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Introduction

New legislations such as the REACH (Registration, Evaluation, Authorization and restriction of CHemicals) regulation in the EU will require that manufacturers of substances and formulators register and provide prescribed eco/toxicological data for substances with volume higher than one metric ton per year. It is estimated that about 30 000 existing substances have to be registered by 2018 by member states (Ahlers et al., 2008). The needed information has to be equivalent to the standard information requirement and adequate to draw overall conclusions with respect to the regulatory endpoints classification and labeling. Beyond specific regulatory needs, the same questions concern chemical substances that are potentially present in the environment and that originate from various sources. According to authors, from 30 000 to 100 000 chemical substances may be concerned by environmental risks assessment [START_REF] Muir | Are there other persistent organic pollutants ? A challenge for environmental chemists[END_REF]. However, their behavior in the environment and their transfer to environmental components such as water or atmosphere are studied for only a very small proportion of the chemical in laboratory tests or monitoring studies because it is time-consuming and/or cost prohibitive. Consequently, a high number of different in silico approaches have been developed to estimate the behavior of organic compounds in the environment. The most used in silico approaches, that are also the most simple, are based on QSAR (Quantitative Structure Activity Relationship). QSARs allow the estimation of one or several compound properties (such as sorption by soils and sediments, biodegradation, bioconcentration factor or biological activities) from some other properties such as structural molecular properties (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals…), water solubility or octanolwater partition coefficient (e.g. OECD, 1993a;[START_REF] Raymond | A review of structure-based biodegradation estimation methods[END_REF][START_REF] Worrall | A molecular topology approach to predicting pesticide pollution of groundwater[END_REF][START_REF] Eriksson | Multivariate biological profiling and principal toxicity regions of compounds: the PCB case study[END_REF][START_REF] Pavan | Review of literature-based quantitative structureactivity relationship models for bioconcentration[END_REF]. Other approaches aim, for example, at ranking organic compounds knowing the values of several of their properties such as partitioning, persistence or bioaccumulation. Compounds that have undesirable properties can be considered for management, regulation, or even global bans on production and use [START_REF] Mackay | On the validity of classifying chemicals for persistence, bioaccumulation, toxicity, and potential for long-range transport[END_REF][START_REF] Walker | QSARs for identifying and prioritizing substances with persistence and bioconcentration potential[END_REF]. Numerical models represent the most complex approaches as they allow overall assessment of the fate of organic compounds in the soil, water and air, and as they take into account the physico-chemical properties of the compounds and the agro-pedo-climatic conditions (e.g. [START_REF] Carsel | PRZM-3: a Model for Predicting Pesticide and Nitrogen Fate in the Crop Root and Unsaturated Soil Zones: Users Manual for Release 3[END_REF][START_REF] Jarvis | MACRO (v5.2): model use, calibration and validation[END_REF]. However, they require a lot of input data. Therefore, approaches able to classify compounds according to their environmental behavior or eco/toxicological effects will help both regulators and scientists facing the problem of the constant increase in the diversity and in the number of the chemical substances which will be concerned by environmental risk assessment.

The objective of this work was thus to develop a new simple approach, TyPol (Typology of Pollutants), to classify organic compounds and their degradation products according to both their behavior in the environment and their structural molecular properties.

TyPol, is based on statistical analyses combining several environmental endpoints (i.e. environmental parameters such as sorption coefficient, degradation half-life or bioconcentration factor), and structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals…) (Fig. 1). The calculation of molecular descriptors is based on in silico approach, and the environmental parameters are extracted from available databases and from literature. Knowing the values of several relevant structural molecular descriptors, TyPol will allow the classification of one organic compound of interest (parent or degradation product) in a group of compounds having similar values of molecular descriptors and environmental parameters, and potentially a similar environmental behavior.

The choice of the statistical method involved in TyPol is crucial for the reliability of the clustering. Principal components analysis (PCA) is often used in multivariate chemical characterizations to determine linearly uncorrelated variables that summarize the information contained in variables [START_REF] Jackson | User's Guide to Principal Components[END_REF][START_REF] Snarey | Comparison of algorithms for dissimilarity-based compound selection[END_REF][START_REF] Harju | Multivariate physicochemical characterisation and quantitative structure-property relationship modeling of polybrominated diphenyl ethers[END_REF][START_REF] Eriksson | Megavariate analysis of environmental QSAR data. Part I -A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD)[END_REF]. These uncorrelated variables can also be used as an excellent basis to select a representative set of chemicals using clustering methods. Various clustering techniques have been employed in chemical mapping such as strategies based on PCA and hierarchical clustering for selecting dissimilar organic substances (Rännar and Anderson, 2010) or ranking non-ionic organic pesticides [START_REF] Gramatica | Ranking and classification of non-ionic organic pesticides for environmental distribution: a QSAR approach[END_REF], bayesian classifiers for chemical toxicity predictions [START_REF] Mishra | Bayesian classifiers for chemical toxicity prediction[END_REF], network clustering [START_REF] Saito | Prediction of the clinical phenotype of Fabry disease based on protein sequential and structural information[END_REF], PCA-based method (Rännar and Anderson, 2011) or other statistical tools [START_REF] Vogt | Chemoinformatics: a view of the field and current trends in method development[END_REF]. However, the problematic of TyPol is different than these ones because it considers two sets of variables (molecular descriptors and environmental parameters), which are different by nature. Partial least squares regression (PLS) [START_REF] Wold | Estimation of principal component and related models by iterative least squares[END_REF][START_REF] Eriksson | Megavariate analysis of environmental QSAR data. Part I -A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD)[END_REF] can be used to find the fundamental relation between two sets of variables using a latent variable approach to model the covariance structures in these two spaces. PLS model tries to find the multidimensional directions in the observable variables (i.e. molecular descriptors) space that explain the maximum multidimensional variance direction in the predicted variable (i.e. environmental parameters) space. So PLS, as PCA, constructs uncorrelated variables which summarizes the information, but PLS takes into account the information of both observable and predictive variables. Therefore, the PLS was selected (for a detailed comparison of PLS and PCA, see [START_REF] Maitra | Principal component analysis and partial least squares: two-dimension reduction techniques for regression[END_REF]. After the PLS analysis, a hierarchical clustering algorithm is used to cluster the organic compounds.

Materials and methods

Organic compounds

For this proof-of-concept study of TyPol, 215 organic compounds (191 parent compounds and 24 degradation products) were selected (Tables A1,A2). The selection of these compounds was done according to three criteria: (i) high diversity of chemical families for the parent compounds, (ii) wide ranges of variation of the values of environmental parameters and molecular descriptors (Tables 1,2), (iii) availability of data for the environmental parameters (see 2.2.). The 191 parent compounds include (i) 116 pesticides taken in the main groups of pesticides (carbamates, organochlorines, organophosphorous, strobilurins, triazines, urea, phenoxyacids...), (ii) 30 polychlorinated biphenyls (PCB), (iii) 13 polycyclic aromatic hydrocarbons (PAH), (iv) 10 polychlorinated dibenzofurans (PCDF), (v) 9 phthalates, (vi) 7 polychlorinated dibenzodioxins (PCDD), and (vii) 6 miscellaneous compounds (drugs, auxine, hormone…) (Table A1). The ability of TyPol to classify degradation products compared to their parent substance was tested using 24 degradation products deriving from chloride pesticides (Table A2). As some degradation products are common to several parent substances, 26 pairs of parent-degradation product were inputted in TyPol.

