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HIGHLIGHTS
e An innovative methodology, TyPol, was developed to classify organic compound
e The classification is based on environmental behavior and molecular descriptors
e It relies on partial least squares analysis and hierarchical clustering
e The degradation products of organic compounds are considered
e The environmental behaviof a “new” compound can be assessed from its affiliation to

one cluster

ABSTRACT

Following legislation, the assessment of the environmental risks of 30 000 to 100 000 chemical
substances is required for their registration dossiers. However, their behavior in the environment
and their transfer to environmental components such as water or atmosphere are studied for only
a very small proportion of the chemical in laboratory tests or monitoring studies because it is
time-consuming and/or cost prohibitive. Therefore, the objective of this work was to develop a
new methodology, TyPol, to classify organic compounds, and their degradation products,
according to both their behavior in the environment and their molecular properties. The strategy
relies on partial least squares analysis and hierarchical clustering. The calculation of molecular
descriptors is based on an in silico approach, and the environmental endpoints (i.e.
environmental parameters) are extracted from several available databases and literature. The
classification of 215 organic compounds inputted in TyPol for this proof-of-concept study
showed that the combination of some specific molecular descriptors could be related to a
particular behavior in the environment. TyPol also provided an analysis of similarities (or

dissimilarities) between organic compounds and their degradation products. Among the 24
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degradation products that were inputted, 58% were found in the same cluster as their parents.
The robustness of the method was tested and shown to be good. TyPol could help to predict the
environmental behavior of a “new” compound (parent compound or degradation product) from
its affiliation to one cluster, but also to select representative substances from a large data set in

order to answer some specific questions regarding their behavior in the environment.

Keywords:

Pesticides
Degradation products
Clustering

Molecular modeling
Environmental fate

Partial least squares

1. Introduction

New legislations such as the REACH (Registration, Evaluation, Authorization and
restriction of CHemicals) regulation in the EU will require that manufacturers of substances and
formulators register and provide prescribed eco/toxicological data for substances with volume
higher than one metric ton per year. It is estimated that about 30 000 existing substances have to
be registered by 2018 by member states (Ahlers et al., 2008). The needed information has to be
equivalent to the standard information requirement and adequate to draw overall conclusions
with respect to the regulatory endpoints classification and labeling. Beyond specific regulatory

needs, the same questions concern chemical substances that are potentially present in the
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environment and that originate from various sources. According to authors, from 30 000 to 100
000 chemical substances may be concerned by environmental risks assessment (Muir and
Howard, 2006). However, their behavior in the environment and their transfer to environmental
components such as water or atmosphere are studied for only a very small proportion of the
chemical in laboratory tests or monitoring studies because it is time-consuming and/or cost
prohibitive. Consequently, a high number of different in silico approaches have been developed
to estimate the behavior of organic compounds in the environment. The most used in silico
approaches, that are also the most simple, are based on QSAR (Quantitative Structure Activity
Relationship). QSARs allow the estimation of one or several compound properties (such as
sorption by soils and sediments, biodegradation, bioconcentration factor or biological activities)
from some other properties such as structural molecular properties (number of atoms in the
molecule, molecular surface, dipole moment, energy of orbitals...), water solubility or octanol-
water partition coefficient (e.g. OECD, 1993a; Raymond et al., 2001; Worrall, 2001; Eriksson et
al., 2002; Pavan et al., 2008). Other approaches aim, for example, at ranking organic compounds
knowing the values of several of their properties such as partitioning, persistence or
bioaccumulation. Compounds that have undesirable properties can be considered for
management, regulation, or even global bans on production and use (Mackay et al., 2001;
Walker and Carlsen, 2002). Numerical models represent the most complex approaches as they
allow overall assessment of the fate of organic compounds in the soil, water and air, and as they
take into account the physico-chemical properties of the compounds and the agro-pedo-climatic
conditions (e.g. Carsel et al., 1998; Jarvis and Larsbo, 2012). However, they require a lot of input
data. Therefore, approaches able to classify compounds according to their environmental

behavior or eco/toxicological effects will help both regulators and scientists facing the problem
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of the constant increase in the diversity and in the number of the chemical substances which will
be concerned by environmental risk assessment.

The objective of this work was thus to develop a new simple approach, TyPol (Typology
of Pollutants), to classify organic compounds and their degradation products according to both
their behavior in the environment and their structural molecular properties.

TyPol, is based on statistical analyses combining several environmental endpoints (i.e.
environmental parameters such as sorption coefficient, degradation half-life or bioconcentration
factor), and structural molecular descriptors (number of atoms in the molecule, molecular
surface, dipole moment, energy of orbitals...) (Fig. 1). The calculation of molecular descriptors
is based on in silico approach, and the environmental parameters are extracted from available
databases and from literature. Knowing the values of several relevant structural molecular
descriptors, TyPol will allow the classification of one organic compound of interest (parent or
degradation product) in a group of compounds having similar values of molecular descriptors
and environmental parameters, and potentially a similar environmental behavior.

The choice of the statistical method involved in TyPol is crucial for the reliability of the
clustering. Principal components analysis (PCA) is often used in multivariate chemical
characterizations to determine linearly uncorrelated variables that summarize the information
contained in variables (Jackson, 1991; Snarey et al., 1997; Harju et al., 2002; Eriksson et al.,
2006). These uncorrelated variables can also be used as an excellent basis to select a
representative set of chemicals using clustering methods. Various clustering techniques have
been employed in chemical mapping such as strategies based on PCA and hierarchical clustering
for selecting dissimilar organic substances (Rdnnar and Anderson, 2010) or ranking non-ionic

organic pesticides (Gramatica et al., 2004), bayesian classifiers for chemical toxicity predictions
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(Mishra et al., 2011), network clustering (Saito et al., 2010), PCA-based method (Rénnar and
Anderson, 2011) or other statistical tools (Vogt and Bajorath, 2012). However, the problematic
of TyPol is different than these ones because it considers two sets of variables (molecular
descriptors and environmental parameters), which are different by nature. Partial least squares
regression (PLS) (Wold, 1996; Eriksson et al., 2006) can be used to find the fundamental relation
between two sets of variables using a latent variable approach to model the covariance structures
in these two spaces. PLS model tries to find the multidimensional directions in the observable
variables (i.e. molecular descriptors) space that explain the maximum multidimensional variance
direction in the predicted variable (i.e. environmental parameters) space. So PLS, as PCA,
constructs uncorrelated variables which summarizes the information, but PLS takes into account
the information of both observable and predictive variables. Therefore, the PLS was selected (for
a detailed comparison of PLS and PCA, see Maitra and Yan, 2008). After the PLS analysis, a

hierarchical clustering algorithm is used to cluster the organic compounds.

2. Materials and methods
2.1. Organic compounds

For this proofef-concept study of TyPol, 215 organic compounds (191 parent
compounds and 24 degradation products) were selected (Tables Al, A2). The selection of these
compounds was done according to three criteria: (i) high diversity of chemical families for the
parent compounds, (ii) wide ranges of variation of the values of environmental parameters and
molecular descriptors (Tables 1, 2), (iii) availability of data for the environmental parameters
(see 2.2.). The 191 parent compounds include (i) 116 pesticides taken in the main groups of

pesticides (carbamates, organochlorines, organophosphorous, strobilurins, triazines, urea,



phenoxyacids...), (ii) 30 polychlorinated biphenyls (PCB), (iii) 13 polycyclic aromatic
hydrocarbons (PAH), (iv) 10 polychlorinated dibenzofurans (PCDF), (v) 9 phthalates, (vi) 7
polychlorinated dibenzodioxins (PCDD), and (vii) 6 miscellaneous compounds (drugs, auxine,
hormone...) (Table Al).The ability of TyPol to classify degradation prodccimdbmpared to their
parent substance was tested using 24 degradation products deriving from chloride pesticides

(Table A2). As some degradation products are common to several parent substances, 26 pairs of
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parent-degradation product were inputted in TyPol.

