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HIGHLIGHTS 1 

 An innovative methodology, TyPol, was developed to classify organic compounds  2 

 The classification is based on environmental behavior and molecular descriptors 3 

 It relies on partial least squares analysis and hierarchical clustering 4 

 The degradation products of organic compounds are considered 5 

 The environmental behavior of a “new” compound can be assessed from its affiliation to 6 

one cluster 7 

 8 

ABSTRACT  9 

Following legislation, the assessment of the environmental risks of 30 000 to 100 000 chemical 10 

substances is required for their registration dossiers. However, their behavior in the environment 11 

and their transfer to environmental components such as water or atmosphere are studied for only 12 

a very small proportion of the chemical in laboratory tests or monitoring studies because it is 13 

time-consuming and/or cost prohibitive. Therefore, the objective of this work was to develop a 14 

new methodology, TyPol, to classify organic compounds, and their degradation products, 15 

according to both their behavior in the environment and their molecular properties. The strategy 16 

relies on partial least squares analysis and hierarchical clustering. The calculation of molecular 17 

descriptors is based on an in silico approach, and the environmental endpoints (i.e. 18 

environmental parameters) are extracted from several available databases and literature. The 19 

classification of 215 organic compounds inputted in TyPol for this proof-of-concept study 20 

showed that the combination of some specific molecular descriptors could be related to a 21 

particular behavior in the environment. TyPol also provided an analysis of similarities (or 22 

dissimilarities) between organic compounds and their degradation products. Among the 24 23 
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degradation products that were inputted, 58% were found in the same cluster as their parents. 1 

The robustness of the method was tested and shown to be good. TyPol could help to predict the 2 

environmental behavior of a “new” compound (parent compound or degradation product) from 3 

its affiliation to one cluster, but also to select representative substances from a large data set in 4 

order to answer some specific questions regarding their behavior in the environment. 5 

 6 
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 14 

1. Introduction 15 

New legislations such as the REACH (Registration, Evaluation, Authorization and 16 

restriction of CHemicals) regulation in the EU will require that manufacturers of substances and 17 

formulators register and provide prescribed eco/toxicological data for substances with volume 18 

higher than one metric ton per year. It is estimated that about 30 000 existing substances have to 19 

be registered by 2018 by member states (Ahlers et al., 2008).
 
The needed information has to be 20 

equivalent to the standard information requirement and adequate to draw overall conclusions 21 

with respect to the regulatory endpoints classification and labeling. Beyond specific regulatory 22 

needs, the same questions concern chemical substances that are potentially present in the 23 
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environment and that originate from various sources. According to authors, from 30 000 to 100 1 

000 chemical substances may be concerned by environmental risks assessment (Muir and 2 

Howard, 2006). However, their behavior in the environment and their transfer to environmental 3 

components such as water or atmosphere are studied for only a very small proportion of the 4 

chemical in laboratory tests or monitoring studies because it is time-consuming and/or cost 5 

prohibitive. Consequently, a high number of different in silico approaches have been developed 6 

to estimate the behavior of organic compounds in the environment. The most used in silico 7 

approaches, that are also the most simple, are based on QSAR (Quantitative Structure Activity 8 

Relationship). QSARs allow the estimation of one or several compound properties (such as 9 

sorption by soils and sediments, biodegradation, bioconcentration factor or biological activities) 10 

from some other properties such as structural molecular properties (number of atoms in the 11 

molecule, molecular surface, dipole moment, energy of orbitals…), water solubility or octanol-12 

water partition coefficient (e.g. OECD, 1993a; Raymond et al., 2001; Worrall, 2001; Eriksson et 13 

al., 2002; Pavan et al., 2008). Other approaches aim, for example, at ranking organic compounds 14 

knowing the values of several of their properties such as partitioning, persistence or 15 

bioaccumulation. Compounds that have undesirable properties can be considered for 16 

management, regulation, or even global bans on production and use (Mackay et al., 2001; 17 

Walker and Carlsen, 2002). Numerical models represent the most complex approaches as they 18 

allow overall assessment of the fate of organic compounds in the soil, water and air, and as they 19 

take into account the physico-chemical properties of the compounds and the agro-pedo-climatic 20 

conditions (e.g. Carsel et al., 1998; Jarvis and Larsbo, 2012). However, they require a lot of input 21 

data. Therefore, approaches able to classify compounds according to their environmental 22 

behavior or eco/toxicological effects will help both regulators and scientists facing the problem 23 
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of the constant increase in the diversity and in the number of the chemical substances which will 1 

be concerned by environmental risk assessment. 2 

The objective of this work was thus to develop a new simple approach, TyPol (Typology 3 

of Pollutants), to classify organic compounds and their degradation products according to both 4 

their behavior in the environment and their structural molecular properties.  5 

TyPol, is based on statistical analyses combining several environmental endpoints (i.e. 6 

environmental parameters such as sorption coefficient, degradation half-life or bioconcentration 7 

factor), and structural molecular descriptors (number of atoms in the molecule, molecular 8 

surface, dipole moment, energy of orbitals…) (Fig. 1). The calculation of molecular descriptors 9 

is based on in silico approach, and the environmental parameters are extracted from available 10 

databases and from literature. Knowing the values of several relevant structural molecular 11 

descriptors, TyPol will allow the classification of one organic compound of interest (parent or 12 

degradation product) in a group of compounds having similar values of molecular descriptors 13 

and environmental parameters, and potentially a similar environmental behavior. 14 

The choice of the statistical method involved in TyPol is crucial for the reliability of the 15 

clustering. Principal components analysis (PCA) is often used in multivariate chemical 16 

characterizations to determine linearly uncorrelated variables that summarize the information 17 

contained in variables (Jackson, 1991; Snarey et al., 1997; Harju et al., 2002; Eriksson et al., 18 

2006). These uncorrelated variables can also be used as an excellent basis to select a 19 

representative set of chemicals using clustering methods. Various clustering techniques have 20 

been employed in chemical mapping such as strategies based on PCA and hierarchical clustering 21 

for selecting dissimilar organic substances (Rännar and Anderson, 2010) or ranking non-ionic 22 

organic pesticides (Gramatica et al., 2004), bayesian classifiers for chemical toxicity predictions 23 
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(Mishra et al., 2011), network clustering (Saito et al., 2010), PCA-based method (Rännar and 1 

Anderson, 2011) or other statistical tools (Vogt and Bajorath, 2012). However, the problematic 2 

of TyPol is different than these ones because it considers two sets of variables (molecular 3 

descriptors and environmental parameters), which are different by nature. Partial least squares 4 

regression (PLS) (Wold, 1996; Eriksson et al., 2006) can be used to find the fundamental relation 5 

between two sets of variables using a latent variable approach to model the covariance structures 6 

in these two spaces. PLS model tries to find the multidimensional directions in the observable 7 

variables (i.e. molecular descriptors) space that explain the maximum multidimensional variance 8 

direction in the predicted variable (i.e. environmental parameters) space. So PLS, as PCA, 9 

constructs uncorrelated variables which summarizes the information, but PLS takes into account 10 

the information of both observable and predictive variables. Therefore, the PLS was selected (for 11 

a detailed comparison of PLS and PCA, see Maitra and Yan, 2008). After the PLS analysis, a 12 

hierarchical clustering algorithm is used to cluster the organic compounds. 13 

 14 

2. Materials and methods 15 

2.1. Organic compounds 16 

For this proof-of-concept study of TyPol, 215 organic compounds (191 parent 17 

compounds and 24 degradation products) were selected (Tables A1, A2). The selection of these 18 

compounds was done according to three criteria: (i) high diversity of chemical families for the 19 

parent compounds, (ii) wide ranges of variation of the values of environmental parameters and 20 

molecular descriptors (Tables 1, 2), (iii) availability of data for the environmental parameters 21 

(see 2.2.). The 191 parent compounds include (i) 116 pesticides taken in the main groups of 22 

pesticides (carbamates, organochlorines, organophosphorous, strobilurins, triazines, urea, 23 
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phenoxyacids...), (ii) 30 polychlorinated biphenyls (PCB), (iii) 13 polycyclic aromatic 1 

hydrocarbons (PAH), (iv) 10 polychlorinated dibenzofurans (PCDF), (v) 9 phthalates, (vi) 7 2 

polychlorinated dibenzodioxins (PCDD), and (vii) 6 miscellaneous compounds (drugs, auxine, 3 

hormone…) (Table A1). The ability of TyPol to classify degradation products compared to their 4 

parent substance was tested using 24 degradation products deriving from chloride pesticides 5 