Environmental processes and parameters

Five of the main processes involved in the behavior of organic substances in the environment were retained: (i) dissolution, to describe the expected distribution of the compound between liquid, solid and gaseous phases; (ii) volatilization, which is related to the risk of transfer to atmosphere; (iii) adsorption, which is linked to the risk of transfer to water; (iv) degradation which controls the dissipation and/or the persistence, and increases (or not) the risk of transfer and exposition of a living organism to the substance; and (v) bioaccumulation, to consider the impacts on the organisms and the food chain. Each of these environmental processes can be described by several environmental parameters. In this work, water solubility (Sw) and octanol-water partition coefficient (Kow) were selected to describe dissolution; vapor pressure (P vap ) and Henry's law constant (K H ) for volatilization from soil and plant, and water, respectively; adsorption coefficient normalized to soil carbon organic content (Koc) for adsorption; half-life (DT50) for degradation; and bioconcentration factor (BCF) for ecotoxicity (Table 1). These parameters were chosen because they are the most common ones to represent the five environmental processes, and because of the availability of the corresponding data in numerous databases.

The values of environmental parameters were mainly taken from the Pesticide Properties DataBase (PPDB, 2013) but also from literature. When values were not available in PPDB (mainly for degradation products), the missing values were collected from [START_REF] Mackay | Handbook of physical-chemical properties and environmental fate for organic chemicals[END_REF] and ChemSpider (2013). However, considering that a large amount of data of ChemSpider is estimated instead of measured, the use of this database was limited. When several values were available for one environmental parameter, the mean value was retained. For the 215 compounds, 1460 environmental parameters were inputted in TyPol, and there were only 3.9% of missing values. The ranges of values of the parameters are indicated in Table 1 for the 215 compounds.

Molecular descriptors: selection and calculation

The selection of molecular descriptors was based on a literature review focused on the QSARs that were developed to estimate Sw, Kow, P vap , K H , Koc, DT50, and BCF. This review allowed the determination of the molecular descriptors that were best correlated to the seven environmental parameters. We focused on QSARs only built with structural molecular descriptors (number of atoms, molecular surface, dipole moment…) rather than on Sw or Kow.

Indeed, contrary to approaches based on structural molecular descriptors, approaches based on Sw or Kow are prone to experimental errors in the input variables. However, molecular descriptors accuracy also depends on the approximations chosen to make the calculations. The calibration of the theoretical calculations is driven by the compromise between accuracy and efficiency [START_REF] Lohninger | Estimation of soil partition coefficients of pesticides from their chemical structure[END_REF][START_REF] Karelson | Quantum-chemical descriptors in QSAR/QSPR studies[END_REF]. Another advantage of the exclusive use of molecular descriptors is that they are calculable for not yet synthesized compounds.

In addition, five criteria were defined to choose the descriptors: (i) their relevance to estimate the seven environmental parameters (see the cited references below), (ii) their common use for the estimation of these seven parameters, (iii) the absence of redundancy between descriptors, (iv) the possibility to calculate the descriptors with molecular modeling, and (v) their ranges of variation. Finally, 40 constitutional, geometrical, topological, and quantum-chemical descriptors were retained (see for example OECD, 1993b; [START_REF] Katritzky | Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties[END_REF][START_REF] Sabljic | QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk[END_REF][START_REF] Dearden | Quantitative structure-property relationships for predicting Henry's law constant from molecular structure[END_REF][START_REF] Doucette | Quantitative structure-activity relationships for predicting soil-sediment sorption coefficients for organic chemicals[END_REF][START_REF] Yang | QSPR models for physicochemical properties of polychlorinated diphenyl ethers[END_REF][START_REF] Pavan | Review of literature-based quantitative structureactivity relationship models for bioconcentration[END_REF] (Table 2).

CHEM-3D of ChemOffice Ultra 12.0 (2009) molecular modeling software was used to build three-dimensional chemical structures (3D-structures) in order to calculate the quantumchemical molecular descriptors (Table 2). As the values of these molecular descriptors are highly dependent on the 3D-structures, a conformational search was done as follows: structures were energy-minimized in MOPAC (Molecular Orbital PACkage) using the semi-empirical method AM1 (Austin Model parameterization) and ground electronic states were obtained as closed-shell molecular orbital wave functions in the restricted Hartree-Fock framework. Analytical frequency calculations have been performed at AM1 level to ensure the obtained structures are minima on the potential energy surface (PES). For each compound, we proceeded by successive steps calculating a large number of conformations deriving from each other by rotations around the different chemical bonds in order to find the global minimum. As first estimate, the descriptors of acido-basic molecules were calculated for their neutral form. The Excel function of ChemOffice was then used to calculate the molecular weights and the Connolly surfaces. Finally, the constitutional (except the molecular weight) and the topological descriptors were calculated with Dragon 5.5 (2007). For the 215 compounds, 8600 values of molecular descriptors were inputted in TyPol. Their ranges of values are indicated in Table 2.

Partial least squares (PLS) regression

As stated in the introduction, PLS regression tries to find the multidimensional directions in the observable variables (i.e. structural molecular descriptors) space that explain the maximum multidimensional variance direction in the predicted variable (i.e. environmental parameters) space.

Traditionally, individuals are presented as plots with two components however two axes are not always the optimal choice. Therefore, in this work, the optimal number of axes to perform clustering will be selected using the PRESS (Prediction Sum of Squares) criterion. In addition, PLS can deal with missing values by using the NIPALS (Non-linear Iterative PArtial Least Squares) algorithm. This algorithm allows performing PLS without removing the individuals with missing values and without estimating these missing values [START_REF] Tenenhaus | La regression PLS, Théorie et Pratique[END_REF].

However, the less there are missing values the more accurate the final results are.

Domain of validity

The knowledge of the domain of validity of the final clustering is important to avoid erroneous conclusions. A priori, TyPol does not have a domain of validity and can be applied to all compounds. However, the use of the PLS algorithm can lead to compounds that are declared atypical by the algorithm. These compounds can be identified using the T² of Hotelling [START_REF] Tenenhaus | La regression PLS, Théorie et Pratique[END_REF]. If the T² value of a compound is above a calculated threshold, the compound is atypical on the PLS axes. Nevertheless, as one of the objectives of the method is to keep and to provide the maximum amount of information with the aim of being able to classify a new compound, the clustering of these atypical compounds is done by TyPol.

Hierarchical clustering

Clustering algorithms are used to assign similar objects into groups (called clusters) based on a similarity criterion chosen by the user. The algorithm used in this study is based on the Ward clustering [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF], which keeps the growth of errors as small as possible by merging individuals or clusters. The final number of clusters is chosen after comparison of the heights of the dendrogram, a statistical map which resumes Ward clustering. For the convenience of analyzing clustering of the compounds and their relevant degradation products, arrows linking the parent compounds to their degradation products are represented on the main axes of the PLS.

The multivariate analysis is done in R 2.10.0.1 with the "mixOmics" (version 2.8-1) and "cluster" (version 1.13.1) packages. The hierarchical clustering is performed using the agnes() function, and the average linkage and the Euclidean metric are performed under normalized variables (that is mean-centered and scale to unit variance).

