (2008), a non-parametric, consistent estimate of the conditional

value at risk α of arm i, denoted ̂CV aRα,i (or ĈV aRi for notational simplicity), is given
as the average of the α quantile of rewards ri,u, u = 1 . . . ni,t: assuming with no loss of
generality that rewards are ordered by increasing value (ri,u ≤ ri,u+1), and noting ni,t,α the

ceiling integer of α · ni,t (ni,t,α = ⌈αni,t⌉), then ĈV aRi is set to the average of the lowest
ni,t,α rewards:

ĈV aRi =
1

ni,t,α

ni,t,α∑

u=1

ri,u (1)

The goal of MaRaB is to find the arm with maximal ĈV aRi. The selection rule
controlling the exploration vs exploitation tradeoff proceeds by selecting the arm with best
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lower confidence bound on its CVaR:

select it = argmax

{
ĈV aRi − C

√
log(⌈tα⌉)
ni,t,α

}
(2)

with C > 0 a parameter controlling the exploration vs exploitation tradeoff.
MaRaB features a risk-averse or pessimistic behavior, due to the negative exploratory

term in Eq. 2 : if two arms have same empirical CVaR, MaRaB will favor the arm which
has been selected more often in the past. Note that such a behavior is actually observed
in the economic realm, as trust − i.e. a positive bias toward known good partners − is at
the core of economic exchanges. Such a bias indeed makes sense whenever exchanges with
unknown partners involve risks.

A lack of exploration usually leads to myopic and under-optimal choices, sticking to the
best options first encountered. Such a myopic behavior is however prevented in MaRaB

for the following reason: MaRaB examines each arm along two phases. In the first phase,
referred to as initial phase (ni,t < 1

α), the empirical quality of the i-th arm is set to its
minimum reward (Eq. 1), and therefore it monotonically decreases along time. In the
second phase, referred to as stabilization phase, the estimate of the conditional value at risk
is computed with increasing accuracy, with an approximation error going to 0 like

√
ni,t

(Chen, 2008).
The duration of the initial phase increases as α decreases, as the maximization of the

conditional value at risk α boils down to a standard max-min optimization problem. In
the early iterations, the MaRaB behavior thus coincides with that of the MIN algorithm,
selecting in each time step the arm with maximal minimum reward. The only difference
comes from the negative exploration term (lower confidence bound, LCB1). MaRaB thus

actually achieves some exploration in the beginnings: the arm quality ĈV aRi monotonically
decreases as the i-th arm is more visited (ni,t increases) in its initial phase, forcing MaRaB

to consider less visited arms.
However, if an arm gets poor rewards the first times it is visited, there is little chance

it is visited again, all the more so as better arms enter their second phases (and their
empirical quality converges toward their true conditional value at risk): there is no positive
exploration term guaranteeing that any arm will be visited infinitely many times as t goes
to infinity.

The theoretical analysis, presented in the next section, will thus focus on the limit
algorithm of MaRaB, the MIN algorithm.

4. Analysis

This section presents the analysis of the MIN algorithm, selecting in each time step the arm
with maximal empirical minimal value, as MIN is the limit algorithm of MaRaB when the
risk level α goes to 0 and the exploratory constant C is set to 0.

Under the assumption that the best arm w.r.t. its essential infimum also is the best arm
in terms of expectation, it is shown that MIN achieves same logarithmic regret as UCB,

1. This LCB must not be mistaken for the LCB used in MV-LCB (Sani et al., 2012), section 2: as the MV-
LCB reward is the weighted sum of the average standard deviation and means, where the weight of the
empirical mean is negative, this LCB actually behaves as a UCB, optimistically favoring the exploration.
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with similar rate. Under slightly stronger assumptions, the MIN regret rate is significantly
lower than for UCB. These two results rely on two lemmas. Firstly, under mild assumptions,
the empirical minimum value for every arm converges exponentially fast toward its essential
infimum. Secondly, with high probability over all arms their empirical minimum value are
exponentially close to their essential minimum, where the probability increases exponentially
fast with the number of iterations.