(Table A2). As some degradation products are common to several parent substances, 26 pairs of 6 

parent-degradation product were inputted in TyPol. 7 

 8 

2.2. Environmental processes and parameters 9 

Five of the main processes involved in the behavior of organic substances in the 10 

environment were retained: (i) dissolution, to describe the expected distribution of the compound 11 

between liquid, solid and gaseous phases; (ii) volatilization, which is related to the risk of 12 

transfer to atmosphere; (iii) adsorption, which is linked to the risk of transfer to water; (iv) 13 

degradation which controls the dissipation and/or the persistence, and increases (or not) the risk 14 

of transfer and exposition of a living organism to the substance; and (v) bioaccumulation, to 15 

consider the impacts on the organisms and the food chain. Each of these environmental processes 16 

can be described by several environmental parameters. In this work, water solubility (Sw) and 17 

octanol-water partition coefficient (Kow) were selected to describe dissolution; vapor pressure 18 

(Pvap) and Henry’s law constant (KH) for volatilization from soil and plant, and water, 19 

respectively; adsorption coefficient normalized to soil carbon organic content (Koc) for 20 

adsorption; half-life (DT50) for degradation; and bioconcentration factor (BCF) for ecotoxicity 21 

(Table 1). These parameters were chosen because they are the most common ones to represent 22 
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the five environmental processes, and because of the availability of the corresponding data in 1 

numerous databases.   2 

The values of environmental parameters were mainly taken from the Pesticide Properties 3 

DataBase (PPDB, 2013) but also from literature. When values were not available in PPDB 4 

(mainly for degradation products), the missing values were collected from Mackay et al. (2006) 5 

and ChemSpider (2013). However, considering that a large amount of data of ChemSpider is 6 

estimated instead of measured, the use of this database was limited. When several values were 7 

available for one environmental parameter, the mean value was retained. For the 215 8 

compounds, 1460 environmental parameters were inputted in TyPol, and there were only 3.9% 9 

of missing values. The ranges of values of the parameters are indicated in Table 1 for the 215 10 

compounds. 11 

 12 

2.3. Molecular descriptors: selection and calculation 13 

The selection of molecular descriptors was based on a literature review focused on the 14 

QSARs that were developed to estimate Sw, Kow, Pvap, KH, Koc, DT50, and BCF. This review 15 

allowed the determination of the molecular descriptors that were best correlated to the seven 16 

environmental parameters. We focused on QSARs only built with structural molecular 17 

descriptors (number of atoms, molecular surface, dipole moment…) rather than on Sw or Kow. 18 

Indeed, contrary to approaches based on structural molecular descriptors, approaches based on 19 

Sw or Kow are prone to experimental errors in the input variables. However, molecular 20 

descriptors accuracy also depends on the approximations chosen to make the calculations. The 21 

calibration of the theoretical calculations is driven by the compromise between accuracy and 22 

efficiency (Lohninger, 1994; Karelson et al., 1996). Another advantage of the exclusive use of 23 

molecular descriptors is that they are calculable for not yet synthesized compounds.  24 
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In addition, five criteria were defined to choose the descriptors: (i) their relevance to 1 

estimate the seven environmental parameters (see the cited references below), (ii) their common 2 

use for the estimation of these seven parameters, (iii) the absence of redundancy between 3 

descriptors, (iv) the possibility to calculate the descriptors with molecular modeling, and (v) their 4 

ranges of variation. Finally, 40 constitutional, geometrical, topological, and quantum-chemical 5 

descriptors were retained (see for example OECD, 1993b; Katritzky et al., 2000; Sabljic, 2001; 6 

Dearden and Schüürmann, 2003; Doucette, 2003; Yang et al., 2003; Pavan et al., 2008) (Table 7 

2).  8 

CHEM-3D of ChemOffice Ultra 12.0 (2009) molecular modeling software was used to 9 

build three-dimensional chemical structures (3D-structures) in order to calculate the quantum-10 

chemical molecular descriptors (Table 2). As the values of these molecular descriptors are highly 11 

dependent on the 3D-structures, a conformational search was done as follows: structures were 12 

energy-minimized in MOPAC (Molecular Orbital PACkage) using the semi-empirical method 13 

AM1 (Austin Model parameterization) and ground electronic states were obtained as closed-shell 14 

molecular orbital wave functions in the restricted Hartree-Fock framework. Analytical frequency 15 

calculations have been performed at AM1 level to ensure the obtained structures are minima on 16 

the potential energy surface (PES). For each compound, we proceeded by successive steps 17 

calculating a large number of conformations deriving from each other by rotations around the 18 

different chemical bonds in order to find the global minimum. As first estimate, the descriptors 19 

of acido-basic molecules were calculated for their neutral form. The Excel function of 20 

ChemOffice was then used to calculate the molecular weights and the Connolly surfaces. Finally, 21 

the constitutional (except the molecular weight) and the topological descriptors were calculated 22 
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with Dragon 5.5 (2007). For the 215 compounds, 8600 values of molecular descriptors were 1 

inputted in TyPol. Their ranges of values are indicated in Table 2. 2 

 3 

2.4. Partial least squares (PLS) regression  4 

As stated in the introduction, PLS regression tries to find the multidimensional directions 5 

in the observable variables (i.e. structural molecular descriptors) space that explain the maximum 6 

multidimensional variance direction in the predicted variable (i.e. environmental parameters) 7 

space.  8 

Traditionally, individuals are presented as plots with two components however two axes 9 

are not always the optimal choice. Therefore, in this work, the optimal number of axes to 10 

perform clustering will be selected using the PRESS (Prediction Sum of Squares) criterion. In 11 

addition, PLS can deal with missing values by using the NIPALS (Non-linear Iterative PArtial 12 

Least Squares) algorithm. This algorithm allows performing PLS without removing the 13 

individuals with missing values and without estimating these missing values (Tenenhaus, 1998). 14 

However, the less there are missing values the more accurate the final results are. 15 

 16 

2.5. Domain of validity 17 

The knowledge of the domain of validity of the final clustering is important to avoid 18 

erroneous conclusions. A priori, TyPol does not have a domain of validity and can be applied to 19 

all compounds. However, the use of the PLS algorithm can lead to compounds that are declared 20 

atypical by the algorithm. These compounds can be identified using the T² of Hotelling 21 

(Tenenhaus, 1998). If the T² value of a compound is above a calculated threshold, the compound 22 

is atypical on the PLS axes. Nevertheless, as one of the objectives of the method is to keep and to 23 
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provide the maximum amount of information with the aim of being able to classify a new 1 

compound, the clustering of these atypical compounds is done by TyPol.  2 

 3 

2.6. Hierarchical clustering 4 

Clustering algorithms are used to assign similar objects into groups (called clusters) 5 

based on a similarity criterion chosen by the user. The algorithm used in this study is based on 6 

the Ward clustering (Ward, 1963), which keeps the growth of errors as small as possible by 7 

merging individuals or clusters. The final number of clusters is chosen after comparison of the 8 

heights of the dendrogram, a statistical map which resumes Ward clustering. For the convenience 9 

of analyzing clustering of the compounds and their relevant degradation products, arrows linking 10 

the parent compounds to their degradation products are represented on the main axes of the PLS. 11 

The multivariate analysis is done in R 2.10.0.1 with the “mixOmics” (version 2.8-1) and 12 

“cluster” (version 1.13.1) packages. The hierarchical clustering is performed using the agnes() 13 

function, and the average linkage and the Euclidean metric are performed under normalized 14 

variables (that is mean-centered and scale to unit variance).   15 

 16 

2.7. Robustness of the method 17 

To assess the robustness of the clustering method, a classical cross-validation algorithm 18 

was used. A fixed percentage of the whole sample is removed from the sample and the PLS is 19 

performed. Then, all the 215 compounds (including those which were removed to compute the 20 

PLS) are projected on the PLS axes and clustered by the hierarchical clustering algorithm. As 21 

compounds which were not included during the PLS algorithm are added in this step, this 22 

method can assess the robustness of our methodology and, by consequence, its relevance. 23 

Finally, the obtained clustering is compared to the targeted clustering obtained with the PLS 24 
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calculated on the whole sample. The closer the clustering is to the targeted one, the more robust 1 

the method is because it means that the chemicals which were removed during the PLS step are 2 

still well-clustered. We can assume that if the method is robust when substances are removed, it 3 

will be relevant when new ones will be tested. This also assesses the predictive quality of the 4 

method. The cross-validation study was performed a hundred times using a standard bootstrap 5 

procedure for different percentages of removed compounds, and the clusterings were compared 6 

using the Adjusted Rand Index (Hubert and Arabie, 1985; Nguyen et al., 2009). This index is a 7 

measure of the similarity between two different clusterings. The closer it is to 1 (respectively to 8 

0), the more (respectively less) the two clusterings are similar.  9 

 10 

2.8. Computing tools 11 

The information system is based on a management system for relational database MySQL 12 