2.2. Environmental processes and parameters

Five of the main processes involved in the behavior of organic substances in the
environment were retained: (i) dissolution, to describe the expected distribution of the compound
between liquid, solid and gaseous phases; (ii) volatilization, which is related to the risk of
transfer to atmosphere; (i11) adsorption, which is linked to the risk of transfer to water; (iv)
degradation which controls the dissipation and/or the persistence, and increases (or not) the risk
of transfer and exposition of a living organism to the substance; and (v) bioaccumulation, to
consider the impacts on the organisms and the food chain. Each of these environmental processes
can be described by several environmental parameters. In this work, water solubility (Sw) and
octanol-water partition coefficient (Kow) were selected to describe dissolution; vapor pressure
(Pvap) and Henry’s law constant (K) for volatilization from soil and plant, and water,
respectively; adsorption coefficient normalized to soil carbon organic content (Koc) for
adsorption; half-life (DT50) for degradation; and bioconcentration factor (BCF) for ecotoxicity

(Table 1). These parameters were chosen because they are the most common ones to represent
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the five environmental processes, and because of the availability of the corresponding data in
numerous databases.

The values of environmental parameters were mainly taken from the Pesticide Properties
DataBase (PPDB, 2013) but also from literature. When values were not available in PPDB
(mainly for degradation products), the missing values were collected from Mackay et al. (2006)
and ChemSpider (2013). However, considering that a large amount of data of ChemSpider is
estimated instead of measured, the use of this database was limited. When several values were
available for one environmental parameter, the mean value was retained. For the 215
compounds, 1460 environmental parameters were inputted in TyPol, and there were only 3.9%
of missing values. The ranges of values of the parameters are indicated in Table 1 for the 215

compounds.

2.3. Molecular descriptors: selection and calculation

The selection of molecular descriptors was based on a literature review focused on the
QSARs that were developed to estim@ig Kow, Py,p, Ku, Koc, DT50, andBCF. This review
allowed the determination of the molecular descriptors that were best correlated to the seven
environmental parameters. We focused on QSARSs only built with structural molecular

descriptors (number of atomsaplecular surface, dipole moment...) rather than on Sv or Kow.

Indeed, contrary to approaches based on structural molecular descriptors, approaches based on

Sw or Kow are prone to experimental errors in the input variables. However, molecular

descriptors accuracy also depends on the approximations chosen to make the calculations. The

calibration of the theoretical calculations is driven by the compromise between accuracy and
efficiency (Lohninger, 1994; Karelson et al., 1996). Another advantage of the exclusive use of

molecular descriptors is that they are calculable for not yet synthesized compounds.



10

11

12

13

14

15

16

17

18

19

20

21

22

In addition, five criteria were defined to choose the descriptors: (i) their relevance to
estimate the seven environmental parameters (see the cited references below), (ii) their common
use for the estimation of teeseven parameters, (iii) the absence of redundancy between
descriptors, (iv) the possibility to calculate the descriptors with molecular modeling, and (v) their
ranges of variation. Finally, 40 constitutional, geometrical, topological, and quantum-chemical
descriptors were retained (see for example OECD, 1993b; Katritzky et al., 2000; Sabljic, 2001;
Dearden and Schiidrmann, 2003; Doucette, 20889 et al., 2003; Pavan et al., 2008able
2).

CHEM-3D of ChemOffice Ultra 12.0 (2009) molecular modeling software was used to
build three-dimensional chemical structures (3D-structures) in order to calculate the quantum-
chemical molecular descriptors (Table 2). As the values of these molecular descriptors are highly
dependent on the 3D-structures, a conformational search was done as follows: structures were
energy-minimized in MOPAC (Molecular Orbital PACkage) using the semi-empirical method
AMI (Austin Model parameterization) and ground electronic states were obtained as closed-shell
molecular orbital wave functions in the restricted Hartree-Fock framework. Analytical frequency
calculations have been performed at AM1 level to ensure the obtained structures are minima on
the potential energy surface (PES). For each compound, we proceeded by successive steps
calculating a large number of conformations deriving from each other by rotations around the
different chemical bonds in order to find the global minimum. As first estimate, the descriptors
of acido-basic molecules were calculated for their neutral form. The Excel function of
ChemOffice was then used to calculate the molecular weights and the Connolly surfaces. Finally,

the constitutional (except the molecular weight) and the topological descriptors were calculated
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with Dragon 5.5 (2007). For the 215 compounds, 8600 values of molecular descriptors were

inputted in TyPol. Their ranges of values are indicated in Table 2.

2.4. Partial least squares (PLS) regression

As stated in the introduction, PLS regression tries to find the multidimensional directions
in the observable variables (i.e. structural molecular descriptors) space that explain the maximum
multidimensional variance direction in the predicted variable (i.e. environmental parameters)
space.

Traditionally, individuals are presented as plots with two components however two axes
are not always the optimal choice. Therefore, in this work, the optimal number of axes to
perform clustering will be selected using the PRESS (Prediction Sum of Squares) criterion. In
addition, PLS can deal with missing values by using the NIPALS (Non-linear Iterative PArtial
Least Squares) algorithm. This algorithm allows performing PLS without removing the
individuals with missing values and without estimating these missing values (Tenenhaus, 1998).

However, the less there are missing values the more accurate the final results are.

2.5. Domain of validity

The knowledge of the domain of validity of the final clustering is important to avoid
erroneous conclusions. A priori, TyPol does not have a domain of validity and can be applied to
all compounds. However, the use of the PLS algorithm can lead to compounds that are declared
atypical by the algorithm. These compounds can be identified using the T2 of Hotelling
(Tenenhaus, 1998). If the T2 value of a compound is above a calculated threshold, the compound

is atypical on the PLS axes. Neverthelesgne of the objectives of the method is to keep and to

10



10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

provide the maximum amount of information with the aim of being tbdtassify a new

compound, the clustering of these atypical compounds is done by TyPol.

2.6. Hierarchical clustering

Clustering algorithms are used to assign similar objects into groups (called clusters)
based on a similarity criterion chosen by the user. The algorithm used in this study is based on
the Ward clustering (Ward, 1963), which keeps the growth of errors as small as possible by
merging individuals or clusters. The final number of clusters is chosen after comparison of the
heights of the dendrogram, a statistical map which resumes Ward clustering. For the convenience
of analyzing clustering of the compounds and their relevant degradation products, arrows linking
the parent compounds to their degradation pradaretrepresented on the main axes of the PLS.
The multivariate analysis tone in R 2.10.0.1 with the “mixOmics” (version 2.8-1) and
“cluster” (version 1.13.1) packages. The hierarchical clustering is performed using the agnes()
function, and the average linkage and the Euclidean metric are performed under normalized

variables (that is mean-centered and scale to unit variance).

2.7. Robustness of the method

To assess the robustness of the clustering method, a classical cross-validation algorithm
was used. A fixed percentage of the whole sample is removed from the sample and the PLS is
performed. Then, all the 215 compounds (including those which were removed to compute the
PLS) are projected on the PLS axes and clustered by the hierarchical clustering algorithm. As
compoung which were not included during the PLS algorithm are added in this step, this
method can assess the robustness of our methodology and, by consequence, its relevance.

Finally, the obtained clustering is compared to the targeted clustering obtained with the PLS

11
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calculated on the whole sample. The closer the clusterioghe targeted one, the more robust

the method is because it means that the chemicals which were removed during the PLS step are
still well-clustered. We can assume that if the method is robust when substances are removed, it
will be relevant when new ones will be tested. This also assesses the predictive quality of the
method. The cross-validation study was performed a hundred times using a standard bootstrap
procedure for different percentages of removed compounds, and the clusterings were compared
using the Adjusted Rand Index (Hubert and Arabie, 1985; Nguyen et al., 2009). This index is a
measure of the similarity between two different clusterings. The closer it is to 1 (respectively to

0), the more (respectively less) the two clusterings are similar.