Lemma 4.1 Let ν be a bounded distribution with support in [0, 1], with a its essential
infimum2, and let us assume that ν is lower bounded in the neighborhood of a:

∃A > 0, ∀ǫ > 0,P(X ≤ a+ ǫ) ≥ Aǫ with X r.v. ∼ ν (3)

Let x1 . . . xt be a t-sample independently drawn after ν. Then, the minimum value over
xu, u = 1 . . . t goes exponentially fast to a:

P( min
1≤u≤t

xu ≥ a+ ǫ) ≤ exp(−tAǫ) (4)

Proof

As the xu are iid, it comes:

P( min
1≤u≤t

xu ≥ a+ ǫ) = P(∀u ∈ {1, . . . , t}, xu ≥ a+ ǫ)

=

t∏

u=1

P(xu ≥ a+ ǫ) ≤ (1−Aǫ)t ≤ exp(−tAǫ)

where the last inequality follows from (1− z) ≤ exp(−z).

Under the assumption of a lower-bounded distribution probability in the neighborhood of
its minimum, the convergence toward the minimum thus is faster than the convergence
toward the mean. Specifically, the Hoeffding bound on the convergence toward the mean
decreases exponentially like −tǫ2, whereas after Eq. 4 the convergence toward the min de-
creases exponentially like3 −tAǫ.

Under the same assumptions, with high probability the empirical min of each arm is
exponentially close to its essential infimum after each arm has been tried t times.

Lemma 4.2 Let ν1 . . . νK denote K distributions with bounded support in [0, 1] with ai
their essential infimum. Let us assume that νi is lower bounded by some constant A in the
neighborhood of ai for i = 1 . . .K.
Denoting xi,u, u = 1 . . . t, i = 1 . . .K, t samples independently drawn after νi, one has:

P(∃i ∈ {1, . . . ,K}, min
1≤u≤t

xi,u ≥ ai + ǫ) ≤ K exp(−tAǫ) (5)

2. The essential infimum being defined as the maximal value a such that P(X < a) = 0.
3. The convergence analysis considers an approximation error ǫ going to 0, hence Aǫ >> ǫ2.
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Proof After Lemma 4.1,

P(∃i ∈ {1, . . . ,K}, min
1≤u≤t

xi,u ≥ ai + ǫ) ≤ 1− (1− (1−Aǫ)t)K

≤ K(1−Aǫ)t

≤ K exp(−tAǫ)

Where the first inequality follows from (1 − z)y ≥ 1 − y.z and the second inequality from
(1− z) ≤ exp(−z), which concludes the proof.

Under the above assumptions on the arm distributions, if the optimal arm in terms of
min value also is the optimal arm in terms of mean value, then the MIN algorithm achieves
a logarithmic regret.

Proposition 4.3 Let ν1 . . . νK denote K distributions with bounded support in [0, 1] with
µi (resp. ai) their mean (resp. their essential infimum). Let us further assume that νi is
lower bounded by some constant A in the neighborhood of ai for i = 1 . . .K, and that the
arm with best mean value µ∗ also is the arm with best min value a∗. Let ∆µ,i = µ∗ − µi

(resp. ∆a,i = a∗ − ai) denote the mean-related (resp. essential infimum-related) margins.
Then, with probability at least 1− δ, the cumulative regret is upper bounded as follows:

Rt ≤
K − 1

A

∆µ,max

∆a,min
log

(
tK

δ

)
+ (K − 1)∆µ,max (6)

with ∆a,min = min
i

∆a,i and ∆µ,max = max
i

∆µ,i.

Furthermore, the expectation of the cumulative regret is upper-bounded as follows for t
sufficiently large (t ≥ K−1

A
∆a,min

∆µ,max
):

E[Rt] ≤
K − 1

A

∆µ,max

∆a,min

(
log

(
t2KA

K − 1

∆a,min

∆µ,max

)
+ 1

)
+ (K − 1)∆µ,max (7)

Proof Let us assume that there exists a single optimal arm (we shall return to this point
below). Taking inspiration from Sani et al. (2012), let xi,u be independent samples drawn
after νi, and define the event set E as follows:

E = {∀i ∈ {1, . . . ,K}, ∀u ∈ {1, . . . , t}, min
1≤s≤u

xi,s − ai ≤
ǫ

u
} (8)

The probability of the complementary set Ec is bounded after Lemma 4.2:

P(Ec) = P(∃i ∈ {1, . . . ,K}, ∃u ∈ {1, . . . , t}, min
1≤s≤u

xi,s − ai >
ǫ

u
)

≤
t∑

u=1

P(∃i ∈ {1, . . . ,K}, min
1≤s≤u

xi,s − ai >
ǫ

u
)

≤ min(1, tK exp(−Aǫ))
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Let t > 1 be an iteration where a sub-optimal arm i is selected; this implies that the
empirical min of the i-th arm is higher than that of the best arm i∗:

min
1≤u≤ni∗,t−1

xi∗,u < min
1≤u≤ni,t−1

xi,u ⇔ min
1≤u≤ni∗,t−1

xi∗,u − ai

︸ ︷︷ ︸
≥ai∗−ai=∆a,i

< min
1≤u≤ni,t−1

xi,u − ai
︸ ︷︷ ︸

≤ ǫ
ni,t−1

(∗)

where (∗) holds if t belongs to the event set E , thus with probability at least 1−tKexp(−Aǫ)
after Lemma 4.2.
It follows that with probability at least 1− tKexp(−Aǫ)

ǫ

ni,t−1
≥ ∆a,i hence ni,t ≤

ǫ

∆a,i
+ 1

since ni,t ≤ ni,t−1 +1. With probability at least 1− tKexp(−Aǫ), the cumulative regret Rt

can thus be upper-bounded:

Rt =
K∑

i=1

ni,t∆µ,i ≤
K∑

i=1

(
ǫ

∆a,i
+ 1)∆µ,i (9)

≤ (K − 1)

(
∆µ,max

∆a,min
ǫ+∆µ,max

)
with ∆µ,max = max

1≤i≤K
∆µ,i and ∆a,min = min

1≤i≤K
∆a,i

Finally, by setting δ = min(1, tK exp(−Aǫ)), it follows that with probability 1− δ,

Rt ≤
K − 1

A

∆µ,max

∆a,min
log(

tK

δ
) + (K − 1)∆µ,max (10)

In the case where there exists k > 1 optimal arms, Eq. 10 still holds, by replacing K−1
factor with K − k.

The expectation of the cumulative regret is similarly upper-bounded:

E[Rt] = E[RtIE ] + E[RtIEc ]

≤ K − 1

A

∆µ,max

∆a,min
log(

tK

δ
) + (K − 1)∆µ,max + δt by bounding Rt by t over EC .

For t sufficiently large (t ≥ K−1
A

∆µ,max

∆a,min
), by setting δ = K−1

tA
∆µ,max

∆a,min
, it comes :

E[Rt] ≤
K − 1

A

∆µ,max

∆a,min

(
log

(
t2KA

(K − 1)

∆a,min

∆µ,max

)
+ 1

)
+ (K − 1)∆µ,max (11)

which concludes the proof.

Remark. UCB similarly achieves a logarithmic regret (Auer et al., 2002):

E[Rt] ≤ 8
∑

i 6=i∗

log t

∆µ,i
+ (1 +

π2

3
)

K∑

i=1

∆µ,i (12)
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where i∗ stands for the index of the optimal arm. MIN and UCB thus both achieve a
logarithmic regret uniformly over t, where the regret rate involves the mean-related margin
in UCB (resp. the min-related margin in MIN, multiplied by the lower-bound constant A
on the density in the neighborhood of the minimum).

A stronger result can be obtained for MIN, under an additional assumption on the lower
tails of the arm distributions.

Proposition 4.4 With same notations and assumptions as in Prop. 4.3, let us further
assume that for every i = 1 . . .K,∆µ,i = µ∗ − µi ≤ a∗ − ai = ∆a,i.

Then, with probability at least 1− δ,

Rt ≤
K − 1

A
log(

tK

δ
) + (K − 1)∆µ,max

with ∆µ,max = max
i

∆µ,i.

Furthermore, if t > K−1
A , the expectation of Rt is upper-bounded as follows :

E[Rt] ≤
K − 1

A

(
log

(
t2KA

K − 1

)
+ 1

)
+ (K − 1)∆µ,max (13)

Proof The proof closely follows the one of Prop. 4.3, noting that in Eq. 9 ∆a,i is now

greater than ∆µ,i. Setting δ = (K−1)
tA concludes the proof of Eq. 13.