DBMS-R (version 5.1), an Apache web server (version 2.2), and the statistical R software (also 13 

used for graphs). The system is installed in a distribution Debian 6.0. The environmental 14 

parameters and molecular descriptors are inserted into the management system relational 15 

database server which interfaces with Tcl/Tk (Tool command language/Toolkit) made from the 16 

R software and “RODBC” library (version 1.3-2). Annotations on the data or results are also 17 

stored in the same database. Since the web interfaces are easily editable, statistical analyses of 18 

data are treated and helped by the R software Tcl/Tk interfaces. All data that are stored in the 19 

DBMS MySQL-R can be viewed via the web interface phpMyAdmin (version 3.3). Data can be 20 

imported from phpMyAdmin and new data can easily be inserted. Finally, TyPol was designed in 21 

order to easily adapt to other research questions giving the users the choice of the variables (one 22 

or several molecular descriptors, one or several environmental parameters), and of the 23 
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compounds (all compounds, one or several chemical family…). As the clustering will depend on 1 

the needs of the users, no related risk assessment can be included in TyPol. 2 

 3 

3. Results and discussion 4 

For this proof-of-concept study, the use of TyPol will be illustrated by clustering the 215 5 

compounds considering all structural molecular descriptors and all environmental parameters. 6 

Therefore the results are specific of this case-study (as indicated above, the clustering depends 7 

on the needs of the users). The first step in the use of TyPol is the chemical mapping to select the 8 

number of components for the subsequent classification, then a hierarchical clustering is 9 

performed to identify the optimal number of clusters to classify the organic compounds. For this 10 

case-study, some Pvap, Koc, DT50 and BCF trigger values are proposed to better characterize the 11 

clusters (McCall et al., 1980; FOCUS, 2008; Regulation EC 1107/2009, 2009). These trigger 12 

values were developed for pesticides, mainly as regulatory threshold values. For the need of our 13 

proof-of-concept study, we assumed that they can be extended to any organic compound.  14 

 15 

3.1. Chemical mapping by PLS 16 

The choice of the number of PLS components is critical for the subsequent analysis and 17 

classification. The number of components which gave the lowest PRESS was therefore selected, 18 

it corresponded to the four first axes of the PLS. 19 

 The domain of validity of the analysis was studied by calculating the T² of Hotelling for 20 

the 215 compounds. It appeared that 7 compounds were found as atypical by the four 21 

components of the PLS: chlordecone, mirex, kelevan, fosetyl, di-isodecyl, di-isononyl, and 22 

benzo(g,h,i)perylene. Indeed, it is well known that these compounds have an extreme behavior in 23 

the environment: for example, chlordecone, mirex and kelevan are very persistent (Marchand, 24 
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1989; ATSDR, 1995; Cabidoche et al., 2009; Dolfing et al., 2012) contrary to fosetyl which has 1 

a very low DT50 (PPDB, 2013); and di-isodecyl, di-isononyl, and benzo(g,h,i)perylene have 2 

very high Kow values (PPDB, 2013). Chlordecone, benzo(g,h,i)perylene, mirex and kelevan also 3 

have very high connectivity indexes. Nevertheless, these compounds were taken into 4 

consideration for the subsequent analysis because they could be representative of other 5 

compounds. 6 

The four-component PLS model has good statistical results: R²X=0.77, R²Y=0.90 and 7 

Q²Y=0.44. These results shows that the PLS is a good model for the different compounds 8 

included in TyPol. The first two components were the most important ones. The closer the 9 

compounds are in this score-plot, the more similar they are (Fig. 2). The main characteristic of 10 

the first component, which explains 40% of the variance, is the strong positive loadings for all 11 

the geometric and topological descriptors, and constitutional descriptors like the number of 12 

chlorine or halogen atoms. A contrario, the dipole moment and the total energy have strong 13 

negative loadings therefore have an opposite effect. The second axis explains 16% of the 14 

variance. On this axis, variables such as the number of chlorine or halogen atoms have a positive 15 

loading whereas the number of rotatable, double or simple bonds or the number of hydrogen, 16 

oxygen or total atoms have a negative loading (Fig. 3). Figure 3 also shows that many variables 17 

seem to be correlated, mainly the different connectivity and valence connectivity indexes. On the 18 

third axis, variables such as the number of carbon or hydrogen atoms, and the molecular weight 19 

have strong positive loadings, and others such as the number of circuits or the LUMO energy are 20 

on the opposite side. On the fourth axis, the HOMO energy and the numbers of rings atoms are 21 

on opposite sides of the number of sulfur or chlorine atoms. 22 

 23 
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3.2. Clustering 1 

Using a hierarchical clustering algorithm, several clusterings, from 1 (all compounds in 2 

the same cluster) to 215 (all compounds in a different cluster), were obtained. The selection of 3 

the number of clusters is an important and difficult task, which is usually performed by plotting 4 

the heights of the dendrogram’s node and looking for a break. The results showed that the best 5 

choice was to classify the compounds in 6 clusters. The size of the six clusters varied from 3 to 6 

52 compounds (Fig. 2, Table A3), each cluster being characterized by specific features.  7 

Figure 4 shows the range of variations of the values of the 7 environmental parameters 8 

for each of the 6 clusters.  The importance of the different parameters can be evaluated in Figure 9 

3, but Figure 4 provides a description of the characteristics of each cluster. The trigger value of 10 

Pvap is indicated to differentiate volatile and non-volatile compounds (there is no trigger value for 11 

KH, FOCUS, 2008), that of Koc to differentiate mobile and non-mobile compounds (McCall et 12 

al., 1980), that of DT50 to differentiate persistent and non-persistent compounds (1107/2009 EC, 13 

2009), and that of BCF to differentiate compounds having or not a potential of bioaccumulation 14 

(1107/2009 EC, 2009) (Fig. 4).  Depending on the values of Pvap, Koc, DT50 and/or BCF, the six 15 

clusters aggregate compounds having (or not) risks of air, water and/or soil contamination and/or 16 

high ecotoxicity. 17 

The cluster 1 contains 48 compounds and groups together all the thiocarbamates (5 18 

compounds) and nearly 50% of the triazines, carbamates and ureas inputted in TyPol. This 19 

cluster is characterized by high values of total energy and polarizability and low values of 20 

different connectivity indexes. The compounds have low Koc i.e. high risk of groundwater 21 

contamination (McCall et al., 1980), and low DT50 that is low persistence in the environment 22 

(Regulation EC 1107/2009, 2009) (Fig. 4). They also have the lowest BCF (i.e. low ecotoxicity, 23 
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Regulation EC 1107/2009, 2009) and Kow among the 6 clusters, which is consistent (Pavan et 1 

al., 2008), and the highest Sw (this is also consistent with low values of Kow) (Fig. 4). Finally, 2 

the compounds of cluster 1 have the lowest KH values (the lowest KH among the 6 clusters) 3 

therefore the lowest volatility from water, but high values of Pvap so high volatility from soil and 4 

plant, and high risk of transfer to atmosphere (FOCUS, 2008). 5 

Twenty-one of the 30 compounds of cluster 2 are PCB (over 31 inputted in TyPol). There 6 

are also 4 organochlorines (2 parent substances and 2 degradation products) and 3 PAH. 7 

Compounds of cluster 2 have low dipole moment and high total energy. They also have the 8 

lowest DT50 of the 6 clusters (rapid dissipation), low Koc (high mobility), but contrary to cluster 9 

1, low Sw (and high Kow), and high BCF so high ecotoxicity (Fig. 4).  10 

Cluster 3 shares some common traits with cluster 2 in the first two axes. Nevertheless, 11 

these two clusters are well separated in the two other axes of the PLS which are not plotted here 12 

in a sake of compactness. Cluster 3 is composed of 52 compounds, including all PCDF, 12 13 

organochlorines (9 parent substances and 3 degradation products), 9 PCB, all PCDD, and 10 14 

PAH (13 in the study). The combination of high molecular weights and low number of hydrogen 15 

atoms is related to low values of Sw (the lowest among the 6 clusters) and high values of Kow, 16 

and to the highest values of BCF. The compounds of cluster 3 also have the highest DT50 among 17 

the six clusters which means very high persistence in soils (Regulation EC 1107/2009, 2009) 18 

(Fig. 4). Finally, they have medium values of Pvap and KH (moderate risk of transfer to 19 

atmosphere) (Fig. 4).  20 

The cluster 4 contains 37 compounds including all strobilurin compounds, 6 of the 9 21 

phthalates and 5 of the 6 triazoles. The main characteristics of this cluster are very high 22 

connectivity indexes, polarizability, and number of hydrogen and carbon atoms for descriptors; 23 
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low values of DT50 and Pvap, and medium values of KH for environmental parameters. The 1 

compounds of this cluster have the highest Koc values among the 6 clusters, therefore low risk of 2 

groundwater contamination (Fig. 4).  3 

Among the 45 compounds of the cluster 5, there are all dinitroanilines, 5 4 

organophosphorous, 4 triazines, 4 urea, and 4 of the 5 chloroacetamides. This cluster is 5 

characterized by important dipole moment and number of rotatable bonds for the structural 6 

molecular descriptors, and medium values of Pvap, KH, DT50, and Koc, with high Sw, and low 7 