Robustness of the method

To assess the robustness of the clustering method, a classical cross-validation algorithm was used. A fixed percentage of the whole sample is removed from the sample and the PLS is performed. Then, all the 215 compounds (including those which were removed to compute the PLS) are projected on the PLS axes and clustered by the hierarchical clustering algorithm. As compounds which were not included during the PLS algorithm are added in this step, this method can assess the robustness of our methodology and, by consequence, its relevance.

Finally, the obtained clustering is compared to the targeted clustering obtained with the PLS calculated on the whole sample. The closer the clustering is to the targeted one, the more robust the method is because it means that the chemicals which were removed during the PLS step are still well-clustered. We can assume that if the method is robust when substances are removed, it will be relevant when new ones will be tested. This also assesses the predictive quality of the method. The cross-validation study was performed a hundred times using a standard bootstrap procedure for different percentages of removed compounds, and the clusterings were compared using the Adjusted Rand Index [START_REF] Hubert | Comparing partitions[END_REF][START_REF] Nguyen | Information theoretic measures for clustering comparison: Is a correction for chance necessary?[END_REF]. This index is a measure of the similarity between two different clusterings. The closer it is to 1 (respectively to 0), the more (respectively less) the two clusterings are similar.

Computing tools

The information system is based on a management system for relational database MySQL DBMS-R (version 5.1), an Apache web server (version 2.2), and the statistical R software (also used for graphs). The system is installed in a distribution Debian 6.0. The environmental parameters and molecular descriptors are inserted into the management system relational database server which interfaces with Tcl/Tk (Tool command language/Toolkit) made from the R software and "RODBC" library (version 1.3-2). Annotations on the data or results are also stored in the same database. Since the web interfaces are easily editable, statistical analyses of data are treated and helped by the R software Tcl/Tk interfaces. All data that are stored in the DBMS MySQL-R can be viewed via the web interface phpMyAdmin (version 3.3). Data can be imported from phpMyAdmin and new data can easily be inserted. Finally, TyPol was designed in order to easily adapt to other research questions giving the users the choice of the variables (one or several molecular descriptors, one or several environmental parameters), and of the compounds (all compounds, one or several chemical family…). As the clustering will depend on the needs of the users, no related risk assessment can be included in TyPol.

Results and discussion

For this proof-of-concept study, the use of TyPol will be illustrated by clustering the 215 compounds considering all structural molecular descriptors and all environmental parameters. Therefore the results are specific of this case-study (as indicated above, the clustering depends on the needs of the users). The first step in the use of TyPol is the chemical mapping to select the number of components for the subsequent classification, then a hierarchical clustering is performed to identify the optimal number of clusters to classify the organic compounds. For this case-study, some P vap , Koc, DT50 and BCF trigger values are proposed to better characterize the clusters [START_REF] Mccall | Estimation of chemical mobility in soil from liquid chromatographic retention times[END_REF][START_REF] Focus | Pesticides in air: considerations for exposure assessment[END_REF]Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF]. These trigger values were developed for pesticides, mainly as regulatory threshold values. For the need of our proof-of-concept study, we assumed that they can be extended to any organic compound.

Chemical mapping by PLS

The choice of the number of PLS components is critical for the subsequent analysis and classification. The number of components which gave the lowest PRESS was therefore selected, it corresponded to the four first axes of the PLS.

The domain of validity of the analysis was studied by calculating the T² of Hotelling for the 215 compounds. It appeared that 7 compounds were found as atypical by the four components of the PLS: chlordecone, mirex, kelevan, fosetyl, di-isodecyl, di-isononyl, and benzo(g,h,i)perylene. Indeed, it is well known that these compounds have an extreme behavior in the environment: for example, chlordecone, mirex and kelevan are very persistent [START_REF] Marchand | Synthesis and chemistry of homocubanes, bishomocubanes and trishomocubanes[END_REF]ATSDR, 1995;[START_REF] Cabidoche | Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue[END_REF][START_REF] Dolfing | Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate[END_REF] contrary to fosetyl which has a very low DT50 (PPDB, 2013); and di-isodecyl, di-isononyl, and benzo(g,h,i)perylene have very high Kow values (PPDB, 2013). Chlordecone, benzo(g,h,i)perylene, mirex and kelevan also have very high connectivity indexes. Nevertheless, these compounds were taken into consideration for the subsequent analysis because they could be representative of other compounds.

The four-component PLS model has good statistical results: R² X =0.77, R² Y =0.90 and Q² Y =0.44. These results shows that the PLS is a good model for the different compounds included in TyPol. The first two components were the most important ones. The closer the compounds are in this score-plot, the more similar they are (Fig. 2). The main characteristic of the first component, which explains 40% of the variance, is the strong positive loadings for all the geometric and topological descriptors, and constitutional descriptors like the number of chlorine or halogen atoms. A contrario, the dipole moment and the total energy have strong negative loadings therefore have an opposite effect. The second axis explains 16% of the variance. On this axis, variables such as the number of chlorine or halogen atoms have a positive loading whereas the number of rotatable, double or simple bonds or the number of hydrogen, oxygen or total atoms have a negative loading (Fig. 3). Figure 3 also shows that many variables seem to be correlated, mainly the different connectivity and valence connectivity indexes. On the third axis, variables such as the number of carbon or hydrogen atoms, and the molecular weight have strong positive loadings, and others such as the number of circuits or the LUMO energy are on the opposite side. On the fourth axis, the HOMO energy and the numbers of rings atoms are on opposite sides of the number of sulfur or chlorine atoms.

Clustering

Using a hierarchical clustering algorithm, several clusterings, from 1 (all compounds in the same cluster) to 215 (all compounds in a different cluster), were obtained. The selection of the number of clusters is an important and difficult task, which is usually performed by plotting the heights of the dendrogram's node and looking for a break. The results showed that the best choice was to classify the compounds in 6 clusters. The size of the six clusters varied from 3 to 52 compounds (Fig. 2, Table A3), each cluster being characterized by specific features.

Figure 4 shows the range of variations of the values of the 7 environmental parameters for each of the 6 clusters. The importance of the different parameters can be evaluated in Figure 3, but Figure 4 provides a description of the characteristics of each cluster. The trigger value of P vap is indicated to differentiate volatile and non-volatile compounds (there is no trigger value for K H , FOCUS, 2008), that of Koc to differentiate mobile and non-mobile compounds [START_REF] Mccall | Estimation of chemical mobility in soil from liquid chromatographic retention times[END_REF], that of DT50 to differentiate persistent and non-persistent compounds (1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF]( EC, 2009)), and that of BCF to differentiate compounds having or not a potential of bioaccumulation (1107/2009 EC, 2009) (Fig. 4). Depending on the values of P vap , Koc, DT50 and/or BCF, the six clusters aggregate compounds having (or not) risks of air, water and/or soil contamination and/or high ecotoxicity.