2.8. Computing tools

The information system is based on a management system for relational database MySQL
DBMS-R (version 5.1), an Apache web server (version 2.2), and the statistical R software (also
used for graphs). The system is installed in a distribution Debian 6.0. The environmental
parameters and molecular descriptors are inserted into the management system relational
database server which interfaces with Tcl/Tk (Tool command languageif] oo#lde from the
R softwareand “RODBC” library (version 1.3-2). Annotations on the data or results are also
stored in the same database. Since the web interfaces are easily editable, statistical analyses of
data are treated and helped by the R software Tcl/Tk interfaces. All data that are stored in the
DBMS MySQL-R can be viewed via the web interface phpMyAdmin (version 3.3). Data can be
imported from phpMyAdmin and new data can easily be inserted. FiigiRgl was designed in
order to easily adapt to other research questions giving the users the choice of the variables (one

or several molecular descriptors, one or several environmental parameters), and of the

12
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compounds (all compounds, one or several cherfiaaly...). As the clustering will depend on

the needs of the users, no related risk assessment can be included in TyPol.

3. Results and discussion

For this proof-of-concept study, the use of TyPol will be illustrated by clustering the 215
compounds considering all structural molecular descriptors and all environmental parameters.
Therefore the results are specific of this case-study (as indicated above, the clustering depends
on the needs of the users). The first step in the use of TyPol is the chemical mapping to select the
number of components for the subsequent classification, then a hierarchical clustering is
performed to identify the optimal number of clusters to classify the organic compounds. For this
case-study, some P,,,, Koc, DT50 and BCF trigger values are proposed to better characterize the
clusters (McCall et al., 1980; FOCUS, 2008; Regulation EC 1107/2009, 2009). These trigger
values were developed for pesticides, mainly as regulatory threshold values. For the need of our

proof-of-concept study, we assumed that they can be extended to any organic compound.

3.1. Chemical mapping by PLS

The choice of the number of PLS components is critical for the subsequent analysis and
classification. The number of components which gave the lowest PRESS was therefore selected,
it corresponded to the four first axes of the PLS.

The domain of validity of the analysis was studied by calculating the T? of Hotelling for
the 215 compounds. It appeared that 7 compounds were found as atypical by the four
components of the PLS: chlordecone, mirex, kelevan, fosetyl, di-isodecyl, di-isononyl, and
benzo(g,h,1)perylene. Indeed, it is well known that these compounds have an extreme behavior in

the environment: for example, chlordecone, mirex and kelevan are very persistent (Marchand,

13
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1989; ATSDR, 1995; Cabidoche et al., 2009; Dolfing et al., 2012) contrary to fosetyl which has
a very low DT50 (PPDB, 2013); and di-isodecyl, di-isononyl, and benzo(g,h,i)perylene have
very high Kow values (PPDB, 2013). Chlordecone, benzo(g,h,i)perylene, mirex and kelevan also
have very high connectivity indexes. Nevertheless, these compounds were taken into
consideration for the subsequent analysis because they could be representative of other
compounds.

The four-component PLS model has good statistical results: R?x=0.77, R?y=0.90 and
Q?y=0.44. These results shows that the PLS is a good model for the different compounds
included in TyPol. The first two components were the most important ones. The closer the
compounds are in this score-plot, the more similar they are (Fig. 2). The main characteristic of
the first component, which explains 40% of the variance, is the strong positive loadings for all
the geometric and topological descriptors, and constitutional descriptors like the number of
chlorine or halogen atoms. A contrario, the dipole moment and the total energy have strong
negative loadings therefore have an opposite effect. The second axis explains 16% of the
variance. On this axis, variables such as the number of chlorine or halogen atoms have a positive
loading whereas the number of rotatable, double or simple bonds or the number of hydrogen,
oxygen or total atoms have a negative loading (Fig. 3). Figure 3 also shows that many variables
seem to be correlated, mainly the different connectivity and valence connectivity indexes. On the
third axis, variables such as the number of carbon or hydrogen atoms, and the molecular weight
have strong positive loadings, and others such as the number of circuits or the LUMO energy are
on the opposite side. On the fourth axis, the HOMO energy and the numbers of rings atoms are

on opposite sides of the number of sulfur or chlorine atoms.
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3.2. Clustering

Using a hierarchical clustering algorithm, several clusterings, from 1 (all compounds in
the same cluster) to 215 (all compounds in a different cluster), were obtained. The selection of
the number of clusters is an important and difficult task, which is usually performed by plotting
the heights of the dendrogram’s node and looking for a break. The results showed that the best
choice was to classify the compounds in 6 clusters. The size ok tblesters varied from 3 to
52 compounds (Fig. 2, Table A3), each cluster being characterized by specific features.

Figure 4 shows the range of variations of the values of the 7 environmental parameters
for each of the 6 clusters. The importance of the different parameters can be evaluated in Figure
3, but Figure 4 provides a description of the characteristics of each cluster. The trigger value of
Pvap is indicated to differentiate volatile and non-volatile compounds (there is no trigger value for
Ky, FOCUS, 2008), that d¢foc to differentiate mobile and non-mobile compounds (McCall et
al., 1980), that oDT50 to differentiate persistent and non-persistent compounds (1107/2009 EC,
2009), and that dBCF to differentiate compounds having or not a potential of bioaccumulation
(1107/2009 EC, 2009) (Fig. 4). Depending on the valu€,gfKoc, DTS0 and/orBCF, the six
clustersaggregate compounds having (or not) risks of air, water and/or soil contamination and/or
high ecotoxicity.

The cluster 1 contains 48 compounds and groups together all the thiocarbamates (5
compounds) and nearly 50% of the triazines, carbamates and ureas inputted in TyPol. This
cluster is characterized by high values of total energy and polarizability and low values of
different connectivity indexes. The compounds have low Koc i.e. high risk of groundwater
contamination (McCall et al., 1980), and low DT50 that is low persistence in the environment

(Regulation EC 1107/2009, 2009) (Fig. 4). They also have the lowest BCF’ (i.e. low ecotoxicity,
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Regulation EC 1107/2009, 2009) and Kow among the 6 clusters, which is consistent (Pavan et
al., 2008), and the highest Sw (this is also consistent with low values of Kow) (Fig. 4). Finally,
the compounds of cluster 1 have the lowest Ky values (the lowest K7 among the 6 clusters)
therefore the lowest volatility from water, but high values of P,,, so high volatility from soil and
plant, and high risk of transfer to atmosphere (FOCUS, 2008).

Twenty-one of the 30 compounds of cluster 2 are PCB (over 31 inputted in TyPol). There
are also 4 organochlorines (2 parent substances and 2 degradation products) and 3 PAH.
Compounds of cluster 2 have low dipole moment and high total energy. They also have the
lowest DT50 of the 6 clusters (rapid dissipation), low Koc (high mobility), but contrary to cluster
1, low Sw (and high Kow), and high BCF so high ecotoxicity (Fig. 4).

Cluster 3 shares some common traits with cluster 2 in the first two axes. Nevertheless,
these two clusters are well separated in the two other axes of the PLS which are not plotted here
in a sake of compactness. Cluster 3 is composed of 52 compounds, including all PCDF, 12
organochlorines (9 parent substances and 3 degradation products), 9 PCB, all PCDD, and 10
PAH (13 in the study). The combination of high molecular weights and low number of hydrogen
atoms is related to low values of Sw (the lowest among the 6 clusters) and high values of Kow,
and to the highest values of BCF. The compounds of cluster 3 also have the highest D750 among
the six clusters which means very high persistence in soils (Regulation EC 1107/2009, 2009)
(Fig. 4). Finally, they have medium values of P,,, and Ky (moderate risk of transfer to
atmosphere) (Fig. 4).

The cluster 4 contains 37 compounds including all strobilurin compounds, 6 of the 9
phthalates and 5 of the 6 triazoles. The main characteristics of this cluster are very high

connectivity indexes, polarizability, and number of hydrogen and carbon atoms for descriptors;
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low values of DT50 and P,,,, and medium values of Ky for environmental parameters. The
compounds of this cluster have the highest Koc values among the 6 clusters, therefore low risk of
groundwater contamination (Fig. 4).