Kow and BCF for the environmental parameters. Few compounds of this cluster are closed to 8 

those of cluster 1 in the first two axes of the PLS, but differences between these molecules are 9 

more easily noticeable in the fourth axes of the PLS. 10 

Finally, as showed on Figure 2, cluster 6 is an extreme one. It contains mirex, kelevan 11 

and chlordecone (in addition, chlordecone is a degradation product of kelevan, PPDB, 2013). As 12 

discussed above, these three organochlorine insecticides have very particular chemical structures 13 

and high persistence (high DT50) in the environment (bishomocubane family). They have 14 

extraordinary high values of connectivity or valence connectivity indexes, polarizability, 15 

molecular weight, number of chlorine and other halogen atoms; and extremely low values of 16 

number of multiple bonds, total energy, HOMO energy. Considering the environmental 17 

parameters, they have low Koc (high mobility), high BCF, that is high ecotoxicity, and high KH 18 

(Dolfing et al., 2012; PPDB, 2013) (Fig. 4). Even on the third and the fourth axes of the PLS, 19 

these three compounds have extreme locations and cannot be aggregated with any other cluster.  20 

The other compounds that were detected as atypical by the T² of Hotelling are clustered 21 

in nearly all the clusters: cluster 1 for fosetyl, cluster 3 for benzo(g,h,i)perylene, and cluster 4 for 22 

di-isodecyl and di-isononyl. 23 
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The robustness of the method was assessed, using the cross-validation method described 1 

above, and found to be high and not depending on a low number of values. The Adjusted Rand 2 

Index values were 0.92, 0.87, 0.84 and 0.80 if 1%, 10%, 20% and 50% of the compounds were 3 

removed, respectively. As the real cluster of the removed molecules is generally found again, 4 

these results show that the predictive quality of the clustering is high. Furthermore, as the 5 

molecular descriptors and the environmental parameters were chosen to cover a wide range of 6 

values, we can assume that a “new” compound will be clustered with a good quality of 7 

prediction. This proof-of-concept study showed that TyPol could allow the classification of 8 

organic compounds according to a particular behavior in the environment (i.e. similar values of 9 

environmental parameters), which is related to the combination of the values of some specific 10 

molecular descriptors.  11 

 12 

3.3. Parents-degradation products relationships 13 

To test the ability of TyPol to classify degradation products compared to their parent 14 

compounds, 26 pairs of parents and degradation products were inputted (Table A2). The 15 

clustering made above using all compounds was retained for the analysis (Table A3). Figure 5 16 

shows the classification of the degradation products compared to their parents. Among all 17 

degradation products, 58% (i.e. 15 degradation products) were in the same cluster as their 18 

parents. Conversely, 42% (i.e. 11 degradation products) were not in the same cluster as their 19 

parents: 6 degradation products originating from parents in clusters 4 and 5 were in cluster 1; 2 20 

degradation products of parent in cluster 3 were in cluster 2; and 3 degradation products of 21 

parents in clusters 1 and 4 were in cluster 5. These results are due to similarities (or 22 

dissimilarities) in terms of structure and behavior between parent compounds and their 23 
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degradation products, but further tests need to be performed with other chemical families. The 1 

classification of degradation products compared to the parent compounds will allow the 2 

prediction of the behavior in the environment of potential degradation products and/or of 3 

degradation products for which no data are available. In addition, the different routes of 4 

degradation, i.e. biotic, abiotic (oxidation, dehalogenation…) will be added in the future to 5 

investigate if the change in cluster between a compound and its degradation product(s) is related 6 

to the type of degradation mechanism.  7 

 8 

4. Conclusion 9 

A novel approach, TyPol, for clustering organic compounds according to both their 10 

behavior in the environment and their structural molecular descriptors is presented. The approach 11 

is based on PLS regression and hierarchical clustering. TyPol considers simultaneously several 12 

environmental processes (described by appropriate environmental parameters), and the 13 

degradation products of compounds.  14 

This proof-of-concept study, based on the classification of 215 organic compounds, 15 

showed that the combination of the values of some molecular descriptors could be related to a 16 

particular behavior in the environment. The robustness of the method was studied and 17 

demonstrated to be good, as well as the statistical performances of the PLS regression. 18 

Therefore, TyPol could help to predict the environmental behavior of a “new” compound from 19 

its affiliation to one cluster or to select representative substances from a large data set in order to 20 

answer some specific questions regarding their behavior in the environment. In addition, TyPol 21 

takes into account the degradation products of organic compounds. The analysis is based on the 22 

same methodology as above and highlights the similarities (or dissimilarities) between a parent 23 

substance and its degradation product. One of the next steps of this work will investigate if the 24 
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change in cluster between a compound and its degradation product(s) is related to the type of 1 

degradation mechanism (oxidation, epoxidation, hydroxylation…). Additional environmental 2 

and ecotoxicological parameters, and molecular descriptors will also be included in TyPol to 3 

refine the classification of compounds. 4 
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Figure captions 1 

 2 

Fig 1. Construction and structure of TyPol. A “new” compound is either a parent compound or a 3 

degradation product, for which the environmental parameters (for example water solubility Sw, 4 

adsorption coefficient Koc or bioconcentration factor BCF) are not known. 5 

 6 

Fig. 2. Clustering of the 215 organic compounds in six clusters (each cluster has a different 7 

symbol) on the two main components of the PLS (PLS1 and PLS2). 8 

 9 

Fig. 3. Circles of correlations of the “environmental parameters” (in blue) and “molecular 10 

descriptors” (in red) variables on the two main components of the PLS (PLS1 and PLS2). C.i-i 11 

stands for the connectivity index C.i of order i (i = 0 to 5), and V.c-i stands for the valence 12 

connectivity index V.c of order i (i = 0 to 5). 13 

 14 

Fig. 4. Range of variation (box-and-whisker plots) of the values of the seven environmental 15 

parameters considered into TyPol (water solubility Sw, octanol-water partition coefficient Kow, 16 

vapor pressure Pvap, Henry’s law constant KH, adsorption coefficient normalized to soil carbon 17 

organic content Koc, half-life DT50, and bioconcentration factor BCF) for each cluster after 18 

analysis of the 215 organic compounds. Dotted lines represent the limits between: volatile (log 19 

Pvap > -1) and non-volatile compounds (log Pvap < -1) (FOCUS, 2008); mobile (log Koc < 2.7) 20 

and non-mobile compounds (log Koc > 2.7) (McCall et al., 1980); persistent (log  DT50 > 2.25) 21 

and non-persistent compounds (log DT50 < 2.25) (Regulation EC 1107/2009, 2009), and 22 

compounds having (log BCF > 2) or not (log BCF < 2) a potential of bioaccumulation 23 

(Regulation EC 1107/2009, 2009). 24 
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 1 

Fig. 5. Relationships between the parent compounds and their degradation products on the two 2 

main components of the PLS (PLS1 and PLS2). Arrows are drawn from the parent compounds 3 

(the CAS number is indicated) to their degradation products. 4 
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Fig. 2. 1 
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Fig. 3.  1 
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Fig. 4.  1 
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Fig. 5. 1 
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Tables 1 

Table 1 2 

Environmental parameters and ranges of variation of their values for the 215 organic compounds 3 

(191 parent compounds and 24 degradation products) inputted in TyPol (Sw: water solubility, 4 

Kow: octanol-water partition coefficient, Pvap: vapor pressure, KH: Henry’s law constant, Koc: 5 

adsorption coefficient, DT50: half -life, BCF: bioconcentration factor) 6 

 7 

Environmental 

process 

Environmental parameter Range of variation 

Parent compound Degradation 

product 

Dissolution log [Sw (mg L-1)] [- 6.72 ; 10.29] [- 3.63 ; 13.82] 

log [Kow (dimensionless)] [- 0.81 ; 6.91] [- 0.17 ; 6.51] 

Volatilization Pvap (mPa) [5  10-5 ; 27] [5  10-4 ; 1  108] 

KH (dimensionless) [2  10-6 ; 1.48] [1.1  10-14 ; 1.48] 

Adsorption log [Koc (L kg-1)] [2.19 ; 11.36] [1 ; 6.83] 

Degradation  DT50 (days) [4.7 ; 4100] [0.05 ; 10603] 

Ecotoxicity log [BCF (dimensionless)] [0 ; 4] [0 ; 3.93] 