The cluster 1 contains 48 compounds and groups together all the thiocarbamates (5 compounds) and nearly 50% of the triazines, carbamates and ureas inputted in TyPol. This cluster is characterized by high values of total energy and polarizability and low values of different connectivity indexes. The compounds have low Koc i.e. high risk of groundwater contamination [START_REF] Mccall | Estimation of chemical mobility in soil from liquid chromatographic retention times[END_REF], and low DT50 that is low persistence in the environment (Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF] (Fig. 4). They also have the lowest BCF (i.e. low ecotoxicity, Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF] and Kow among the 6 clusters, which is consistent [START_REF] Pavan | Review of literature-based quantitative structureactivity relationship models for bioconcentration[END_REF], and the highest Sw (this is also consistent with low values of Kow) (Fig. 4). Finally, the compounds of cluster 1 have the lowest K H values (the lowest K H among the 6 clusters) therefore the lowest volatility from water, but high values of P vap so high volatility from soil and plant, and high risk of transfer to atmosphere [START_REF] Focus | Pesticides in air: considerations for exposure assessment[END_REF].

Twenty-one of the 30 compounds of cluster 2 are PCB (over 31 inputted in TyPol). There are also 4 organochlorines (2 parent substances and 2 degradation products) and 3 PAH.

Compounds of cluster 2 have low dipole moment and high total energy. They also have the lowest DT50 of the 6 clusters (rapid dissipation), low Koc (high mobility), but contrary to cluster 1, low Sw (and high Kow), and high BCF so high ecotoxicity (Fig. 4).

Cluster 3 shares some common traits with cluster 2 in the first two axes. Nevertheless, these two clusters are well separated in the two other axes of the PLS which are not plotted here in a sake of compactness. Cluster 3 is composed of 52 compounds, including all PCDF, 12 organochlorines (9 parent substances and 3 degradation products), 9 PCB, all PCDD, and 10 PAH (13 in the study). The combination of high molecular weights and low number of hydrogen atoms is related to low values of Sw (the lowest among the 6 clusters) and high values of Kow, and to the highest values of BCF. The compounds of cluster 3 also have the highest DT50 among the six clusters which means very high persistence in soils (Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF] (Fig. 4). Finally, they have medium values of P vap and K H (moderate risk of transfer to atmosphere) (Fig. 4).

The cluster 4 contains 37 compounds including all strobilurin compounds, 6 of the 9 phthalates and 5 of the 6 triazoles. The main characteristics of this cluster are very high connectivity indexes, polarizability, and number of hydrogen and carbon atoms for descriptors; low values of DT50 and P vap , and medium values of K H for environmental parameters. The compounds of this cluster have the highest Koc values among the 6 clusters, therefore low risk of groundwater contamination (Fig. 4).

Among the 45 compounds of the cluster 5, there are all dinitroanilines, 5 organophosphorous, 4 triazines, 4 urea, and 4 of the 5 chloroacetamides. This cluster is characterized by important dipole moment and number of rotatable bonds for the structural molecular descriptors, and medium values of P vap , K H , DT50, and Koc, with high Sw, and low Kow and BCF for the environmental parameters. Few compounds of this cluster are closed to those of cluster 1 in the first two axes of the PLS, but differences between these molecules are more easily noticeable in the fourth axes of the PLS.

Finally, as showed on Figure 2, cluster 6 is an extreme one. It contains mirex, kelevan and chlordecone (in addition, chlordecone is a degradation product of kelevan, PPDB, 2013). As discussed above, these three organochlorine insecticides have very particular chemical structures and high persistence (high DT50) in the environment (bishomocubane family). They have extraordinary high values of connectivity or valence connectivity indexes, polarizability, molecular weight, number of chlorine and other halogen atoms; and extremely low values of number of multiple bonds, total energy, HOMO energy. Considering the environmental parameters, they have low Koc (high mobility), high BCF, that is high ecotoxicity, and high K H [START_REF] Dolfing | Gibbs free energy of formation of chlordecone and potential degradation products: implications for remediation strategies and environmental fate[END_REF]; PPDB, 2013) (Fig. 4). Even on the third and the fourth axes of the PLS, these three compounds have extreme locations and cannot be aggregated with any other cluster.

The other compounds that were detected as atypical by the T² of Hotelling are clustered in nearly all the clusters: cluster 1 for fosetyl, cluster 3 for benzo(g,h,i)perylene, and cluster 4 for di-isodecyl and di-isononyl.

The robustness of the method was assessed, using the cross-validation method described above, and found to be high and not depending on a low number of values. The Adjusted Rand Index values were 0.92, 0.87, 0.84 and 0.80 if 1%, 10%, 20% and 50% of the compounds were removed, respectively. As the real cluster of the removed molecules is generally found again, these results show that the predictive quality of the clustering is high. Furthermore, as the molecular descriptors and the environmental parameters were chosen to cover a wide range of values, we can assume that a "new" compound will be clustered with a good quality of prediction. This proof-of-concept study showed that TyPol could allow the classification of organic compounds according to a particular behavior in the environment (i.e. similar values of environmental parameters), which is related to the combination of the values of some specific molecular descriptors.

Parents-degradation products relationships

To test the ability of TyPol to classify degradation products compared to their parent compounds, 26 pairs of parents and degradation products were inputted (Table A2). The clustering made above using all compounds was retained for the analysis (Table A3). Figure 5 shows the classification of the degradation products compared to their parents. Among all degradation products, 58% (i.e. 15 degradation products) were in the same cluster as their parents. Conversely, 42% (i.e. 11 degradation products) were not in the same cluster as their parents: 6 degradation products originating from parents in clusters 4 and 5 were in cluster 1; 2 degradation products of parent in cluster 3 were in cluster 2; and 3 degradation products of parents in clusters 1 and 4 were in cluster 5. These results are due to similarities (or dissimilarities) in terms of structure and behavior between parent compounds and their degradation products, but further tests need to be performed with other chemical families. The classification of degradation products compared to the parent compounds will allow the prediction of the behavior in the environment of potential degradation products and/or of degradation products for which no data are available. In addition, the different routes of degradation, i.e. biotic, abiotic (oxidation, dehalogenation…) will be added in the future to investigate if the change in cluster between a compound and its degradation product(s) is related to the type of degradation mechanism.

Conclusion

A novel approach, TyPol, for clustering organic compounds according to both their behavior in the environment and their structural molecular descriptors is presented. The approach is based on PLS regression and hierarchical clustering. TyPol considers simultaneously several environmental processes (described by appropriate environmental parameters), and the degradation products of compounds. This proof-of-concept study, based on the classification of 215 organic compounds, showed that the combination of the values of some molecular descriptors could be related to a particular behavior in the environment. The robustness of the method was studied and demonstrated to be good, as well as the statistical performances of the PLS regression.