Among the 45 compounds of the cluster 5, there are all dinitroanilines, 5
organophosphorous, 4 triazines, 4 urea, and 4 of the 5 chloroacetamides. This cluster is
characterized by important dipole moment and number of rotatable bonds for the structural
molecular descriptors, and medium values of Py, Ky, DT50, and Koc, with high Sw, and low
Kow and BCF for the environmental parameters. Few compounds of this cluster are closed to
those of cluster 1 in the first two axes of the PLS, but differences between these molecules are
more easily noticeable in the fourth axes of the PLS.

Finally, as showed on Figure 2, cluster 6 is an extreme one. It contains mirex, kelevan
and chlordecone (in addition, chlordecone is a degradation product of kelevan, PPDB, 2013). As
discussed above, these three organochlorine insecticides have very particular chemical structures
and high persistence (high D750) in the environment (bishomocubane family). They have
extraordinary high values of connectivity or valence connectivity indexes, polarizability,
molecular weight, number of chlorine and other halogen atoms; and extremely low values of
number of multiple bonds, total energy, HOMO energy. Considering the environmental
parameters, they have low Koc (high mobility), high BCF, that is high ecotoxicity, and high Ky
(Dolfing et al., 2012; PPDB, 2013) (Fig. 4). Even on the third and the fourth axes of the PLS,
these three compounds have extreme locations and cannot be aggregated with any other cluster.

The other compounds that were detected as atypical by the T? of Hotelling are clustered
in nearly all the clusters: cluster 1 for fosetyl, cluster 3 for benzo(g,h,1)perylene, and cluster 4 for

di-isodecyl and di-isononyl.
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The robustness of the method was assessed, using the cross-validation method described
above, and found to be high and not depending on a low number of values. The Adjusted Rand
Index values were 0.92, 0.87, 0.84 and 0.80 if 1%, 10%, 20% and 50% of the compounds were
removed, respectively. As the real cluster of the removed molecules is generally found again,
these results show that the predictive quality of the clustering is high. Furthermore, as the
molecular descriptors and the environmental parameters were chosen to cover a wide range of
values, we can assume that a “new” compound will be clustered with a good quality of
prediction. This proof-of-concept study showed that TyPol could allow the classification of
organic compounds according to a particular behavior in the environment (i.e. similar values of
environmental parameters), which is related to the combination of the values of some specific

molecular descriptors.

3.3. Parents-degradation products relationships

To test the ability of TyPol to classify degradation products compared to their parent
compounds, 26 pairs of parents and degradation products were inputted (Table A2). The
clustering made above using all compounds was retained for the analysis (Table A3). Figure 5
shows the classification of the degradation products compared to their parents. Among all
degradation produst58% (i.e. 15 degradation producigre in the same cluster as their
parents. Conversely, 42% (i.e. 11 degradation products) were not in the same cluster as their
parents6 degradation products originating from parents in clusters 4 and 5 were in cluster 1; 2
degradation products of parent in cluster 3 were in cluster 2; and 3 degradation products of
parents in clusters 1 and 4 were in cluster 5. These results are due to similarities (or

dissimilarities) in terms of structure and behavior between parent compounds and their
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degradation products, but further tests need to be performed with other chemical families. The

classification of degradation products compared to the parent compounds will allow the
prediction of the behavior in the environment of potential degradation products and/or of
degradation products for which no data are available. In addition, the different routes of

degradation, i.e. biotic, abiotic (oxidation, dehalogenation...) will be addedn the future to

investigate if the change in cluster between a compound and its degradation product(s) is related

to the type of degradation mechanism.

4. Conclusion

A novel approach, TyPol, for clustering organic compounds according to both their
behavior in the environment and their structural molecular descriptors is presented. The approach
is based on PLS regression and hierarchical clustering. TyPol considers simultaneously several
environmental processes (described by appropriate environmental parameters), and the
degradation products of compounds.

This proof-of-concept study, based on the classification of 215 organic compounds,
showed that the combination of the values of some molecular descriptors could be related to a
particular behavior in the environment. The robustness of the method was studied and
demonstrated to be good, as well as the statistical performances of the PLS regression.
Therefore, TyPol could help to predict the environmental behavior of a “new” compound from
its affiliation to one cluster or to select representative substances from a large data set in order to
answer some specific questions regarding their behavior in the environment. In addition, TyPol
takes into account the degradation products of organic compounds. The analysis is based on the
same methodology as above and highlights the similarities (or dissimilarities) between a parent

substance and its degradation product. One of the next steps of this work will investigate if the
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change in cluster between a compound and its degradation product(s) is related to the type of
degradation mechanism (oxidation, epoxidation, hydroxylation...). Additional environmental
and ecotoxicological parameters, and molecular descriptors will also be included in TyPol to

refine the classification of compounds.
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Figure captions

Fig 1. Construction and structure of TyPol. A “new” compound is either a parent compound or a
degradation product, for which the environmental parameters (for example water solubility Sw,

adsorption coefficient Koc or bioconcentration factor BCF) are not known.

Fig. 2. Clustering of the 215 organic compounds in six clusters (each cluster has a different

symbol) on the two main components of the PLS (PLS1 and PLS2).

Fig. 3. Circles of correlations of the “environmental parameters” (in blue) and “molecular
descriptors” (in red) variables on the two main components of the PLS (PLS1 and PLS2). C.i-i
stands for the connectivity index C.i of order i (i = 0 to 5), and V.c-i stands for the valence

connectivity index V.c of order i (1= 0 to 5).

Fig. 4. Range of variation (box-and-whisker plots) of the values of the seven environmental
parameters considered into TyPol (water solubHity octanol-water partition coefficiettow,

vapor pressur®,,,, Henrys law constantKy, adsorption coefficient normalized to soil carbon
organic contenKoc, half-life DT50, and bioconcentration fact@dCF) for each cluster after
analysis of the 215 organic compounds. Dotted lines represelimnite between: volatile (log

Pvap > -1) and non-volatile compounds (I8, < -1) (FOCUS, 2008); mobile (logoc < 2.7)

and non-mobile compounds (I&gpc > 2.7) (McCall et al., 1980); persistent (IdgT50 > 2.25

and non-persistent compounds (50 < 2.25) (Regulation EC 1107/2009, 2009), and
compounds having (lodBCF > 2) or not (log BCF < 2) a potential of bioaccumulation

(Regulation EC 1107/2009, 2009
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Fig. 5. Relationships between the parent compounds and their degradation products on the two
main components of the PLS (PLS1 and PLS2). Arrows are drawn from the parent compounds

(the CAS number is indicated) to their degradation products.
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Tables

Tablel

Environmental parameters and ranges of variation of their values for the 215 organic compounds
(191 parent compounds and 24 degradation products) inputted in TSPalvdter solubility,

Kow: octanol-water partition coefficienByap: vapor pressuré{y: Henry’s law constant, Koc:

adsorption coefficienDT50: hdf-life, BCF: bioconcentration factor)

Environmental Environmental parameter Range of variation
process :
Parent compound Degradation
product
Dissolution log [Sw (mg L] [-6.72 ; 10.29] [- 3.63; 13.82]

log [Kow (dimensionless)] [- 0.81; 6.91] [-0.17 ; 6.51]