 8 

 9 

 10 

 11 

 12 

 13 
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Table 2 1 

List of the 40 molecular descriptors inputted in TyPol and ranges of variation of their values for 2 

the 215 organic compounds (191 parent compounds and 24 degradation products) 3 

Category Molecular descriptor Range of variation 
Parent compound Degradation product 

Constitutional Number of atoms   [14 ; 47] [8 ; 46] 
Number of non-H atoms [13 ; 29] [4 ; 23] 
Number of hydrogen atoms [0 ; 20] [1 ; 23] 
Number of carbon atoms [8 ; 22] [2 ; 17] 
Number of nitrogen atoms [0 ; 3] [0 ; 3] 
Number of oxygen atoms [0 ; 3] [0 ; 5] 
Number of phosphorus atoms [0 ; 0] [0 ; 0] 
Number sulfur atoms [0 ; 1] [0 ; 1] 
Number fluorine atoms [0 ; 1] [0 ; 1] 
Number of chlorine atoms [1 ; 8] [0 ; 8] 
Number of halogen atoms [1 ; 8] [0 ; 8] 
Number of bonds  [14 ; 49] [7 ; 46] 
Number of non-H bonds [13 ; 31] [3 ; 25] 
Number of double bonds [0 ; 3] [0 ; 3] 
Number of triple bonds [0 ; 2] [0 ; 2] 
Number of multiple bonds [1 ; 15] [1 ; 13] 
Number of rotatable bonds [0 ; 7] [0 ; 9] 
Number of aromatic bonds [0 ; 12] [0 ; 12] 
Sum of conventional bond order [17 ; 41] [4 ; 31.5] 
Number of rings [1 ; 3] [0 ; 4] 
Number of circuits [1 ; 6] [0 ; 10] 
Molecular weight (g mol-1) 
 

[200 ; 434.3] [60 ; 423.76] 

Geometric Connolly molecular surface area (Å2) 
 

[186.1 ; 311.6] [73.46 ; 278.7] 

Topological Connectivity index of order 0 [9.84 ; 21.18] [3.57 ; 17.41] 
Connectivity index of order 1 [6.09 ; 13.73] [1.73 ; 10.92] 
Connectivity index of order 2 [5.58 ; 13.02] [1.73 ; 10.70] 
Connectivity index of order 3 [3.72 ; 9.94] [0 ; 10.26] 
Connectivity index of order 4 [2.67 ; 7.96] [0 ; 8.10] 
Connectivity index of order 5 [2 ; 6.40] [0 ; 6.78] 
Valence connectivity index of order 0 [7.83 ; 17.25] [2.36 ; 14.79] 
Valence connectivity index of order 1 [4.08 ; 9.65] [0.93 ; 8.96] 
Valence connectivity index of order 2 [3.03 ; 9.29] [0.52 ; 9.68] 
Valence connectivity index of order 3 [1.72 ; 9.79] [0 ; 10.13] 
Valence connectivity index of order 4 [1.11 ; 7.46] [0 ; 7.67] 
Valence connectivity index of order 5 
 

[0.63 ; 5.95] [0 ; 6.23] 

Quantum-
chemical 

Polarizability (Å3) [19.89 ; 45.58] [5.13 ; 45.58] 
Electric dipole moment (D) 
HOMO energy (eV) 
LUMO energy (eV) 
Total energy (eV) 

[1.07 ; 5.46] 
[- 10.35 ; - 8.95] 
[- 1.76 ; 0.05] 
[- 5462 ; - 2611] 

[0.07 ; 4.83] 
[- 11.62 ; - 8.73] 
[- 2.20 ; 0.98] 
[- 5462 ; - 953] 

    
 4 
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Supplementary material 1 

Table A1 2 

List of organic compounds inputted in TyPol (chemical families, CAS numbers, names and chemical formulae) (PCB: polychlorinated 3 

biphenyls, PAH: polycyclic aromatic hydrocarbons, PCDF: polychlorinated dibenzofurans, PCDD: polychlorinated dibenzodioxins) 4 

 5 
Chemical  

family 

CAS 

number 

Name Chemical 

formula 

Chemical 

family 

CAS  

number 

Name Chemical 

formula 

Pesticides        

Organochlorine 50-29-3 p,p'-DDT C14H9Cl5 PCB 92-52-4 Biphenyl C12H10 
Organochlorine 57-74-9 Chlordane C10H6Cl8 PCB 2050-67-1 3,3'-dichlorobiphenyl C12H8Cl2 
Organochlorine 58-89-9 Lindane C6H6Cl6 PCB 2050-68-2 4,4'-dichlorobiphenyl C12H8Cl2 
Organochlorine 60-57-1 Dieldrine C12H8Cl6O PCB 2051-24-3 Decachlorobiphenyl C12Cl10 
Organochlorine 72-20-8 Endrine C12H8Cl6O PCB 2051-60-7 2-chlorobiphenyl C12H9Cl 
Organochlorine 76-44-8 Heptachlore C10H5Cl7 PCB 2051-61-8 3-chlorobiphenyl C12H9Cl 
Organochlorine 115-29-7 Endosulfan C9H6Cl6O3S PCB 2974-90-5 3,4'-dichlorobiphenyl C12H8Cl2 
Organochlorine 118-74-1 Hexachlorobenzene C6Cl6 PCB 2974-92-7 3,4-dichlorobiphenyl C12H8Cl2 
Organochlorine 143-50-0 Chlordecone C10Cl10O PCB 13029-08-8 2,2'-dichlorobiphenyl C12H8Cl2 
Organochlorine 297-78-9 Isobenzane C9H4Cl8O PCB 16605-91-7 2,3-dichlorobiphenyl C12H8Cl2 
Organochlorine 1715-40-8 Bromocyclene C8H5BrCl6 PCB 25569-80-6 2,3'-dichlorobiphenyl C12H8Cl2 
Organochlorine 2385-85-5 Mirex C10Cl12 PCB 33146-45-1 2,6-dichlorobiphenyl C12H8Cl2 
Organochlorine 4234-79-1 Kelevan C17H12Cl10O4 PCB 33284-50-3 2,4-dichlorobiphenyl C12H8Cl2 
Organochlorine 8001-35-2 Toxaphene C10H8Cl8 PCB 34883-39-1 2,5-dichlorobiphenyl C12H8Cl2 
Carbamate 63-25-2 Carbaryl C12H11NO2 PCB 34883-41-5 3,5-dichlorobiphenyl C12H8Cl2 
Carbamate 101-21-3 Chlorpropham C10H12ClNO2 PCB 34883-43-7 2,4'-dichlorobiphenyl C12H8Cl2 
Carbamate 116-06-3 Aldicarb C7H14N2O2S PCB 35065-30-6 2,2',3,3',4,4',5-heptachlorobiphenyl C12H3Cl7 
Carbamate 1563-66-2 Carbofuran C12H15NO3 PCB 35694-08-7 2,2',3,3',4,4',5,5'-

octachlorobiphenyl 
C12H2Cl8 

Carbamate 3337-71-1 Asulam C8H10N2O4S PCB 37680-66-3 2,2',4-trichlorobiphenyl C12H7Cl3 
Carbamate 13684-56-5 Desmedipham C16H16N2O4 PCB 38380-07-3 2,2',3,3',4,4'-hexachlorobiphenyl C12H4Cl6 
Carbamate 13684-63-4 Phenmedipham C16H16N2O4 PCB 38444-78-9 2,2',3-trichlorobiphenyl C12H7Cl3 
Carbamate 16118-49-3 Carbetamide C12H16N2O3 PCB 38444-93-8 2,2',3,3'-tetrachlorobiphenyl C12H6Cl4 
Carbamate 23103-98-2 Pirimicarb C11H18N4O2 PCB 40186-72-9 2,2',3,3',4,4',5,5',6-

nonachlorobiphenyl 
C12HCl9 

Carbamate 23135-22-0 Oxamyl C7H13N3O3S PCB 52663-59-9 2,2',3,4-tetrachlorobiphenyl C12H6Cl4 
Carbamate 24579-73-5 Propamocarb C9H20N2O2 PCB 52663-62-4 2,2',3,3',4-pentachlorobiphenyl C12H5Cl5 
Carbamate 79127-80-3 Fenoxycarb C17H19NO4 PCB 52663-71-5 2,2',3,3',4,4',6-heptachlorobiphenyl C12H3Cl7 
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Urea 101-42-8 Fenuron C9H12N2O PCB 52663-78-2 2,2',3,3',4,4',5,6-
octachlorobiphenyl 

C12H2Cl8 

Urea 330-54-1 Diuron C9H10Cl2N2O PCB 52663-79-3 2,2',3,3',4,4',5,6,6'-
nonachlorobiphenyl 