Therefore, TyPol could help to predict the environmental behavior of a "new" compound from its affiliation to one cluster or to select representative substances from a large data set in order to answer some specific questions regarding their behavior in the environment. In addition, TyPol takes into account the degradation products of organic compounds. The analysis is based on the same methodology as above and highlights the similarities (or dissimilarities) between a parent substance and its degradation product. One of the next steps of this work will investigate if the 20 change in cluster between a compound and its degradation product(s) is related to the type of degradation mechanism (oxidation, epoxidation, hydroxylation…). Additional environmental and ecotoxicological parameters, and molecular descriptors will also be included in TyPol to refine the classification of compounds. vapor pressure P vap , Henry's law constant K H , adsorption coefficient normalized to soil carbon organic content Koc, half-life DT50, and bioconcentration factor BCF) for each cluster after analysis of the 215 organic compounds. Dotted lines represent the limits between: volatile (log P vap > -1) and non-volatile compounds (log P vap < -1) [START_REF] Focus | Pesticides in air: considerations for exposure assessment[END_REF]; mobile (log Koc < 2.7) and non-mobile compounds (log Koc > 2.7) [START_REF] Mccall | Estimation of chemical mobility in soil from liquid chromatographic retention times[END_REF]; persistent (log DT50 > 2.25) and non-persistent compounds (log DT50 < 2.25) (Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF], and compounds having (log BCF > 2) or not (log BCF < 2) a potential of bioaccumulation (Regulation EC 1107[START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF][START_REF] Chemoffice | ChemOffice Ultra 12.0 molecular modelling software[END_REF]. 
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Table A2

 A2 List of degradation products inputted in TyPol. When there was no referenced CAS, a number was created according to the following format: CAS number of the parent-INRA-i (i represents