Volatilization Pyap (MPa) [5 x 10°; 27] [5x10%; 1x 107
Ky (dimensionless) [2x10°;1.48] [1.1x10%;1.48]
Adsorption log [Koc (L kg™h)] [2.19; 11.36] [1;6.83]
Degradation DT50 (days) [4.7 ; 4100] [0.05; 10603]
Ecotoxicity log [BCF (dimensionless)] [0 ; 4] [0; 3.93]
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Table?2
List of the 40 molecular descriptors inputted in TyPol and ranges of variation of their values for

the 215 organic compounds (191 parent compounds and 24 degradationg)roduct

Category Molecular descriptor Range of variation
Parent compound Degradation product
Constitutional Number of atoms [14 ; 47] [8; 46]
Number of non-H atoms [13; 29] [4; 23]
Number of hydrogen atoms [0; 20] [1;23]
Number of carbon atoms [8;22] [2;17]
Number of nitrogen atoms [0;3] [0;3]
Number of oxygen atoms [0;3] [0;5]
Number of phosphorus atoms [0;0] [0;0]
Number sulfur atoms [0;1] [0;1]
Number fluorine atoms [0;1] [0;1]
Number of chlorine atoms [1;8] [0; 8]
Number of halogen atoms [1;8] [0; 8]
Number of bonds [14 ; 49] [7; 46]
Number of non-H bonds [13; 31] [3; 25]
Number of double bonds [0; 3] [0; 3]
Number of triple bonds [0; 2] [0; 2]
Number of multiple bonds [1;15] [1;13]
Number of rotatable bonds [0;7] [0;9]
Number of aromatic bonds [0;12] [0;12]
Sum of conventional bond order [17 ; 41] [4;31.5]
Number of rings [1;3] [0;4]
Number of circuits [1;6] [0;10]
Molecular weight (g mof) [200 ; 434.3] [60 ; 423.76]
Geometric Connolly molecular surface ar¢?) [186.1 ; 311.6] [73.46 ; 278.7]
Topological Connectivity index of order 0 [9.84 ; 21.18] [3.57; 17.41]
Connectivity index of order 1 [6.09; 13.73] [1.73; 10.92]
Connectivity index of order 2 [5.58; 13.02] [1.73; 10.70]
Connectivity index of order 3 [3.72;9.94] [0;10.26]
Connectivity index of order 4 [2.67 ; 7.96] [0;8.10]
Connectivity index of order 5 [2 ; 6.40] [0;6.78]
Valence connectivity index of order O [7.83; 17.25] [2.36 ; 14.79]
Valence connectivity index of order 1 [4.08 ; 9.65] [0.93; 8.96]
Valence connectivity index of order 2 [3.03;9.29] [0.52;9.68]
Valence connectivity index of order 3 [1.72;9.79] [0;10.13]
Valence connectivity index of order 4 [1.11; 7.46] [0;7.67]
Valence connectivity index of order 5 [0.63 ; 5.95] [0;6.23]
Quantum- Polarizability(A®) [19.89 ; 45.58] [5.13; 45.58]
chemical Electric dipole moment (D) [1.07 ; 5.46] [0.07 ; 4.83]
HOMO energy (eV) [-10.35; - 8.95] [-11.62; -8.73]
LUMO energy (eV) [-1.76 ; 0.05] [-2.20; 0.98]
Total energy (eV) [- 5462 ; - 2611] [- 5462 ; - 953]
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Supplementary material

Table Al

List of organic compounds inputted in TyPol (chemical families, CAS numbers, names and chemigialefo(PCBpolychlorinated

biphenyls, PAH: polycyclic aromatic hydrocarbons, PCDF: polychlorinated dibenzofurans, PCDD: polyadadibahzodioxins)

Chemical CAS Name Chemical Chemical CAS Name Chemical
family number formula family number formula
Pesticides
Organochlorine 50-29-3 p,p'DDT CiHClg PCB 92-52-4 Biphenyl CioHqg
Organochlorine 57-74-9 Chlordane CioHeClg PCB 2050-67-1 3,3'-dichlorobiphenyl C1,HgCl»
Organochlorine 58-89-9 Lindane CsHsClg PCB 2050-68-2 4,4'-dichlorobiphenyl C1,HgCl»
Organochlorine 60-57-1 Dieldrine C1,HgClgO PCB 2051-24-3 Decachlorobiphenyl C.Clyp
Organochlorine 72-20-8 Endrine C,HgClgO PCB 2051-60-7 2-chlorobiphenyl CoHoCl
Organochlorine 76-44-8 Heptachlore C,HsCl, PCB 2051-61-8 3-chlorobiphenyl CoHoCl
Organochlorine 115-29-7 Endosulfan CoHeClgOsS PCB 2974-90-5 3,4'-dichlorobiphenyl C.,HgCl,
Organochlorine 118-74-1 Hexachlorobenzene CgClg PCB 2974-92-7 3,4-dichlorobiphenyl C.,HgCl,
Organochlorine 143-50-0 Chlordecone CiClhiO PCB 13029-08-8 2,2'-dichlorobiphenyl C1,HgCl,
Organochlorine 297-78-9 Isobenzane CoH.CIgO PCB 16605-91-7 2,3-dichlorobiphenyl C1,HgCl»
Organochlorine 1715-40-8 Bromocyclene CgHsBrClg PCB 25569-80-6 2,3'-dichlorobiphenyl C1,HgCl»
Organochlorine 2385-85-5 Mirex CiCl1o PCB 33146-45-1 2,6-dichlorobiphenyl Cy,HgCl,
Organochlorine 4234-79-1 Kelevan Cy17H1,Cl10O4 PCB 33284-50-3 2,4-dichlorobiphenyl C1,HgCly
Organochlorine 8001-35-2 Toxaphene C10HgClg PCB 34883-39-1 2,5-dichlorobiphenyl C1,HgCl,
Carbamate 63-25-2 Carbaryl C1oH11INO, PCB 34883-41-5 3,5-dichlorobiphenyl C1,HgCly
Carbamate 101-21-3 Chlorpropham C10H12CINO, PCB 34883-43-7 2,4'-dichlorobiphenyl C1,HgCly
Carbamate 116-06-3 Aldicarb C;H1.N,0O,S PCB 35065-30-6 2,2',3,3',4,4' 5-heptachlorobiphen C;,H3Cl,
Carbamate 1563-66-2 Carbofuran CyoH1sNOg PCB 35694-08-7 2,2'3,3,4,4'55'- C1,H.Clg
octachlorobiphenyl
Carbamate 3337-71-1 Asulam CgH1gN,O4S PCB 37680-66-3 2,2' 4-trichlorobiphenyl Cy,H/Clg
Carbamate 13684-56-5 Desmedipham C16H16N20O,4 PCB 38380-07-3 2,2',3,3',4,4'-hexachlorobiphenyl  C;,H,Clg
Carbamate 13684-63-4 Phenmedipham C16H16N20, PCB 38444-78-9 2,2',3-trichlorobiphenyl Cy,H/Cls
Carbamate 16118-49-3 Carbetamide C1oH16NoO3 PCB 38444-93-8 2,2',3,3'-tetrachlorobiphenyl C,HeCly
Carbamate 23103-98-2 Pirimicarb C11H1gN4O, PCB 40186-72-9 2,2',3,3,4,455',6- Cy,HClq
nonachlorobiphenyl
Carbamate 23135-22-0 Oxamyl C;H13N30sS PCB 52663-59-9 2,2',3,4-tetrachlorobiphenyl Ci,HeCly
Carbamate 24579-73-5 Propamocarb CoHooNL,Os PCB 52663-62-4 2,2',3,3',4-pentachlorobiphenyl Cy,HsCls
Carbamate 79127-80-3 Fenoxycarb CiH1gNO, PCB 52663-71-5 2,2',3,3',4,4',6-heptachlorobiphen C;,H;Cl,
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Urea
Urea

Urea

Urea

Urea

Urea

Urea

Urea

Urea

Urea
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Organophosphorous
Amide

Amide

Amide

Amide

Amide

Amide

Amide

Amide

Strobilurin
Strobilurin
Strobilurin
Strobilurin
Strobilurin
Strobilurin
Strobilurin