C12HCl9 

Urea 330-55-2 Linuron C9H10Cl2N2O2 PCB 55215-18-4 2,2',3,3',4,5-hexachlorobiphenyl C12H4Cl6 
Urea 555-37-3 Neburon C12H16Cl2N2O PCB 60145-20-2 2,2',3,3',5-pentachlorobiphenyl C12H5Cl5 
Urea 1746-81-2 Monolinuron C9H11ClN2O2     
Urea 3060-89-7 Metobromuron C9H11BrN2O2 PAH 50-32-8 Benzo(a)pyrene C20H12 
Urea 15545-48-9 Chlortoluron C10H13ClN2O PAH 53-70-3 Dibenzo(a,h)anthracene C22H14 
Urea 34123-59-6 Isoproturon C12H18N2O PAH 56-55-3 Benzo(a)anthracene C18H12 
Urea 64902-72-3 Chlorsulfuron C12H12ClN5O4S PAH 85-01-8 Phenanthrene C14H10 
Urea 79510-48-8 Metsulfuron C13H13N5O6S PAH 86-73-7 Fluorene C13H10 
Organophosphorous 56-38-2 Parathion-ethyl C10H14NO5PS PAH 120-12-7 Anthracene C14H10 
Organophosphorous 60-51-5 Dimethoate C5H12NO3PS2 PAH 129-00-0 Pyrene C16H10 
Organophosphorous 86-50-0 Azinphos-methyl C10H12N3O3PS2 PAH 191-24-2 Benzo(g,h,i)perylene C22H12 
Organophosphorous 121-75-5 Malathion C10H19O6PS2 PAH 193-39-5 Indeno[1,2,3-cd]pyrene C22H12 
Organophosphorous 122-14-5 Fenitrothion C9H12NO5PS PAH 205-99-2 Benzo(b)fluoranthene C20H12 
Organophosphorous 333-41-5 Diazinon C12H21N2O3PS PAH 206-44-0 Fluoranthene C16H10 
Organophosphorous 5598-13-0 Chlorpyrifos-methyl C7H7Cl3NO3PS PAH 207-08-9 Benzo(k)fluoranthene C20H12 
Organophosphorous 13194-48-4 Ethoprophos C8H19O2PS2 PAH 218-01-9 Chrysene C18H12 
Organophosphorous 15845-66-6 Fosetyl C2H7O3P     
Amide 709-98-8 Propanil C9H9Cl2NO PCDF 39001-02-0 OCDF C12Cl8O 
Amide 15299-99-7 Napropamide C17H21NO2 PCDF 51207-31-9 2,3,7,8-TCDF C12H4Cl4O 
Amide 23950-58-5 Propyzamide C12H11Cl2NO PCDF 55673-89-7 1,2,3,4,7,8,9-HpCDF C12HCl7O 
Amide 35256-85-0 Tebutam C15H23NO PCDF 57117-31-4 2,3,4,7,8-PeCDF C12H3Cl5O 
Amide 55814-41-0 Mepronil C17H19NO2 PCDF 57117-41-6 1,2,3,7,8-PeCDF C12H3Cl5O 
Amide 57837-19-1 Metalaxyl C15H21NO4 PCDF 57117-44-9 1,2,3,6,7,8-HxCDF C12H2Cl6O 
Amide 77732-09-3 Oxadixyl C14H18N2O4 PCDF 60851-34-5 2,3,4,6,7,8-HxCDF C12H2Cl6O 
Amide 180409-60-3 Cyflufenamid C20H17F5N2O2 PCDF 67562-39-4 1,2,3,4,6,7,8-HpCDF C12HCl7O 
Strobilurin 117428-22-5 Picoxystrobin C18H16F3NO4 PCDF 70648-26-9 1,2,3,4,7,8-HxCDF C12H2Cl6O 
Strobilurin 131860-33-8 Azoxystrobin C22H17N3O5 PCDF 72918-21-9 1,2,3,7,8,9-HxCDF C12H2Cl6O 
Strobilurin 141517-21-7 Trifloxystrobin C20H19F3N2O4     
Strobilurin 143390-89-0 Kresoxim-methyl C18H19NO4 Phthalate 84-61-7 Di-cyclohexyl C20H26O4 
Strobilurin 149961-52-4 Dimoxystrobin C19H22N2O3 Phthalate 84-66-2 Diethyl C12H14O4 
Strobilurin 175013-18-0 Pyraclostrobin C19H18ClN3O4 Phthalate 84-74-2 Dibutyl C16H22O4 
Strobilurin 361377-29-9 Fluoxastrobin C21H16ClFN4O5 Phthalate 85-68-7 Benzylbutyl C19H20O4 
Triazine 122-34-9 Simazine C7H12ClN5 Phthalate 117-81-7 Di-2-ethylhexyl C24H38O4 
Triazine 834-12-8 Ametryn C9H17N5S Phthalate 117-84-0 Di-n-octyl C24H38O4 
Triazine 886-50-0 Terbutryn C10H19N5S Phthalate 131-11-3 Dimethyl C10H10O4 
Triazine 1912-24-9 Atrazine C8H14ClN5 Phthalate 26761-40-0 Di-isodecyl C28H46O4 
Triazine 5915-41-3 Terbuthylazine C9H16ClN5 Phthalate 28553-12-0 Di-isononyl C26H42O4 
Triazine 21725-46-2 Cyanazine C9H13ClN6     
Triazine 66215-27-8 Cyromazine C6H10N6 PCDD 1746-01-6 2,3,7,8-tetrachloro-dibenzo-p-

dioxine 
C12H4Cl4O2 

Diazine 1698-60-8 Chloridazon C10H8ClN3O PCDD 3268-87-9 OCDD C12Cl8O2 
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Diazine 25057-89-0 Bentazone C10H12N2O3S PCDD 19408-74-3 1,2,3,7,8,9-HxCDD C12H2Cl6O2 
Triazinone 21087-64-9 Metribuzin C8H14N4OS PCDD 35822-46-9 1,2,3,4,6,7,8-HpCDD C12HCl7O2 
Triazinone 41394-05-2 Metamitron C10H10N4O PCDD 39227-28-6 1,2,3,4,7,8-HxCDD C12H2Cl6O2 
Triazole 61-82-5 Amitrole C2H4N4 PCDD 40321-76-4 1,2,3,7,8-PeCDD C12H3Cl5O2 
Triazole 76674-21-0 Flutriafol C16H13F2N3O PCDD 57653-85-7 1,2,3,6,7,8-HxCDD C12H2Cl6O2 
Triazole 94361-06-5 Cyproconazole C15H18ClN3O     
Triazole 119446-68-3 Difenoconazole C19H17Cl2N3O3 Medicine 298-46-4 Carbamazepine C15H12N2O 
Triazole 131983-72-7 Triticonazole C17H20ClN3O Medicine 14168-01-5 Dilor C10H7Cl7 
Triazole 133855-98-8 Epoxiconazole C17H13ClFN3O     
Thiocarbamate 137-26-8 Thiram C6H12N2S4 Hormone 50-28-2 Estradiol C18H24O2 
Thiocarbamate 759-94-4 EPTC C9H19NOS     
Thiocarbamate 1929-77-7 Vernolate C10H21NOS Auxin 87-51-4 Indolylacetic acid C10H9NO2 
Thiocarbamate 2303-16-4 Di-allate C10H17Cl2NOS     
Thiocarbamate 2303-17-5 Tri-allate C10H16Cl3NOS Other 608-73-1 Hexachlorocyclohexane C6H6Cl6 
Chloroacetamide 1918-16-7 Propachlor C11H14ClNO Other 2550-75-6 Chlorbicyclene C9H6Cl8 
Chloroacetamide 15972-60-8 Alachlor C14H20ClNO2     
Chloroacetamide 34256-82-1 Acetochlor C14H20ClNO2     
Chloroacetamide 51218-45-2 Metolachlor C15H22ClNO2     
Chloroacetamide 67129-08-2 Metazachlor C14H16ClN3O     
Dinitroaniline 1582-09-8 Trifluralin C13H16F3N3O4     
Dinitroaniline 19044-88-3 Oryzalin C12H18N4O6S     
Dinitroaniline 33629-47-9 Butralin C14H21N3O4     
Dinitroaniline 40487-42-1 Pendimethalin C13H19N3O4     
Pyrethroid 52315-07-8 Cypermethrin C22H19Cl2NO3     
Pyrethroid 52645-53-1 Permethrin C21H20Cl2NO3     
Pyrethroid 68359-37-5 Cyfluthrin C22H18Cl2FNO3     
Triketone 99105-77-8 Sulcotrione C14H13ClO5S     
Triketone 335104-84-2 Tembotrione C17H16ClF3O6S     
Phthalimide 133-06-2 Captan C9H8Cl3NO2S     
Phthalimide 133-07-3 Folpet C9H4Cl3NO2S     
Cyclodiene 309-00-2 Aldrine C12H8Cl6     
Cyclodiene 465-73-6 Isodrine C12H8Cl6     
Aryloxyalkanoic acid 94-74-6 MCPA C9H9ClO3     
Aryloxyalkanoic acid 7085-19-0 Mecoprop C10H11ClO3     
Alkylchlorophenoxy 94-75-7 2,4-D C8H6Cl2O3     
Phosphonoglycine 1071-83-6 Glyphosate C3H7NO5P     
Chloronitrile 1897-45-6 Chlorothalonil C8Cl4N2     
Benzoic acid 1918-00-9 Dicamba C8H6Cl2O3     
Pyridine 1918-02-1 Picloram C6H3Cl3N2O2     
Sulfite ester 2312-35-8 Propargite C19H26O4S     
Ethylene generator 16672-87-0 Ethephon C2H6ClO3P     
Dicarboximide 36734-19-7 Iprodione C13H13Cl2N3O3     
Aryloxyphenoxypropionate 51338-27-3 Diclofop-methyl C16H14Cl2O4     
Diphenyl ether 74070-46-5 Aclonifen C12H9ClN2O3     
Anilinopyrimidine 121552-61-2 Cyprodinil C14H15N3     
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Hydroxyanilide 126833-17-8 Fenhexamid C14H17Cl2NO2     
Neonicotinoid 135410-20-7 Acetamiprid C10H11ClN4     
Diphenyl oxazoline 153233-91-1 Etoxazole C21H23F2NO2     