	Urea Diazine Triazinone Hydroxyanilide Neonicotinoid Metabolite PCDF Table A3 Metabolite Organochlorine	101-42-8 25057-89-0 21087-64-9 126833-17-8 Fenhexamid Fenuron Bentazone Metribuzin 135410-20-7 Acetamiprid 1570-64-5 72918-21-9 1897-45-6-INRA-1 50-29-3	C 9 H 12 N 2 O C 10 H 12 N 2 O 3 S C 8 H 14 N 4 OS C 14 H 17 Cl 2 NO 2 C 10 H 11 ClN 4 Metabolite of MCPA PCB PCDD PCDD 1,2,3,7,8,9-HxCDF Metabolite of chlorothalonil p,p'-DDT	52663-78-2 19408-74-3 35822-46-9	2,2',3,3',4,4',5,6-octachlorobiphenyl 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	C 12 H 2 Cl C 12 H 2 Cl O 2 C 12 HCl O 2
	Urea Triazinone Triazole Diphenyl oxazoline Metabolite Organochlorine Example of TyPol results: clustering of the 215 organic compounds (parent substances and 330-54-1 Diuron C 9 H 10 Cl 2 N 2 O PCB 52663-79-3 2,2',3,3',4,4',5,6,6'-nonachlorobiphenyl 41394-05-2 Metamitron C 10 H 10 N 4 O PCDD 39227-28-6 1,2,3,4,7,8-HxCDD 61-82-5 Amitrole C 2 H 4 N 4 PCDD 40321-76-4 1,2,3,7,8-PeCDD 153233-91-1 Etoxazole C 21 H 23 F 2 NO 2 2327-02-8 Metabolite of diuron 57-74-9 Chlordane Metabolite 3567-62-2 Metabolite of diuron Organochlorine 60-57-1 Dieldrine	C 12 HCl 9 C 12 H 2 Cl O 2 C 12 H 3 Cl O 2
	Chemical family Pesticides Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Organochlorine Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Carbamate Urea Urea Urea Urea Urea Urea Urea Urea Organophosphorous Organophosphorous Organophosphorous Organophosphorous Organophosphorous Organophosphorous Organophosphorous Organophosphorous Organophosphorous Amide Amide Amide Amide Amide Amide Amide Amide Strobilurin Strobilurin Strobilurin Strobilurin Strobilurin Strobilurin Strobilurin Triazine Triazine Triazine Triazine Triazine Triazine Triazine Diazine Triazole Triazole Metabolite Organochlorine Triazole Triazole Organochlorine degradation products) inputted in the database (chemical families, CAS numbers, names) (PCB: CAS number Name Chemical formula Chemical family CAS number Name 50-29-3 p,p'-DDT C 14 H 9 Cl 5 PCB 92-52-4 Biphenyl 57-74-9 Chlordane C 10 H 6 Cl 8 PCB 2050-67-1 3,3'-dichlorobiphenyl 58-89-9 Lindane C 6 H 6 Cl 6 PCB 2050-68-2 4,4'-dichlorobiphenyl 60-57-1 Dieldrine C 12 H 8 Cl 6 O PCB 2051-24-3 Decachlorobiphenyl 72-20-8 Endrine C 12 H 8 Cl 6 O PCB 2051-60-7 2-chlorobiphenyl 76-44-8 Heptachlore C 10 H 5 Cl 7 PCB 2051-61-8 3-chlorobiphenyl 115-29-7 Endosulfan C 9 H 6 Cl 6 O 3 S PCB 2974-90-5 3,4'-dichlorobiphenyl 118-74-1 Hexachlorobenzene C 6 Cl 6 PCB 2974-92-7 3,4-dichlorobiphenyl 143-50-0 Chlordecone C 10 Cl 10 O PCB 13029-08-8 2,2'-dichlorobiphenyl 297-78-9 Isobenzane C 9 H 4 Cl 8 O PCB 16605-91-7 2,3-dichlorobiphenyl 1715-40-8 Bromocyclene C 8 H 5 BrCl 6 PCB 25569-80-6 2,3'-dichlorobiphenyl 2385-85-5 Mirex C 10 Cl 12 PCB 33146-45-1 2,6-dichlorobiphenyl 4234-79-1 Kelevan C 17 H 12 Cl 10 O 4 PCB 33284-50-3 2,4-dichlorobiphenyl 8001-35-2 Toxaphene C 10 H 8 Cl 8 PCB 34883-39-1 2,5-dichlorobiphenyl 63-25-2 Carbaryl C 12 H 11 NO 2 PCB 34883-41-5 3,5-dichlorobiphenyl 101-21-3 Chlorpropham C 10 H 12 ClNO 2 PCB 34883-43-7 2,4'-dichlorobiphenyl 116-06-3 Aldicarb C 7 H 14 N 2 O 2 S PCB 35065-30-6 2,2',3,3',4,4',5-heptachlorobiphenyl C 12 H 3 Cl 7 Chemical formula C 12 H 10 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 Cl 10 C 12 H 9 Cl C 12 H 9 Cl C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 C 12 H 8 Cl 2 1563-66-2 Carbofuran C 12 H 15 NO 3 PCB 35694-08-7 2,2',3,3',4,4',5,5'-octachlorobiphenyl C 12 H 2 Cl 8 3337-71-1 Asulam C 8 H 10 N 2 O 4 S PCB 37680-66-3 2,2',4-trichlorobiphenyl C 12 H 7 Cl 3 13684-56-5 Desmedipham C 16 H 16 N 2 O 4 PCB 38380-07-3 2,2',3,3',4,4'-hexachlorobiphenyl C 12 H 4 Cl 6 13684-63-4 Phenmedipham C 16 H 16 N 2 O 4 PCB 38444-78-9 2,2',3-trichlorobiphenyl C 12 H 7 Cl 3 16118-49-3 Carbetamide C 12 H 16 N 2 O 3 PCB 38444-93-8 2,2',3,3'-tetrachlorobiphenyl C 12 H 6 Cl 4 23103-98-2 Pirimicarb C 11 H 18 N 4 O 2 PCB 40186-72-9 2,2',3,3',4,4',5,5',6-nonachlorobiphenyl C 12 HCl 9 23135-22-0 Oxamyl C 7 H 13 N 3 O 3 S PCB 52663-59-9 2,2',3,4-tetrachlorobiphenyl C 12 H 6 Cl 4 24579-73-5 Propamocarb C 9 H 20 N 2 O 2 PCB 52663-62-4 2,2',3,3',4-pentachlorobiphenyl C 12 H 5 Cl 5 79127-80-3 Fenoxycarb C 17 H 19 NO 4 PCB 52663-71-5 2,2',3,3',4,4',6-heptachlorobiphenyl C 12 H 3 Cl 7 330-55-2 Linuron C 9 H 10 Cl 2 N 2 O 2 PCB 55215-18-4 2,2',3,3',4,5-hexachlorobiphenyl C 12 H 4 Cl 555-37-3 Neburon C 12 H 16 Cl 2 N 2 O PCB 60145-20-2 2,2',3,3',5-pentachlorobiphenyl C 12 H 5 Cl 1746-81-2 Monolinuron C 9 H 11 ClN 2 O 2 3060-89-7 Metobromuron C 9 H 11 BrN 2 O 2 PAH 50-32-8 Benzo(a)pyrene C 20 H 12 15545-48-9 Chlortoluron C 10 H 13 ClN 2 O PAH 53-70-3 Dibenzo(a,h)anthracene C 22 H 14 34123-59-6 Isoproturon C 12 H 18 N 2 O PAH 56-55-3 Benzo(a)anthracene C 18 H 12 64902-72-3 Chlorsulfuron C 12 H 12 ClN 5 O 4 S PAH 85-01-8 Phenanthrene C 14 H 10 79510-48-8 Metsulfuron C 13 H 13 N 5 O 6 S PAH 86-73-7 Fluorene C 13 H 10 56-38-2 Parathion-ethyl C 10 H 14 NO 5 PS PAH 120-12-7 Anthracene C 14 H 10 60-51-5 Dimethoate C 5 H 12 NO 3 PS 2 PAH 129-00-0 Pyrene C 16 H 10 86-50-0 Azinphos-methyl C 10 H 12 N 3 O 3 PS 2 PAH 191-24-2 Benzo(g,h,i)perylene C 22 H 12 121-75-5 Malathion C 10 H 19 O 6 PS 2 PAH 193-39-5 Indeno[1,2,3-cd]pyrene C 22 H 12 122-14-5 Fenitrothion C 9 H 12 NO 5 PS PAH 205-99-2 Benzo(b)fluoranthene C 20 H 12 333-41-5 Diazinon C 12 H 21 N 2 O 3 PS PAH 206-44-0 Fluoranthene C 16 H 10 5598-13-0 Chlorpyrifos-methyl C 7 H 7 Cl 3 NO 3 PS PAH 207-08-9 Benzo(k)fluoranthene C 20 H 12 13194-48-4 Ethoprophos C 8 H 19 O 2 PS 2 PAH 218-01-9 Chrysene C 18 H 12 15845-66-6 Fosetyl C 2 H 7 O 3 P 709-98-8 Propanil C 9 H 9 Cl 2 NO PCDF 39001-02-0 OCDF C 12 Cl 8 