Discussion. The comparison of Eq. 13 and Eq. 12 suggests that MIN might outperform
UCB in the case where margins ∆µ,i are small, where distributions νi are not too thin in
the neighborhood of the essential infimum (that is, A is not too small), and the assumption
∆a,i ≥ ∆µ,i holds.
Note that the latter assumption boils down to considering that better arms (in the sense
of their mean) also have a narrower support for their lower tail, thus a lower risk. If this
assumption does not hold however, then risk minimization and regret minimization are
likely to be conflicting objectives.

A last remark is that the assumptions done (lower bounded distribution density in
the neighborhood of the essential minimum and mean-related margin greater than the
minimum-related margin) yield a significant improvement compared to the continuous
distribution-free case, where the optimal regret is known to be O(

√
t) (Audibert and Bubeck,

2009, 2010).

5. Experimental validation

As proof of concept, UCB, MIN and MaRaB are first compared on favorable cases, using
a problem generator satisfying the assumptions done in Prop 4.4. A general empirical
validation follows, assessing MIN and MaRaB comparatively to UCB and to the risk-
aware MV-LCB and ExpExp algorithms (Sani et al., 2012). Artificial problem instances
are generated using a relaxed problem generator, which only satisfies the assumption of
lower-bounded densities in the neighborhood of their minimum (section 5.2). A simplified
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real-world problem in the target application domain of energy management is also considered
(section 5.3). The goal of experiments is to answer three questions. The first one is the price
to pay in terms of performance loss for a risk-aware behavior, and how the cumulative regret
increases with the number of iterations, specifically focussing on short time horizons (unless
explicitly specified, the empirical cumulative regret is considered). The second question
regards the robustness of the algorithms, and their sensitivity w.r.t. parameters. A third
question is whether MaRaB, MV-LCB and ExpExp do avoid exploring risky arms; this
question is investigated by inspecting the low tail of the gathered rewards.

The number K of arms is set to 20. The time horizon is set to T = K × 100 and
T = K × 200. For all problems, all results over (respectively the average result out of) 40
runs are displayed.

5.1. Proof of concept

An ad-hoc problem generator satisfying the assumptions done in Prop. 4.4 is used to
compare MIN, UCB and MaRaB in the favorable case.
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C = 10i, i = −6 . . . 3 C = 10i, i = −6 . . . 3, α = .1%, 1%, 10%)

Figure 1: Theoretical cumulative regret of UCB, MIN and MaRaB under the assumptions
of Prop. 4.4, averaged out of 40 runs. Parameter C ranges in {10i, i = −6 . . . 3}. Risk
quantile level α ranges from .1% to 10%.
Left: UCB regret increases logarithmically with the number of iterations for well-tuned C;
MIN identifies the best arm after 50 iterations and its regret is constant thereafter. Right:
zoom on the lower region of Left, with MIN and MaRaB regrets; MaRaB regret is close
to that of MIN, irrespective of the C and α values in the considered ranges.

Each problem involves 20 arms. The i-th arm distribution νi is set to a uniform dis-
tribution on a segment in [0, 1], centered on µi with radius ri (νi = U([µi − ri, µi + ri])).
Mean µi (respectively radius ri) decreases (resp. increases ) with i. The mean-related and
minimum-related margins are respectively controlled from two generative parameters4. The

4. With ∆max and rmax two generative parameters, µi is a decreasing affine function of i, µi = µ∗

−

i−1
(K−1)

∆max.
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theoretical cumulative regrets of UCB, MIN and MaRaB are displayed in Fig. 1 (averaged
out of 40 independent runs with µ∗ = 0.5, a∗ = µ∗− 10−3 and maximal radius 0.5). Param-
eter C of UCB and MaRaB ranges in {10i, i = −6 . . . 3} and the risk level α ranges from
.1% to 10%. By construction, this artificial problem favors MIN against UCB; firstly it
satisfies the assumptions of Prop. 4.4; moreover since distributions νi are uniform, A ≥ 1.
In this easy setting, MIN catches the best arm after 50 iterations and yields a constant
regret thereafter (no exploration). MaRaB features the same behavior for a wide range
of values of C and α; its very low sensitivity w.r.t. C slightly increases for high values of
α (α > 20%). The disappointing UCB performance is blamed on the high variance of the
worse arms, slowing down the accurate estimation of their mean.