Triazine

Triazine

Triazine

Triazine

Triazine

Triazine

Triazine

Diazine

101-42-8

330-54-1

330-55-2
555-37-3
1746-81-2
3060-89-7
15545-48-9
34123-59-6
64902-72-3
79510-48-8
56-38-2
60-51-5
86-50-0
121-75-5
122-14-5
333-41-5
5598-13-0
13194-48-4
15845-66-6
709-98-8
15299-99-7
23950-58-5
35256-85-0
55814-41-0
57837-19-1
77732-09-3
180409-60-3
117428-22-5
131860-33-8
141517-21-7
143390-89-0
149961-52-4
175013-18-0
361377-29-9
122-34-9
834-12-8
886-50-0
1912-24-9
5915-41-3
21725-46-2
66215-27-8

1698-60-8

Fenuron
Diuron

Linuron
Neburon
Monolinuron
Metobromuron
Chlortoluron
Isoproturon
Chlorsulfuron
Metsulfuron
Parathion-ethyl
Dimethoate
Azinphos-methyl
Malathion
Fenitrothion
Diazinon

Chlorpyrifos-methyl

Ethoprophos
Fosetyl
Propanil
Napropamide
Propyzamide
Tebutam
Mepronil
Metalaxyl
Oxadixyl
Cyflufenamid
Picoxystrobin
Azoxystrobin
Trifloxystrobin
Kresoxim-methyl
Dimoxystrobin
Pyraclostrobin
Fluoxastrobin
Simazine
Ametryn
Terbutryn
Atrazine
Terbuthylazine
Cyanazine
Cyromazine

Chloridazon

CoH12N:0
CoH10CI2N-0

CoH1oClN,O;
CgH1:.CINO,
CoH11BrN;O,
Cy10H13CIN,O
CyoH1gN0
C1,H1,CIN50,S
C13H13N506S
CsH1aNOPS
Ci1oH12N303PS
Ci10H1606PS
CoH12NOsPS
C;H,CI;NO5PS
CgH140,PS
CyHgCILNO
Ci7H2INO;
Cy5Ho3NO
Ci7H1gNO;
CysH2iNO,
C14H18N204
CooH17FN0;
C1gH16F3NO;4
Cy2H17N305
CooH19F3N204
CigH19NO,4
CioH25N03
Ci0H15CIN5O,
C,1H16CIFN,O5
C;H1,CINg
CoH17NsS
C10H19NsS
CgH14CINg
CyH13CINg
CeH10N6

C10HsCINZO

PCB
PCB

PCB
PCB

PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH
PAH

PCDF
PCDF
PCDF
PCDF
PCDF
PCDF
PCDF
PCDF
PCDF
PCDF

Phthalate
Phthalate
Phthalate
Phthalate
Phthalate
Phthalate
Phthalate
Phthalate
Phthalate

PCDD

PCDD
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52663-78-2

52663-79-3

55215-18-4
60145-20-2

50-32-8
53-70-3
56-55-3
85-01-8
86-73-7
120-12-7
129-00-0
191-24-2
193-39-5
205-99-2
206-44-0
207-08-9
218-01-9

39001-02-0
51207-31-9
55673-89-7
57117-31-4
57117-41-6
57117-44-9
60851-34-5
67562-39-4
70648-26-9
72918-21-9

84-61-7
84-66-2
84-74-2
85-68-7
117-81-7
117-84-0
131-11-3
26761-40-0
28553-12-0

1746-01-6

3268-87-9

2,2',3,3',4,4'5,6-
octachlorobiphenyl
2,2'3,3,4,4'5,6,6'-
nonachlorobiphenyl
2,2',3,3',4,5-hexachlorobiphenyl
2,2',3,3',5-pentachlorobiphenyl

Benzo(a)pyrene
Dibenzo(a,h)anthracene
Benzo(a)anthracene
Phenanthrene
Fluorene

Anthracene

Pyrene
Benzo(g,h,i)perylene
Indeno[1,2,3-cd]pyrene
Benzo(b)fluoranthene
Fluoranthene
Benzo(k)fluoranthene
Chrysene

OCDF

2,3,7,8-TCDF
1,2,3,4,7,8,9-HpCDF
2,3,4,7,8-PeCDF
1,2,3,7,8-PeCDF
1,2,3,6,7,8-HXCDF
2,3,4,6,7,8-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,7,8-HXCDF
1,2,3,7,8,9-HXCDF

Di-cyclohexyl
Diethyl

Dibutyl
Benzylbutyl
Di-2-ethylhexyl
Di-n-octyl
Dimethyl
Di-isodecyl
Di-isononyl

2,3,7,8-tetrachloro-dibenzo-p-
dioxine
OCDD

Cy,HCl,

C12H4C|5
C12H5C|5

CaoH1z
CaHig
CigHiz
CiaHio
CizHio
CiaHio
CieHio
CaHiz
CaHiz
CaoH1z
CieHio
CaoH1z
CigHiz

C..Cls0
C12H4C|4O
C,HCILO
C1HsClsO
C1HsClsO
C1H.ClsO
C1,H.CI0
C,HCI,0
C1,H.ClO
C1,H.ClO

CaoH2604
CioH1404
C16H2204
CioH2004
CaaH3g04
CaaH3g04
C10H1004
CagHse04
CoeHs204

C12H.Cl,0,

C1Clg0,



Diazine
Triazinone
Triazinone
Triazole

Triazole

Triazole

Triazole

Triazole

Triazole
Thiocarbamate
Thiocarbamate
Thiocarbamate
Thiocarbamate
Thiocarbamate
Chloroacetamide
Chloroacetamide
Chloroacetamide
Chloroacetamide
Chloroacetamide
Dinitroaniline
Dinitroaniline
Dinitroaniline
Dinitroaniline
Pyrethroid
Pyrethroid
Pyrethroid
Triketone
Triketone
Phthalimide
Phthalimide
Cyclodiene
Cyclodiene
Aryloxyalkanoic acid
Aryloxyalkanoic acid
Alkylchlorophenoxy
Phosphonoglycine
Chloronitrile
Benzoic acid
Pyridine

Sulfite ester
Ethylene generator
Dicarboximide

Aryloxyphenoxypropionate

Diphenyl ether
Anilinopyrimidine

25057-89-0
21087-64-9
41394-05-2
61-82-5
76674-21-0
94361-06-5
119446-68-3
131983-72-7
133855-98-8
137-26-8
759-94-4
1929-77-7
2303-16-4
2303-17-5
1918-16-7
15972-60-8
34256-82-1
51218-45-2
67129-08-2
1582-09-8
19044-88-3
33629-47-9
40487-42-1
52315-07-8
52645-53-1
68359-37-5
99105-77-8
335104-84-2
133-06-2
133-07-3
309-00-2
465-73-6
94-74-6
7085-19-0
94-75-7
1071-83-6
1897-45-6
1918-00-9
1918-02-1
2312-35-8
16672-87-0
36734-19-7
51338-27-3
74070-46-5
121552-61-2

Bentazone
Metribuzin
Metamitron
Amitrole
Flutriafol
Cyproconazole
Difenoconazole
Triticonazole
Epoxiconazole
Thiram

EPTC
Vernolate
Di-allate
Tri-allate
Propachlor
Alachlor
Acetochlor
Metolachlor
Metazachlor
Trifluralin
Oryzalin
Butralin
Pendimethalin
Cypermethrin
Permethrin
Cyfluthrin
Sulcotrione
Tembotrione
Captan

Folpet

Aldrine
Isodrine
MCPA
Mecoprop
2,4-D
Glyphosate
Chlorothalonil
Dicamba
Picloram
Propargite
Ethephon
Iprodione
Diclofop-methyl
Aclonifen
Cyprodinil

CiH1N,0:S ~ PCDD

CgH14N,0OS PCDD
CyoH10N,O PCDD
CoH4N, PCDD
C16H13FN30 PCDD
C15H18C|N30
CiH17CILbN3O3  Medicine
C,17H,oCINSO Medicine
C,7H13CIFNSO