O 15299-99-7 Napropamide C 17 H 21 NO 2 PCDF 51207-31-9 2,3,7,8-TCDF C 12 H 4 Cl O 23950-58-5 Propyzamide C 12 H 11 Cl 2 NO PCDF 55673-89-7 1,2,3,4,7,8,9-HpCDF C 12 HCl 7 O 35256-85-0 Tebutam C 15 H 23 NO PCDF 57117-31-4 2,3,4,7,8-PeCDF C 12 H 3 Cl O 55814-41-0 Mepronil C 17 H 19 NO 2 PCDF 57117-41-6 1,2,3,7,8-PeCDF C 12 H 3 Cl O 57837-19-1 Metalaxyl C 15 H 21 NO 4 PCDF 57117-44-9 1,2,3,6,7,8-HxCDF C 12 H 2 Cl O 77732-09-3 Oxadixyl C 14 H 18 N 2 O 4 PCDF 60851-34-5 2,3,4,6,7,8-HxCDF C 12 H 2 Cl O 180409-60-3 Cyflufenamid C 20 H 17 F 5 N 2 O 2 PCDF 67562-39-4 1,2,3,4,6,7,8-HpCDF C 12 HCl 7 O 117428-22-5 Picoxystrobin C 18 H 16 F 3 NO 4 PCDF 70648-26-9 1,2,3,4,7,8-HxCDF C 12 H 2 Cl O 131860-33-8 Azoxystrobin C 22 H 17 N 3 O 5 PCDF 72918-21-9 1,2,3,7,8,9-HxCDF C 12 H 2 Cl O 141517-21-7 Trifloxystrobin C 20 H 19 F 3 N 2 O 4 143390-89-0 Kresoxim-methyl C 18 H 19 NO 4 Phthalate 84-61-7 Di-cyclohexyl C 20 H 26 O 149961-52-4 Dimoxystrobin C 19 H 22 N 2 O 3 Phthalate 84-66-2 Diethyl C 12 H 14 O 175013-18-0 Pyraclostrobin C 19 H 18 ClN 3 O 4 Phthalate 84-74-2 Dibutyl C 16 H 22 O 361377-29-9 Fluoxastrobin C 21 H 16 ClFN 4 O 5 Phthalate 85-68-7 Benzylbutyl C 19 H 20 O 122-34-9 Simazine C 7 H 12 ClN 5 Phthalate 117-81-7 Di-2-ethylhexyl C 24 H 38 O 834-12-8 Ametryn C 9 H 17 N 5 S Phthalate 117-84-0 Di-n-octyl C 24 H 38 O 886-50-0 Terbutryn C 10 H 19 N 5 S Phthalate 131-11-3 Dimethyl C 10 H 10 O 1912-24-9 Atrazine C 8 H 14 ClN 5 Phthalate 26761-40-0 Di-isodecyl C 28 H 46 O 5915-41-3 Terbuthylazine C 9 H 16 ClN 5 Phthalate 28553-12-0 Di-isononyl C 26 H 42 O 21725-46-2 Cyanazine C 9 H 13 ClN 6 66215-27-8 Cyromazine C 6 H 10 N 6 PCDD 1746-01-6 2,3,7,8-tetrachloro-dibenzo-p-dioxine C 12 H 4 Cl O 2 1698-60-8 Chloridazon C 10 H 8 ClN 3 O PCDD 3268-87-9 OCDD C 12 Cl 8 O 76674-21-0 Flutriafol C 16 H 13 F 2 N 3 O PCDD 57653-85-7 1,2,3,6,7,8-HxCDD C 12 H 2 Cl O 2 94361-06-5 Cyproconazole 68359-37-5-INRA-1 Metabolite of cyfluthrin 72-20-8 Endrine C 15 H 18 ClN 3 O 119446-68-3 Difenoconazole C 19 H 17 Cl 2 N 3 O 3 Medicine 298-46-4 Carbamazepine C 15 H 12 N O 131983-72-7 Triticonazole C 17 H 20 ClN 3 O Medicine 14168-01-5 Dilor 76-44-8 Heptachlore Organochlorine 115-29-7 Endosulfan C 10 H 7 Cl Triazole 133855-98-8 Epoxiconazole C 17 H 13 ClFN 3 O Thiocarbamate 137-26-8 Thiram C 6 H 12 N 2 S 4 Hormone 50-28-2 Estradiol the number of the degradation product among all degradation products of the parent pompound) Cluster 2 Organochlorine 297-78-9 Isobenzane polychlorinated biphenyls, PAH: polycyclic aromatic hydrocarbons, PCDF: polychlorinated PCB 92-52-4 Biphenyl Organochlorine 1715-40-8 Bromocyclene C 18 H 24 O Thiocarbamate 759-94-4 EPTC PCB 2050-67-1 3,3'-dichlorobiphenyl Organochlorine 8001-35-2 Toxaphene C 9 H 19 NOS Thiocarbamate 1929-77-7 Vernolate C 10 H 21 NOS Auxin 87-51-4 Indolylacetic acid C 10 H 9 NO 2 Thiocarbamate 2303-16-4 Di-allate PCB 2050-68-2 4,4'-dichlorobiphenyl PCB 2051-24-3 Decachlorobiphenyl dibenzofurans, PCDD: polychlorinated dibenzodioxins) PCB 2051-60-7 2-chlorobiphenyl PCB 35065-30-6 2,2',3,3',4,4',5-heptachlorobiphenyl C 10 H 17 Cl 2 NOS Thiocarbamate 2303-17-5 Tri-allate C 10 H 16 Cl 3 NOS Other 608-73-1 Hexachlorocyclohexane PCB 2051-61-8 3-chlorobiphenyl PCB 35694-08-7 2,2',3,3',4,4',5,5'-octachlorobiphenyl C 6 H 6 Cl Chloroacetamide 1918-16-7 Propachlor C 11 H 14 ClNO Other 2550-75-6 Chlorbicyclene PCB 2974-90-5 3,4'-dichlorobiphenyl PCB 38380-07-3 2,2',3,3',4,4'-hexachlorobiphenyl C 9 H 6 Cl Chloroacetamide 15972-60-8 Alachlor C 14 H 20 ClNO 2 Chloroacetamide 34256-82-1 Acetochlor C 14 H 20 ClNO 2 Chloroacetamide 51218-45-2 Metolachlor C 15 H 22 ClNO 2 Chloroacetamide 67129-08-2 Metazachlor C 14 H 16 ClN 3 O Dinitroaniline 1582-09-8 Trifluralin C 13 H 16 F 3 N 3 O 4 Dinitroaniline 19044-88-3 Oryzalin C 12 H 18 N 4 O 6 S Dinitroaniline 33629-47-9 Butralin C 14 H 21 N 3 O 4 Dinitroaniline 40487-42-1 Pendimethalin C 13 H 19 N 3 O 4 Pyrethroid 52315-07-8 Cypermethrin C 22 H 19 Cl 2 NO 3 Pyrethroid 52645-53-1 Permethrin C 21 H 20 Cl 2 NO 3 Pyrethroid 68359-37-5 Cyfluthrin C 22 H 18 Cl 2 FNO 3 Triketone 99105-77-8 Sulcotrione C 14 H 13 ClO 5 S Triketone 335104-84-2 Tembotrione C 17 H 16 ClF 3 O 6 S Phthalimide 133-06-2 Captan C 9 H 8 Cl 3 NO 2 S Phthalimide 133-07-3 Folpet C 9 H 4 Cl 3 NO 2 S Cyclodiene 309-00-2 Aldrine C 12 H 8 Cl 6 Cyclodiene 465-73-6 Isodrine C 12 H 8 Cl 6 Aryloxyalkanoic acid 94-74-6 MCPA C 9 H 9 ClO 3 Aryloxyalkanoic acid 7085-19-0 Mecoprop C 10 H 11 ClO 3 Alkylchlorophenoxy 94-75-7 2,4-D C 8 H 6 Cl 2 O 3 Phosphonoglycine 1071-83-6 Glyphosate C 3 H 7 NO 5 P Chloronitrile 1897-45-6 Chlorothalonil C 8 Cl 4 N 2 Benzoic acid 1918-00-9 Dicamba C 8 H 6 Cl 2 O 3 Pyridine 1918-02-1 Picloram C 6 H 3 Cl 3 N 2 O 2 Sulfite ester 2312-35-8 Propargite C 19 H 26 O 4 S Ethylene generator 16672-87-0 Ethephon C 2 H 6 ClO 3 P Dicarboximide 36734-19-7 Iprodione C 13 H 13 Cl 2 N 3 O 3 Aryloxyphenoxypropionate 51338-27-3 Diclofop-methyl C 16 H 14 Cl 2 O 4 Diphenyl ether 74070-46-5 Aclonifen C 12 H 9 ClN 2 O 3 Anilinopyrimidine 121552-61-2 Cyprodinil C 14 H 15 N 3 CAS number Chemical formula Parent CAS number Chemical family CAS number Name PCB 2974-92-7 3,4-dichlorobiphenyl PCB 40186-72-9 2,2',3,3',4,4',5,5',6-nonachlorobiphenyl Parent name 64-19-7 CH 3 COOH 34256-82-1 Acetochlor 72-54-8 C 14 H 10 Cl 4 50-29-3 p,p'-DDT 72-55-9 C 14 H 8 Cl 4 50-29-3 p,p'-DDT 85-41-6 C 8 H 5 NO 2 133-07-3 Folpet 88-97-1 C 8 H 7 NO 3 133-07-3; 131983-72-7 Folpet; Triticonazole 88-99-3 C 6 H 4 (COOH) 2 133-07-3 Folpet 95-76-1 C 6 H 5 Cl 2 N 330-54-1 Diuron 1024-57-3 C 10 H 5 Cl 7 O 57-74-9; 76-44-8 Chlordane; Heptachlore 1031-07-8 C 9 H 6 Cl 6 O 4 S 115-29-7 Endosulfan 