5.2. Artificial problems

A second problem generator is considered, which only satisfies the assumption of a lower-
bounded density in the neighborhood of the minimum (Eq. 3). Specifically, each problem
involves 20 arms. The i-th arm distribution νi is set to a mixture of truncated Gaussians:
i) its minimum ai is uniformly drawn in [0, .05]; ii) ni Gaussians are defined where ni

is uniformly drawn in 1 . . . 4; for j = 1 . . . ni the j-th Gaussian N (µi,j , σi,j), is defined
by uniformly sampling µi,j in [0, 1] and σi,j in [.12, .5]; furthermore, the j-th Gaussian is
associated a probability pi,j such that

∑
j pi,j = 1. Upon selecting the i-th arm, the reward

is drawn by: i) selecting the j-th Gaussian with probability pi,j ; ii) drawing a reward r from
N (µi,j , σi,j); iii) going to i) if r is not in the [ai, 1] interval (rejection-based truncation).

5.2.1. Cumulative regrets

The empirical cumulative regrets of UCB, MaRaB, MV-LCB and ExpExp are displayed
in Fig. 2, reporting the empirical cdf5 of the regrets over 1,000 problem instances for
short time (Fig. 2.(a)) and medium time (Fig. 2.(b)) horizons. All algorithm parameters
are set to their best value after preliminary experiments. UCB yields the best cumulative
regret overall whenever C is well tuned. MaRaB suffers an extra regret compared to UCB;
this extra regret is bounded in the considered experimental setting, and it seemingly does
not increase as the time horizon increases. As could have been expected this extra regret
decreases as α increases and the selection rule involves a better estimation of the empirical
means. Interestingly, MaRaB shows a very low sensitivity w.r.t. C.

MV-LCB yields the worst regret of all strategies, with a very low sensitivity w.r.t.
parameter ρ on the considered problems. ExpExp significantly improves on MV-LCB with
probability circa 90%; it even improves on UCB with probability 10% (circa 20% for medium
time horizon). ExpExp yields very good results; the fact that it does never get very low
cumulative regret is explained from its initial exploratory phase; a caveat is that its optimal
setting used in the experiments requires the time horizon to be known in advance. MaRaB

ri is an increasing affine function of i, with r1 = µ∗

− a∗ and ri = r1 +
i−1
K−1

rmax.
The mean-related margin ∆µ,i is thus controlled from ∆max; the min-related margin ∆a,i is controlled
from ∆max and rmax, in such a way that ∆a,i > ∆µ,i.

5. For each algorithm the cumulative regrets R[i], i = 1 . . . 1, 000 over the 1,000 problem instances are
independently sorted and the curve (i, R[σ(i)]) is displayed.
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improves on ExpExp with probability 70%, albeit with maximal cumulative regrets (over
the problem instances) higher than for ExpExp.

Overall, MaRaB with risk level α = 20% and untuned C value yields results slightly less
than UCB with tuned C, for both short and medium time horizons. The risk-awareMaRaB

suffers a low regret increase compared to risk-neutral UCB, with a very low sensitivity w.r.t.
C. Interestingly, a twice longer time horizon does not modify the performance order of the
algorithms.
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Figure 2: Empirical cumulative regret of UCB, MaRaB, MV-LCB and ExpExp on 1,000
problem instances (independently sorted for each algorithm) over short and medium time
horizons. All algorithms are used with tuned parameters (C = 10−3, α = 20%, ρ = 2, δ =
1
T 2 , τ = K( T

14)
2/3).