CgsH1oNLS, Hormone
CoH gNOS

CyiH21NOS Auxin
Ci0H1:CILNOS

Ci0H16CIsNOS Other
C11H1.CINO Other
CiaH16F3N304
C1oH1gN4OS
C14H21N30,
Ci3H19N30,
C,,H1sCILFNG;
CiH1CIOsS
C1H16CIF306S
CoHgCIsNO,S
CoH4CIsNO,S
Cy,HgClg
CoHgCIO;
CyoH11CIO;
CgHgCl,05
C3H/NOsP
CsClI4N,
CgHgCl,03
CsH3CI3N,0O5
C19H260,S
C,HsCIOsP
CyaH1:ClLN3O3
C16H14C10,
C1,HoCIN,O5
Ci14H1sN3
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19408-74-3
35822-46-9
39227-28-6
40321-76-4
57653-85-7

298-46-4
14168-01-5

50-28-2

87-51-4

608-73-1
2550-75-6

1,2,3,7,8,9-HXxCDD
1,2,3,4,6,7,8-HpCDD
1,2,3,4,7,8-HXCDD
1,2,3,7,8-PeCDD
1,2,3,6,7,8-HxCDD

Carbamazepine
Dilor

Estradiol
Indolylacetic acid

Hexachlorocyclohexane
Chlorbicyclene

C,HCI;0,

CisH1N,0

C18H 2402
CloH gN 02

CGHecle
CgHeClg



Hydroxyanilide
Neonicotinoid
Diphenyl oxazoline

126833-17-8 Fenhexamid
135410-20-7  Acetamiprid
153233-91-1 Etoxazole

C14H1,CILNO,
Ci10H11CINg
CaHa3FNO,
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Table A2
List of degradation products inputted in TyPol. When there was no referenced CAS, a number
was created according to the following format: CAS number of the parent-INRA-i (i represents

the number of the degradation product among all degradation products of the parent pompound)

CAS number Chemical formula Parent CAS number Parent name
64-19-7 CHsCOOH 34256-82-1 Acetochlor
72-54-8 C14H10Cl4 50-29-3 p,p-DDT
72-55-9 C14HgCly 50-29-3 p,pDDT
85-41-6 CsHsNO, 133-07-3 Folpet
88-97-1 CgH/NO3 133-07-3131983-72-7 Folpet; Triticonazole
88-99-3 CsH4(COOH), 133-07-3 Folpet
95-76-1 CsHsCIoN 330-54-1 Diuron
1024-57-3 C10Hs5CI,O 57-74-9; 76-44-8 Chlordane; Heptachlort
1031-07-8 CoHgCleO4S 115-29-7 Endosulfan
1570-64-5 C/H-CIO 94-74-6 MCPA
1897-45-6-INRA-1 CgHCI3N,O 1897-45-6 Chlorothalonil
1897-45-6-INRA-2 CgH3CI3NoO4S 1897-45-6 Chlorothalonil
2327-02-8 C;HgCIoNLO 330-54-1 Diuron
3567-62-2 CgHgCIoNLO 330-54-1 Diuron
3739-38-6 C13H1003 52315-07-8 Cypermethrin
27304-13-8 C10H4CIlgO 57-74-9 Chlordane
34256-82-1-INRA-1  Ci4H21NOsS 34256-82-1 Acetochlor
34256-82-1-INRA-2 C14H19NO4 34256-82-1 Acetochlor
34256-82-1-INRA-3  Ci6H23NOsS 34256-82-1 Acetochlor
63637-89-8 C17H20CIN3O, 36734-19-7 Iprodione
68359-37-5-INRA-1  CgH1,ClLO, 68359-37-5 Cyfluthrin
77279-89-1 Ci13HoFOs 68359-37-5 Cyfluthrin
131983-72-7-INRA-1 C;7H»0CIN3O, 131983-72-7 Triticonazole
131983-72-7-INRA-2 C;17H50CIN3O, 131983-72-7 Triticonazole
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Table A3

Example of TyPol results: clustering of the 215 organic compounds (parent substances and
degradation productsnputted in the database (chemical families, CAS numbers, names) (PCB:
polychlorinated biphenyls, PAH: polycyclic aromatic hydrocarbons, PCDF: polychlorinated

dibenzofurans, PCDD: polychlorinated dibenzodioxins)

Chemical family CAS number Name

Cluster 1

Carbamate 63-25-2 Carbaryl
Carbamate 101-21-3 Chlorpropham
Carbamate 11606-3 Aldicarb
Carbamate 3337711 Asulam
Carbamate 2313522-0 Oxamyl
Carbamate 24579735 Propamocarb
Thiocarbamate 137-26-8 Thiram
Thiocarbamate 759944 EPTC
Thiocarbamate 1929777 Vernolate
Thiocarbamate 2303164 Di-allate
Thiocarbamate 2303475 Tri-allate

Urea 330-54-1 Diuron

Urea 330552 Linuron

Urea 174681-2 Monolinuron

Urea 3060897 Metobromuron
Urea 15545489 Chlortoluron
Organophosphorous 60-51-5 Dimethoate
Organophosphorous 559813-0 Chlorpyrifos-methyl
Organophosphorous 13194484 Ethoprophos
Organophosphorous 1584566-6 Fosetyl

Triazine 122-34-9 Simazine

Triazine 1912249 Atrazine

Triazine 6621527-8 Cyromazine
Alkylchlorophenoxy 94-75-7 2,4-D

Amide 709988 Propanil
Aryloxyalkanoic acid 70854190 Mecoprop
Aryloxyalkanoic acid 94-74-6 MCPA

Auxin 87-51-4 Indolylacetic acid
Benzoic acid 1918009 Dicamba
Chloroacetamide 19184167 Propachlor
Chloronitrile 1897456 Chlorothalonil
Ethylene generator 1667287-0 Ethephon
Neonicotinoid 13541020-7 Acetamiprid
Phosphonoglycine 1071836 Glyphosate
Phthalates 131-11-3 Dimethyl

Pyridine 191802-1 Picloram
Triazinone 2108764-9 Metribuzin

Triazole 61-82-5 Amitrole
Metabolite 64-19-7 Metabolite of acetochlor
Metabolite 85-41-6 Metabolite of folpet
Metabolite 88-97-1 Metabolite of folpet and triticonazole
Metabolite 88-99-3 Metabolite of folpet
Metabolite 95-76-1 Metabolite of diuron
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Metabolite 157064-5 Metabolite of MCPA
Metabolite 1897456-INRA-1 Metabolite of chlorothalonil
Metabolite 232702-8 Metabolite of diuron
Metabolite 356762-2 Metabolite of diuron
Metabolite 6835937-5-INRA-1 Metabolite of cyfluthrin
Cluster 2

PCB 92-52-4 Biphenyl

PCB 205067-1 3,3"-dichlorobiphenyl
PCB 2050682 4,4'-dichlorobiphenyl
PCB 205160-7 2-chlorobiphenyl

PCB 205161-8 3-chlorobiphenyl

PCB 2974905 3,4'-dichlorobiphenyl
PCB 2974927 3,4-dichlorobiphenyl
PCB 1302908-8 2,2'-dichlorobiphenyl
PCB 1660591-7 2,3-dichlorobiphenyl
PCB 2556980-6 2,3'-dichlorobiphenyl
PCB 3314645-1 2,6-dichlorobiphenyl
PCB 3328450-3 2,4-dichlorobiphenyl
PCB 3488339-1 2,5-dichlorobiphenyl
PCB 3488341-5 3,5-dichlorobiphenyl
PCB 34883437 2,4'-dichlorobiphenyl
PCB 3768066-3 2,2',4-trichlorobiphenyl
PCB 38444789 2,2',3-trichlorobiphenyl
PCB 3844493-8 2,2',3,3'-tetrachlorobiphenyl
PCB 5266359-9 2,2',3,4-tetrachlorobiphenyl
PCB 5266362-4 2,2',3,3',4-pentachlorobiphenyl
PCB 6014520-2 2,2',3,3',5-pentachlorobiphenyl
PAH 8501-8 Phenanthrene

PAH 86-73-7 Fluorene

PAH 12012-7 Anthracene
Organochlorine 58899 Lindane

Organochlorine 118741 Hexachlorobenzene
Urea 101-42-8 Fenuron

Other 608731 Hexachlorocyclohexane
Metabolite 72-54-8 Metabolite of pp-DDT
Metabolite 72-559 Metabolite of pp-DDT
Cluster 3

PAH 50-32-8 Benzo(a)pyrene

PAH 53703 Dibenzo(a,h)anthracene
PAH 56-55-3 Benzo(a)anthracene
PAH 12900-0 Pyrene

PAH 191-24-2 Benzo(g,h,i)perylene
PAH 193395 Indeno[1,2,3-cd]pyrene
PAH 20599-2 Benzo(b)fluoranthene
PAH 206-44-0 Fluoranthene

PAH 207-08-9 Benzo(k)fluoranthene
PAH 21801-9 Chrysene

PCDF 3900102-0 OCDF

PCDF 51207319 2,3,7,8-TCDF

PCDF 55673897 1,2,3,4,7,8,9-HpCDF
PCDF 5711731-4 2,3,4,7,8-PeCDF

PCDF 5711741-6 1,2,3,7,8-PeCDF

PCDF 57117449 1,2,3,6,7,8-HXxCDF
PCDF 6085134-5 2,3,4,6,7,8-HXxCDF
PCDF 6756239-4 1,2,3,4,6,7,8-HpCDF
PCDF 7064826-9 1,2,3,4,7,8-HxCDF
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PCDF 7291821-9 1,2,3,7,8,9-HXCDF

Organochlorine 50-29-3 p,p'DDT

Organochlorine 57-74-9 Chlordane

Organochlorine 60-57-1 Dieldrine

Organochlorine 72-20-8 Endrine

Organochlorine 76-44-8 Heptachlore

Organochlorine 115297 Endosulfan

Organochlorine 297-78-9 Isobenzane

Organochlorine 1715408 Bromocyclene

Organochlorine 8001352 Toxaphene

PCB 205124-3 Decachlorobiphenyl

PCB 3506530-6 2,2',3,3',4,4' 5-heptachlorobiphenyl
PCB 3569408-7 2,2',3,3',4,4'5,5'-octachlorobiphenyl
PCB 3838007-3 2,2',3,3',4,4'-hexachlorobiphenyl
PCB 4018672-9 2,2',3,3',4,4'5,5' ,6-nonachlorobiphenyl
PCB 5266371-5 2,2',3,3',4,4' 6-heptachlorobiphenyl
PCB 5266378-2 2,2',3,3',4,4' 5,6-octachlorobiphenyl
PCB 5266379-3 2,2',3,3',4,4',5,6,6'-nonachlorobiphenyl
PCB 55215184 2,2',3,3',4,5-hexachlorobiphenyl
PCDD 174601-6 2,3,7,8-tetrachloro-dibenzo-p-dioxine
PCDD 326887-9 OCDD

PCDD 1940874-3 1,2,3,7,8,9-HxCDD

PCDD 3582246-9 1,2,3,4,6,7,8-HpCDD

PCDD 39227286 1,2,3,4,7,8-HxCDD

PCDD 40321764 1,2,3,7,8-PeCDD

PCDD 57653857 1,2,3,6,7,8-HxCDD

Cyclodiene 309-00-2 Aldrine

Cyclodiene 465736 Isodrine

Medicine 1416801-5 Dilor

Other 2550756 Chlorbicyclene

Metabolite 102457-3 Metabolite of chlordane and heptachlore
Metabolite 103107-8 Metabolite of endosulfan
Metabolite 2730413-8 Metabolite of chlordane

Cluster 4

Strobilurin 11742822-5 Picoxystrobin

Strobilurin 13186033-8 Azoxystrobin

Strobilurin 14151721-7 Trifloxystrobin

Strobilurin 143390890 Kresoxim-methyl

Strobilurin 14996152-4 Dimoxystrobin

Strobilurin 175013180 Pyraclostrobin

Strobilurin 361377299 Fluoxastrobin

Phthalates 84-61-7 Di-cyclohexyl

Phthalates 85-68-7 Benzylbutyl

Phthalates 117-81-7 Di-2-ethylhexyl

Phthalates 117-84-0 Di-n-octyl

Phthalates 2676140-0 Di-isodecy!

Phthalates 2855312-0 Di-isononyl

Triazole 7667421-0 Flutriafol

Triazole 9436106-5 Cyproconazole

Triazole 11944668-3 Difenoconazole

Triazole 13198372-7 Triticonazole

Triazole 13385598-8 Epoxiconazole

Amide 1529999-7 Napropamide

Amide 55814410 Mepronil

Amide 18040960-3 Cyflufenamid

Pyrethroid 5231507-8 Cypermethrin

Pyrethroid 5264553-1 Permethrin

Pyrethroid 6835937-5 Cyfluthrin
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Carbamate 1368456-5 Desmedipham
Carbamate 13684634 Phenmedipham
Carbamate 7912780-3 Fenoxycarb
Aryloxyphenoxypropionate 5133827-3 Diclofop-methyl
Dicarboximide 36734197 Iprodione

Diphenyl oxazoline 15323391-1 Etoxazole

Hormone 50-28-2 Estradiol
Hydroxyanilide 12683317-8 Fenhexamid

Sulfite ester 2312358 Propargite

Triketone 33510484-2 Tembotrione

Metabolite 13198372-7-INRA-1 Metabolite of triticonazole
Metabolite 13198372-7-INRA-2 Metabolite of triticonazole
Metabolite 6363789-8 Metabolite of iprodione
Cluster 5

Organophosphorous 56-38-2 Parathion-ethyl
Organophosphorous 86-50-0 Azinphos-methyl
Organophosphorous 121-755 Malathion
Organophosphorous 122-14-5 Fenitrothion
Organophosphorous 33341-5 Diazinon

Amide 2395058-5 Propyzamide

Amide 3525685-0 Tebutam

Amide 57837491 Metalaxyl

Amide 77732093 Oxadixyl
Chloroacetamide 1597260-8 Alachlor
Chloroacetamide 3425682-1 Acetochlor
Chloroacetamide 51218452 Metolachlor
Chloroacetamide 6712908-2 Metazachlor
Dinitroaniline 1582098 Trifluralin

Dinitroaniline 1904488-3 Oryzalin

Dinitroaniline 3362947-9 Butralin

Dinitroaniline 4048742-1 Pendimethalin

Triazine 83412-8 Ametryn

Triazine 886-50-0 Terbutryn

Triazine 591541-3 Terbuthylazine

Triazine 2172546-2 Cyanazine

Urea 55537-3 Neburon

Urea 3412359-6 Isoproturon

Urea 6490272-3 Chlorsulfuron

Urea 7951048-8 Metsulfuron

Carbamate 156366-2 Carbofuran

Carbamate 1611849-3 Carbetamide
Carbamate 2310398-2 Pirimicarb

Diazine 169860-8 Chloridazon

Diazine 2505789-0 Bentazone

Phthalate 84-66-2 Diethyl

Phthalate 84-74-2 Dibutyl

Phthalimide 133-06-2 Captan

Phthalimide 133-07-3 Folpet

Diphenyl ether 7407046-5 Aclonifen

Medicine 298464 Carbamazepine
Anilinopyrimidine 12155261-2 Cyprodinil

Triazinone 4139405-2 Metamitron

Triketone 9910577-8 Sulcotrione

Metabolite 189745-6-INRA-2 Metabolite of chlorothalonil
Metabolite 3739386 Metabolite of cypermethrin
Metabolite 3425682-1-INRA-1 Metabolite of acetochlor
Metabolite 3425682-1-INRA-2 Metabolite of acetochlor
Metabolite 3425682-1-INRA-3 Metabolite of acetochlor
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Metabolite 77279891 Metabolite of cyfluthrin
Cluster 6

Organochlorine 14350-0 Chlordecone
Organochlorine 2385855 Mirex

Organochlorine 4234791 Kelevan
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