39 

 

Table A2 1 

List of degradation products inputted in TyPol. When there was no referenced CAS, a number 2 

was created according to the following format: CAS number of the parent-INRA-i (i represents 3 

the number of the degradation product among all degradation products of the parent pompound) 4 

 5 

 6 

CAS number Chemical formula Parent CAS number Parent name 

64-19-7 CH3COOH 34256-82-1 Acetochlor 
72-54-8 C14H10Cl4 50-29-3 p,p'-DDT 
72-55-9 C14H8Cl4 50-29-3 p,p'-DDT 
85-41-6 C8H5NO2 133-07-3 Folpet 
88-97-1 C8H7NO3 133-07-3; 131983-72-7 Folpet; Triticonazole 
88-99-3 C6H4(COOH)2 133-07-3 Folpet 
95-76-1 C6H5Cl2N 330-54-1 Diuron 
1024-57-3 C10H5Cl7O 57-74-9; 76-44-8 Chlordane; Heptachlore 
1031-07-8 C9H6Cl6O4S 115-29-7 Endosulfan 
1570-64-5 C7H7ClO 94-74-6 MCPA 
1897-45-6-INRA-1 C8HCl3N2O 1897-45-6 Chlorothalonil 
1897-45-6-INRA-2 C8H3Cl3N2O4S 1897-45-6 Chlorothalonil 
2327-02-8 C7H6Cl2N2O 330-54-1 Diuron 
3567-62-2 C8H8Cl2N2O 330-54-1 Diuron 
3739-38-6 C13H10O3 52315-07-8 Cypermethrin 
27304-13-8 C10H4Cl8O 57-74-9 Chlordane 
34256-82-1-INRA-1 C14H21NO5S 34256-82-1 Acetochlor 
34256-82-1-INRA-2 C14H19NO4 34256-82-1 Acetochlor 
34256-82-1-INRA-3 C16H23NO5S 34256-82-1 Acetochlor 
63637-89-8 C17H20ClN3O2 36734-19-7 Iprodione 
68359-37-5-INRA-1 C8H10Cl2O2 68359-37-5 Cyfluthrin 
77279-89-1 C13H9FO3 68359-37-5 Cyfluthrin 
131983-72-7-INRA-1 C17H20ClN3O2 131983-72-7 Triticonazole 
131983-72-7-INRA-2 C17H20ClN3O2 131983-72-7 Triticonazole 
 7 

 8 

 9 

 10 

 11 

 12 
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Table A3 1 

Example of TyPol results: clustering of the 215 organic compounds (parent substances and 2 

degradation products) inputted in the database (chemical families, CAS numbers, names) (PCB: 3 

polychlorinated biphenyls, PAH: polycyclic aromatic hydrocarbons, PCDF: polychlorinated 4 

dibenzofurans, PCDD: polychlorinated dibenzodioxins) 5 

 6 
Chemical family CAS number Name 

Cluster 1   
Carbamate 63-25-2            Carbaryl 
Carbamate 101-21-3 Chlorpropham 
Carbamate 116-06-3          Aldicarb 
Carbamate 3337-71-1         Asulam 
Carbamate 23135-22-0        Oxamyl 
Carbamate 24579-73-5         Propamocarb 
Thiocarbamate 137-26-8           Thiram 
Thiocarbamate 759-94-4        EPTC 
Thiocarbamate 1929-77-7          Vernolate 
Thiocarbamate 2303-16-4          Di-allate 
Thiocarbamate 2303-17-5         Tri-allate 
Urea 330-54-1           Diuron 
Urea 330-55-2           Linuron 
Urea 1746-81-2          Monolinuron 
Urea 3060-89-7         Metobromuron 
Urea 15545-48-9    Chlortoluron 
Organophosphorous 60-51-5           Dimethoate 
Organophosphorous 5598-13-0          Chlorpyrifos-methyl 
Organophosphorous 13194-48-4        Ethoprophos 
Organophosphorous 15845-66-6  Fosetyl 
Triazine 122-34-9           Simazine 
Triazine 1912-24-9         Atrazine 
Triazine 66215-27-8         Cyromazine 
Alkylchlorophenoxy 94-75-7            2,4-D 
Amide 709-98-8          Propanil 
Aryloxyalkanoic acid 7085-19-0         Mecoprop 
Aryloxyalkanoic acid 94-74-6            MCPA 
Auxin 87-51-4           Indolylacetic acid 
Benzoic acid 1918-00-9 Dicamba 
Chloroacetamide 1918-16-7          Propachlor 
Chloronitrile 1897-45-6          Chlorothalonil 
Ethylene generator 16672-87-0   Ethephon 
Neonicotinoid 135410-20-7        Acetamiprid 
Phosphonoglycine 1071-83-6   Glyphosate 
Phthalates 131-11-3           Dimethyl 
Pyridine 1918-02-1 Picloram 
Triazinone 21087-64-9        Metribuzin 
Triazole 61-82-5            Amitrole 
Metabolite 64-19-7           Metabolite of acetochlor 
Metabolite 85-41-6           Metabolite of folpet 
Metabolite 88-97-1            Metabolite of folpet and triticonazole 
Metabolite 88-99-3           Metabolite of folpet 
Metabolite 95-76-1   Metabolite of diuron 



41 

 

Metabolite 1570-64-5          Metabolite of MCPA 
Metabolite 1897-45-6-INRA-1  Metabolite of chlorothalonil 
Metabolite 2327-02-8 Metabolite of diuron 
Metabolite 3567-62-2    Metabolite of diuron 
Metabolite 68359-37-5-INRA-1  Metabolite of cyfluthrin 
 
 

  

Cluster 2   
PCB 92-52-4 Biphenyl 
PCB 2050-67-1 3,3'-dichlorobiphenyl 
PCB 2050-68-2 4,4'-dichlorobiphenyl 
PCB 2051-60-7 2-chlorobiphenyl 
PCB 2051-61-8 3-chlorobiphenyl 
PCB 2974-90-5 3,4'-dichlorobiphenyl 
PCB 2974-92-7 3,4-dichlorobiphenyl 
PCB 13029-08-8 2,2'-dichlorobiphenyl 
PCB 16605-91-7 2,3-dichlorobiphenyl 
PCB 25569-80-6 2,3'-dichlorobiphenyl 
PCB 33146-45-1 2,6-dichlorobiphenyl 
PCB 33284-50-3 2,4-dichlorobiphenyl 
PCB 34883-39-1 2,5-dichlorobiphenyl 
PCB 34883-41-5 3,5-dichlorobiphenyl 
PCB 34883-43-7 2,4'-dichlorobiphenyl 
PCB 37680-66-3 2,2',4-trichlorobiphenyl 
PCB 38444-78-9 2,2',3-trichlorobiphenyl 
PCB 38444-93-8 2,2',3,3'-tetrachlorobiphenyl 
PCB 52663-59-9 2,2',3,4-tetrachlorobiphenyl 
PCB 52663-62-4 2,2',3,3',4-pentachlorobiphenyl 
PCB 60145-20-2 2,2',3,3',5-pentachlorobiphenyl 
PAH 85-01-8 Phenanthrene 
PAH 86-73-7 Fluorene 
PAH 120-12-7 Anthracene 
Organochlorine 58-89-9 Lindane 
Organochlorine 118-74-1 Hexachlorobenzene 
Urea 101-42-8 Fenuron 
Other 608-73-1 Hexachlorocyclohexane 
Metabolite 72-54-8 Metabolite of p-p'-DDT 
Metabolite 72-55-9 Metabolite of p-p'-DDT 
   
Cluster 3   
PAH 50-32-8       Benzo(a)pyrene 
PAH 53-70-3      Dibenzo(a,h)anthracene 
PAH 56-55-3       Benzo(a)anthracene 
PAH 129-00-0      Pyrene 
PAH 191-24-2  Benzo(g,h,i)perylene 
PAH 193-39-5      Indeno[1,2,3-cd]pyrene 
PAH 205-99-2     Benzo(b)fluoranthene 
PAH 206-44-0  Fluoranthene 
PAH 207-08-9      Benzo(k)fluoranthene 
PAH 218-01-9      Chrysene 
PCDF 39001-02-0 OCDF 
PCDF 51207-31-9   2,3,7,8-TCDF 
PCDF 55673-89-7    1,2,3,4,7,8,9-HpCDF 
PCDF 57117-31-4    2,3,4,7,8-PeCDF 
PCDF 57117-41-6    1,2,3,7,8-PeCDF 
PCDF 57117-44-9    1,2,3,6,7,8-HxCDF 
PCDF 60851-34-5   2,3,4,6,7,8-HxCDF 
PCDF 67562-39-4    1,2,3,4,6,7,8-HpCDF 
PCDF 70648-26-9    1,2,3,4,7,8-HxCDF 
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PCDF 72918-21-9    1,2,3,7,8,9-HxCDF 
Organochlorine 50-29-3      p,p'-DDT 
Organochlorine 57-74-9      Chlordane 
Organochlorine 60-57-1     Dieldrine 
Organochlorine 72-20-8      Endrine 
Organochlorine 76-44-8      Heptachlore 
Organochlorine 115-29-7     Endosulfan 
Organochlorine 297-78-9    Isobenzane 
Organochlorine 1715-40-8    Bromocyclene 
Organochlorine 8001-35-2   Toxaphene 
PCB 2051-24-3    Decachlorobiphenyl 
PCB 35065-30-6    2,2',3,3',4,4',5-heptachlorobiphenyl 
PCB 35694-08-7   2,2',3,3',4,4',5,5'-octachlorobiphenyl 
PCB 38380-07-3   2,2',3,3',4,4'-hexachlorobiphenyl 
PCB 40186-72-9    2,2',3,3',4,4',5,5',6-nonachlorobiphenyl 
PCB 52663-71-5   2,2',3,3',4,4',6-heptachlorobiphenyl 
PCB 52663-78-2   2,2',3,3',4,4',5,6-octachlorobiphenyl 
PCB 52663-79-3    2,2',3,3',4,4',5,6,6'-nonachlorobiphenyl 
PCB 55215-18-4    2,2',3,3',4,5-hexachlorobiphenyl 
PCDD 1746-01-6     2,3,7,8-tetrachloro-dibenzo-p-dioxine 
PCDD 3268-87-9 OCDD 
PCDD 19408-74-3    1,2,3,7,8,9-HxCDD 
PCDD 35822-46-9 1,2,3,4,6,7,8-HpCDD 
PCDD 39227-28-6    1,2,3,4,7,8-HxCDD 
PCDD 40321-76-4    1,2,3,7,8-PeCDD 
PCDD 57653-85-7    1,2,3,6,7,8-HxCDD 
Cyclodiene 309-00-2 Aldrine 
Cyclodiene 465-73-6    Isodrine 
Medicine 14168-01-5   Dilor 
Other 2550-75-6 Chlorbicyclene 
Metabolite 1024-57-3    Metabolite of chlordane and heptachlore 
Metabolite 1031-07-8    Metabolite of endosulfan 
Metabolite 27304-13-8   Metabolite of chlordane   
   
Cluster 4   
Strobilurin 117428-22-5        Picoxystrobin 
Strobilurin 131860-33-8         Azoxystrobin 
Strobilurin 141517-21-7       Trifloxystrobin 
Strobilurin 143390-89-0        Kresoxim-methyl 
Strobilurin 149961-52-4         Dimoxystrobin 
Strobilurin 175013-18-0        Pyraclostrobin 
Strobilurin 361377-29-9        Fluoxastrobin 
Phthalates 84-61-7            Di-cyclohexyl 
Phthalates 85-68-7        Benzylbutyl 
Phthalates 117-81-7            Di-2-ethylhexyl 
Phthalates 117-84-0            Di-n-octyl 
Phthalates 26761-40-0     Di-isodecyl 
Phthalates 28553-12-0       Di-isononyl 
Triazole 76674-21-0          Flutriafol 
Triazole 94361-06-5      Cyproconazole 
Triazole 119446-68-3       Difenoconazole 
Triazole 131983-72-7         Triticonazole 
Triazole 133855-98-8     Epoxiconazole 
Amide 15299-99-7       Napropamide 
Amide 55814-41-0   Mepronil 
Amide 180409-60-3        Cyflufenamid 
Pyrethroid 52315-07-8         Cypermethrin 
Pyrethroid 52645-53-1          Permethrin 
Pyrethroid 68359-37-5          Cyfluthrin 
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Carbamate 13684-56-5         Desmedipham 
Carbamate 13684-63-4        Phenmedipham 
Carbamate 79127-80-3          Fenoxycarb 
Aryloxyphenoxypropionate 51338-27-3          Diclofop-methyl 
Dicarboximide 36734-19-7      Iprodione 
Diphenyl oxazoline 153233-91-1         Etoxazole 
Hormone 50-28-2             Estradiol 
Hydroxyanilide 126833-17-8   Fenhexamid 
Sulfite ester 2312-35-8           Propargite 
Triketone 335104-84-2         Tembotrione 
Metabolite 131983-72-7-INRA-1 Metabolite of triticonazole 
Metabolite 131983-72-7-INRA-2  Metabolite of triticonazole 
Metabolite 63637-89-8         Metabolite of iprodione 
   
Cluster 5   
Organophosphorous 56-38-2            Parathion-ethyl 
Organophosphorous 86-50-0            Azinphos-methyl 
Organophosphorous 121-75-5          Malathion 
Organophosphorous 122-14-5     Fenitrothion 
Organophosphorous 333-41-5           Diazinon 
Amide 23950-58-5        Propyzamide 
Amide 35256-85-0         Tebutam 
Amide 57837-19-1        Metalaxyl 
Amide 77732-09-3         Oxadixyl 
Chloroacetamide 15972-60-8        Alachlor 
Chloroacetamide 34256-82-1        Acetochlor 
Chloroacetamide 51218-45-2         Metolachlor 
Chloroacetamide 67129-08-2        Metazachlor 
Dinitroaniline 1582-09-8        Trifluralin 
Dinitroaniline 19044-88-3         Oryzalin 
Dinitroaniline 33629-47-9         Butralin 
Dinitroaniline 40487-42-1        Pendimethalin 
Triazine 834-12-8          Ametryn 
Triazine 886-50-0 Terbutryn 
Triazine 5915-41-3         Terbuthylazine 
Triazine 21725-46-2        Cyanazine 
Urea 555-37-3  Neburon 
Urea 34123-59-6         Isoproturon 
Urea 64902-72-3       Chlorsulfuron 
Urea 79510-48-8         Metsulfuron 
Carbamate 1563-66-2       Carbofuran 
Carbamate 16118-49-3        Carbetamide 
Carbamate 23103-98-2       Pirimicarb 
Diazine 1698-60-8        Chloridazon 
Diazine 25057-89-0        Bentazone 
Phthalate 84-66-2            Diethyl 
Phthalate 84-74-2            Dibutyl 
Phthalimide 133-06-2         Captan 
Phthalimide 133-07-3   Folpet 
Diphenyl ether 74070-46-5         Aclonifen 
Medicine 298-46-4          Carbamazepine 
Anilinopyrimidine 121552-61-2        Cyprodinil 
Triazinone 41394-05-2    Metamitron 
Triketone 99105-77-8  Sulcotrione 
Metabolite 1897-45-6-INRA-2   Metabolite of chlorothalonil 
Metabolite 3739-38-6          Metabolite of cypermethrin 
Metabolite 34256-82-1-INRA-1  Metabolite of acetochlor 
Metabolite 34256-82-1-INRA-2  Metabolite of acetochlor 
Metabolite 34256-82-1-INRA-3  Metabolite of acetochlor 
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Metabolite 77279-89-1         Metabolite of cyfluthrin 
   

Cluster 6   
Organochlorine 143-50-0 Chlordecone 
Organochlorine 2385-85-5 Mirex 
Organochlorine 4234-79-1 Kelevan 

 1 
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