5.2.2. Risk Awareness

The effective risk avoidance of UCB, MV-LCB, ExpExp and MaRaB are investigated by
inspecting the empirical cdf6 of the instant rewards on two representative artificial problems,
with respectively low (Fig. 3, left) and high (Fig. 3, right) variance of the best arm. The
low tail of the cdf (worst average rewards gathered by the algorithm) indicates whether the
algorithm actually tried poor arms. Fig. 3 confirms previous results: The noted sensitivity
of UCB w.r.t. parameter C unsurprisingly increases with the variance of the best arm (Fig.
3, top row). The bad performance of MV-LCB is confirmed; its sensitivity w.r.t. ρ is low
on the low variance problem as expected (Fig. 3, second row, left); its sensitivity w.r.t.
ρ is much higher on the high variance problem (Fig. 3, second row, right), with a best
performance for medium values of ρ. ExpExp features an excellent risk avoidance as the
risky trials only take place during the exploratory phase (Fig. 3, third row). The general
robustness of MaRaB w.r.t. C is confirmed; moreover, its robustness w.r.t. the risk level
α on high variance problems is empirically shown (Fig. 3, bottom row). It is seen that for
low to medium risk (α < 20%), the quantile values vα (section 2.2) are consistently higher
for MaRaB than for ExpExp, which is explained again from the systematic exploratory
phase in ExpExp.

6. For each algorithm the rewards r̄t averaged out of 40 runs with time horizon T = 2, 000 are sorted by
increasing value and the curve (t, r̄σ(t)) is displayed.
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Figure 3: Comparative risk avoidance of UCB, MV-LCB, ExpExp and MaRaB on two
representative artificial problems with low (left) and high (right) variance of the optimal
arm. For each algorithm instant rewards averaged out of 40 runs are sorted. The time
horizon is set to T = 2, 000.
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5.3. Optimal energy management

The real-world problem motivating the presented approach is a battery management prob-
lem, where the environment is described by the energy demand and the energy cost in each
time step. The decision to be taken in each time step is a real-value x, determining how
much energy is either used from the battery (if x > 0) or stored in the battery (if x < 0).
In each time step, one must meet the demand by buying min(0, demand − x) energy; the
instant reward is the cost of the bought energy if the demand exceeds the available en-
ergy. Additionally, the battery loses some energy in each time step. A simplified setting
is considered, where i) the energy cost is constant, the random process only dictates the
energy demand in each time step; ii) 20 arms, corresponding to pre-defined strategies are
considered. The strategy reward is drawn by uniform sampling with replacement from the
117 available realizations of the strategy.

Same general trends as for the artificial problems are observed on this real-world problem
(Fig. 4): i) The cumulative regret is minimal for UCB with optimally tuned C; ii) MV-
LCB is dominated by all other algorithms w.r.t. both risk avoidance and cumulative regret;
iii) the ExpExp regret increases linearly during the exploration phase and then reaches a
plateau; iv) MaRaB shows its good risk-avoidance ability regardless of the C value, and
MIN yields same results. Overall, MaRaB suffers a slight regret increase compared to UCB
at its best, with a slightly better reward cdf in the region of low rewards.

6. Discussion and perspectives

The first contribution of the paper, as a step toward an effective trade-off between exploita-
tion, exploration and safety, is to show the theoretical soundness of the MIN algorithm.
This result relies on two main assumptions: i) same arms are optimal in the perspective
of regret and risk minimization; ii) the arm reward distributions are lower bounded in the
neighborhood of their minimum on the other hand. Not only does MIN achieve logarith-
mic regret; it also yields a better rate than UCB under the additional assumption that
min-related margins are higher than mean-related margins. A second contribution is the
MaRaB strategy, yielding a reduced risk at the expense of a moderate regret increase
compared to UCB for short and medium time horizons, on artifial problems (which only
satisfies the lower-bounded distribution assumption) and on a real-world one.

Further work is concerned with the analysis of MaRaB behavior, specifically its mean-
related regret (under the assumption that the arm with best mean also is the arm with best
CVaR) and its CVaR-related regret; another priority is to compare MaRaB behavior with
that of Maillard (2013). A second perspective regards the case where the arms belong to
a metric space; the goal becomes to exploit this metrix to enforce exploration safety. Last
but not least, MaRaB will be extended to tree-structured search spaces to achieve e.g. safe
sequential decision making.
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Figure 4: Comparative performance of UCB, MV-LCB, ExpExpand MaRaB on a real-
world energy management problem. Left: sorted instant rewards (truncated to the 37.5%
worst cases for readability). Right: empirical cumulative regret with time horizon T =
100K, averaged out of 40 runs.
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