1570-64-5 C 7 H 7 ClO 94-74-6 MCPA 1897-45-6-INRA-1 C 8 HCl 3 N 2 O 1897-45-6 Chlorothalonil 1897-45-6-INRA-2 C 8 H 3 Cl 3 N 2 O 4 S 1897-45-6 Chlorothalonil 2327-02-8 C 7 H 6 Cl 2 N 2 O 330-54-1 Diuron 3567-62-2 C 8 H 8 Cl 2 N 2 O 330-54-1 Diuron 3739-38-6 C 13 H 10 O 3 52315-07-8 Cypermethrin 27304-13-8 C 10 H 4 Cl 8 O 57-74-9 Chlordane 34256-82-1-INRA-1 C 14 H 21 NO 5 S 34256-82-1 Acetochlor 34256-82-1-INRA-2 C 14 H 19 NO 4 34256-82-1 Acetochlor 34256-82-1-INRA-3 C 16 H 23 NO 5 S 34256-82-1 Acetochlor 63637-89-8 C 17 H 20 ClN 3 O 2 36734-19-7 Iprodione 68359-37-5-INRA-1 C 8 H 10 Cl 2 O 2 68359-37-5 Cyfluthrin 77279-89-1 C 13 H 9 FO 3 68359-37-5 Cyfluthrin 131983-72-7-INRA-1 C 17 H 20 ClN 3 O 2 131983-72-7 Triticonazole 131983-72-7-INRA-2 C 17 H 20 ClN 3 O 2 131983-72-7 Triticonazole PCB 13029-08-8 2,2'-dichlorobiphenyl PCB 52663-71-5 2,2',3,3',4,4',6-heptachlorobiphenyl Cluster 1 Carbamate 63-25-2 PCB 16605-91-7 2,3-dichlorobiphenyl PCB 52663-78-2 2,2',3,3',4,4',5,6-octachlorobiphenyl Carbaryl Carbamate 101-21-3 PCB 25569-80-6 2,3'-dichlorobiphenyl PCB 52663-79-3 2,2',3,3',4,4',5,6,6'-nonachlorobiphenyl Chlorpropham Carbamate 116-06-3 PCB 33146-45-1 2,6-dichlorobiphenyl PCB 55215-18-4 2,2',3,3',4,5-hexachlorobiphenyl Aldicarb Carbamate 3337-71-1 PCB 33284-50-3 2,4-dichlorobiphenyl PCDD 1746-01-6 2,3,7,8-tetrachloro-dibenzo-p-dioxine Asulam Carbamate 23135-22-0 PCB 34883-39-1 2,5-dichlorobiphenyl PCDD 3268-87-9 OCDD Oxamyl Carbamate 24579-73-5 PCB 34883-41-5 3,5-dichlorobiphenyl PCDD 19408-74-3 1,2,3,7,8,9-HxCDD Propamocarb Thiocarbamate 137-26-8 PCB 34883-43-7 2,4'-dichlorobiphenyl PCDD 35822-46-9 1,2,3,4,6,7,8-HpCDD Thiram Thiocarbamate 759-94-4 PCB 37680-66-3 2,2',4-trichlorobiphenyl PCDD 39227-28-6 1,2,3,4,7,8-HxCDD EPTC Thiocarbamate 1929-77-7 PCB 38444-78-9 2,2',3-trichlorobiphenyl PCDD 40321-76-4 1,2,3,7,8-PeCDD Vernolate Thiocarbamate 2303-16-4 PCB 38444-93-8 2,2',3,3'-tetrachlorobiphenyl PCDD 57653-85-7 1,2,3,6,7,8-HxCDD Di-allate Thiocarbamate 2303-17-5 PCB 52663-59-9 2,2',3,4-tetrachlorobiphenyl Cyclodiene 309-00-2 Aldrine Tri-allate Urea 330-54-1 PCB 52663-62-4 2,2',3,3',4-pentachlorobiphenyl Cyclodiene 465-73-6 Isodrine Diuron Urea 330-55-2 PCB 60145-20-2 2,2',3,3',5-pentachlorobiphenyl Medicine 14168-01-5 Dilor Linuron Urea 1746-81-2 PAH 85-01-8 Phenanthrene Other 2550-75-6 Chlorbicyclene Monolinuron Urea 3060-89-7 PAH 86-73-7 Fluorene Metabolite 1024-57-3 Metabolite of chlordane and heptachlore Metobromuron Urea 15545-48-9 PAH 120-12-7 Anthracene Metabolite 1031-07-8 Metabolite of endosulfan Chlortoluron Organophosphorous 60-51-5 Organochlorine 58-89-9 Lindane Metabolite 27304-13-8 Metabolite of chlordane Dimethoate Organophosphorous 5598-13-0 Organochlorine 118-74-1 Hexachlorobenzene Chlorpyrifos-methyl Organophosphorous 13194-48-4 Urea 101-42-8 Fenuron Cluster 4 Ethoprophos Organophosphorous 15845-66-6 Other 608-73-1 Hexachlorocyclohexane Strobilurin 117428-22-5 Picoxystrobin Fosetyl Triazine 122-34-9 Metabolite 72-54-8 Metabolite of p-p'-DDT Strobilurin 131860-33-8 Azoxystrobin Simazine Triazine 1912-24-9 Metabolite 72-55-9 Metabolite of p-p'-DDT Strobilurin 141517-21-7 Trifloxystrobin Atrazine Triazine 66215-27-8 Strobilurin 143390-89-0 Kresoxim-methyl Cyromazine Alkylchlorophenoxy 94-75-7 Cluster 3 Strobilurin 149961-52-4 Dimoxystrobin 2,4-D Amide 709-98-8 PAH 50-32-8 Benzo(a)pyrene Strobilurin 175013-18-0 Pyraclostrobin Propanil Aryloxyalkanoic acid 7085-19-0 PAH 53-70-3 Dibenzo(a,h)anthracene Strobilurin 361377-29-9 Fluoxastrobin Mecoprop Aryloxyalkanoic acid 94-74-6 PAH 56-55-3 Benzo(a)anthracene Phthalates 84-61-7 Di-cyclohexyl MCPA Auxin 87-51-4 PAH 129-00-0 Pyrene Phthalates 85-68-7 Benzylbutyl Indolylacetic acid Benzoic acid 1918-00-9 PAH 191-24-2 Benzo(g,h,i)perylene Phthalates 117-81-7 Di-2-ethylhexyl Dicamba Chloroacetamide 1918-16-7 PAH 193-39-5 Indeno[1,2,3-cd]pyrene Phthalates 117-84-0 Di-n-octyl Propachlor Chloronitrile 1897-45-6 PAH 205-99-2 Benzo(b)fluoranthene Phthalates 26761-40-0 Di-isodecyl Chlorothalonil Ethylene generator 16672-87-0 PAH 206-44-0 Fluoranthene Phthalates 28553-12-0 Di-isononyl Ethephon Neonicotinoid 135410-20-7 PAH 207-08-9 Benzo(k)fluoranthene Triazole 76674-21-0 Flutriafol Acetamiprid Phosphonoglycine 1071-83-6 PAH 218-01-9 Chrysene Triazole 94361-06-5 Cyproconazole Glyphosate Phthalates 131-11-3 PCDF 39001-02-0 OCDF Triazole 119446-68-3 Difenoconazole Dimethyl Pyridine 1918-02-1 PCDF 51207-31-9 2,3,7,8-TCDF Triazole 131983-72-7 Triticonazole Picloram Triazinone 21087-64-9 PCDF 55673-89-7 1,2,3,4,7,8,9-HpCDF Triazole 133855-98-8 Epoxiconazole Metribuzin Triazole 61-82-5 PCDF 57117-31-4 2,3,4,7,8-PeCDF Amide 15299-99-7 Napropamide Amitrole Metabolite 64-19-7 PCDF 57117-41-6 1,2,3,7,8-PeCDF Amide 55814-41-0 Mepronil Metabolite of acetochlor Metabolite 85-41-6 PCDF 57117-44-9 1,2,3,6,7,8-HxCDF Amide 180409-60-3 Cyflufenamid Metabolite of folpet Metabolite 88-97-1 PCDF 60851-34-5 2,3,4,6,7,8-HxCDF Pyrethroid 52315-07-8 Cypermethrin Metabolite of folpet and triticonazole Metabolite 88-99-3 PCDF 67562-39-4 1,2,3,4,6,7,8-HpCDF Pyrethroid 52645-53-1 Permethrin Metabolite of folpet Metabolite 95-76-1 Metabolite of diuron PCDF 70648-26-9 1,2,3,4,7,8-HxCDF Pyrethroid 68359-37-5 Cyfluthrin
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Appendix A. Supplementary material

Supplementary Tables A1,A2 Table 1 Environmental parameters and ranges of variation of their values for the 215 organic compounds (191 parent compounds and 24 degradation products) inputted in TyPol (Sw: water solubility, Kow: octanol-water partition coefficient, P vap : vapor pressure, K H : Henry's law constant, Koc: