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ABSTRACT

The problem of pitch tracking has been extensively studied in

the speech research community. The goal of this paper is to investi-

gate how these techniques should be adapted to singing voice analy-

sis, and to provide a comparative evaluation of the most representa-

tive state-of-the-art approaches. This study is carried out on a large

database of annotated singing sounds with aligned EGG recordings,

comprising a variety of singer categories and singing exercises. The

algorithmic performance is assessed according to the ability to detect

voicing boundaries and to accurately estimate pitch contour. First,

we evaluate the usefulness of adapting existing methods to singing

voice analysis. Then we compare the accuracy of several pitch-

extraction algorithms, depending on singer category and laryngeal

mechanism. Finally, we analyze their robustness to reverberation.

Index Terms— singing analysis/synthesis, pitch extraction

1. INTRODUCTION

Over the last decades, research fields associated with speech under-

standing and processing have seen an outstanding development. This

development has brought a diverse set of algorithms and tools for

analyzing, modeling and synthesizing the speech signal. Although

singing is achieved by the same vocal apparatus, transposing the

speech approaches to singing signals may not be straightforward [1].

In particular, pitch range in singing is wider than in speech, pitch

variations are more controlled, dynamic range is greater, and voiced

sounds are sustained longer. The impact of source-filter interaction

phenomena is also greater in singing than in speech, and thus they

can less easily be neglected [2]. In addition, the diversity in singer

categories and singing techniques make it difficult to consider the

”singing voice” as a whole and take a systematic analysis approach.

As a result, speech and singing research fields have rather evolved

side by side, obviously sharing several approaches, but singing re-

search has not encountered the same formalization and standardiza-

tion as in speech research.

One consequence of such a difficulty to approach the wide range

of singing voices as a whole is the lack of singing synthesis tech-

niques that can address such variability. It results in a limited set

of singing synthesizers, generally focusing on one singer category

or one singing technique. Therefore it remains quite far from ex-

pressive abilities of real humans, but also far from concrete needs

of musicians wishing to use these tools. Among existing systems,

Harmonic plus Noise Modeling (HNM) has been used extensively

[3]. In SMS [4] and Vocaloid[5], HNM is used to bring a degree of

control over a unit concatenation technique [6], though it limits the
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synthesis results in the range of the prerecorded samples. In CHANT

[7], FOF [8] synthesis has been coupled with a rule-based descrip-

tion of some typical operatic voices, showing remarkable results for

soprano voices. Meron has applied the non-uniform unit selection

technique to singing synthesis [9], showing convincing results but

only for lower registers. Similar strategies have been applied to for-

mant synthesis, articulatory synthesis [10] and HMM-based tech-

niques [11], with similar limitations in extending the range of vocal

expression.

In this research, we make the first step in building an analysis

framework, targeting the synthesis of the singing voice for a wide

range of singer categories and singing techniques. Indeed we have

been working on expressive HMM-based speech synthesis for sev-

eral years [12, 13, 14] and we now aim to adapt our analysis frame-

work to a wide range of singing voice databases. The purpose of

this benchmarking work is to systematically evaluate various anal-

ysis algorithms – which happen to come from speech processing –

among a large reference database of annotated singing sounds and

drive some differentiated conclusions, i.e. determine the best choices

to make regarding various properties of the singer and the singing

technique. Our first study focuses on pitch extraction, as it is among

the most prominent parameters in singing analysis/synthesis and it

will be used as the foundation for many further analysis techniques.

We also decided to discuss the pitch extraction errors among three

main properties: singer category, laryngeal mechanism and the effect

of reverberation.

The structure of the paper is the following: Section 2 briefly

describes the pitch trackers that are compared in this study, and in-

vestigates what adaptation can be considered to make them suitable

for singing voice analysis. Our experimental protocol is presented

in Section 3, along with the database, the ground truth extraction

and error metrics. Results are discussed in Section 4, investigating

the impact of various factors on the performance of pitch trackers.

Finally, we narrow down some conclusions to the study in Section 5.

2. METHODS FOR PITCH EXTRACTION

2.1. Existing Methods

In this paper, we compare the performance of six of the most repre-

sentative state-of-the-art techniques for pitch extraction. They were

reported to provide some of the best results to analyze speech signals

[15], and are now briefly described.

• PRAAT: Commonly used in speech research, the PRAAT

package [16] provides two pitch tracking methods. In this pa-

per, we used PRAAT’s default technique which is based on an

accurate autocorrelation function. This approach was shown

in [16] to outperform the original autocorrelation-based and

the cepstrum-based techniques on speech recordings.



• RAPT: Released in the ESPS package [17], RAPT [18] is a

robust algorithm that uses a multi-rate approach. Here, we

use the implementation found in the SPTK 3.5 package [19].

• SRH: As explained in [15], the Summation of Residual Har-

monics (SRH) method is a pitch tracker exploiting a spectral

criterion on the harmonicity of the residual excitation signal.

In [15], it was shown to have a performance comparable to

the state-of-the-art on speech recordings in clean conditions,

but its use is of particular interest in adverse noisy environ-

ments. In this paper, we use the implementation found in the

GLOAT package [20].

• SSH: This technique is a variant of SRH which works on the

speech signal directly, instead of the residual excitation.

• STRAIGHT: STRAIGHT [21] is a high-quality speech anal-

ysis, modification and synthesis system based on a source-

filter model. There are two pitch extractors available in the

package and we use the more recently integrated one as pub-

lished in [22]. This method is based on both time interval

and frequency cues, and is designed to minimize perceptual

disturbance due to errors in source information extraction.

• YIN: YIN is one of the most popular pitch estimators. It is

based on the autocorrelation method, making several refine-

ments to reduce possible errors [23]. In this paper, we used

the implementation freely available at [24].

The following section aims at investigating how these techniques

can be adapted for the analysis of singing voice.

2.2. Adapting Pitch Trackers to Singing Voice

Since the algorithms presented in Section 2.1 have been designed

and optimized for speech, the set of default input parameters might

not be suitable for processing the singing voice. To measure the ef-

fect of various parameters, we applied a range of input parameters

where available, depending on the algorithm. The main parameter

we varied was the window length, as it introduces a trade-off be-

tween analyzing low-pitched voices (which requires longer windows

encompassing at least two glottal cycles to have a periodicity) and

precisely following the pitch contour (which requires shorter win-

dows to capture fine pitch variations). For SRH, SSH and YIN, win-

dow length was varied and optimized; with values of 125 ms, 100

ms and 10 ms respectively, in comparison to the respective default

values of 100 ms, 100 ms and 16 ms. (SSH happened to use the opti-

mum value by default). As a second parameter, we addressed setting

the threshold used for voiced/unvoiced (V/UV) detection. This was

applied for PRAAT, SRH and SSH with values of 0.25, 0.065 and

0.095 respectively, in comparison to the default values of 0.45, 0.07

and 0.07. For the purpose of consistency, the F0 search range was set

between 60-1500 Hz, to account for the wide vocal range in singing.

A 10-ms frame shift was chosen for all methods, with the exception

of STRAIGHT. Since the STRAIGHT algorithm is partially-based

on instantaneous frequency, and the default shift interval is 1ms, us-

ing 10 ms caused significant inaccuracies and large jumps in the con-

tour. To compare results to the others, we used the default shift of 1

ms, and downsampled the resultant contour by 10. We also verified

the synchronicity of these contours by visually comparing a small

but representative set against the corresponding RAPT contours.

Covering all combinations of parameters would have required

a prohibitively large amount of computation time, consequently we

chose to use a two-stage search for the best values. This is an ac-

ceptable substitute to complete optimization, since the two consid-

ered parameters have different, almost independent effects on the

performance. In this process, we first find the best threshold value at

the default window length by minimizing the voicing decision error

(see Section 3.3). Then, we find the best window length value by

minimizing F0 frame error (see Section 3.3) at this threshold value.

Additionally, as a complement to the methods described in Sec-

tion 2.1 and their optimized versions, we investigated the usage of

a post-processing approach [25] originally developed for improving

YIN results on music data. This post-process makes use of statistical

information as well as some musical assumptions to correct sudden

changes the F0 contour. Even though not all algorithms are heavily

prone to such errors, we applied it to all of them for a fair comparison

(see Section 4).

In the cases where reliable voiced/unvoiced decisions were not

available, we substituted the decisions from RAPT to calculate error

metrics which required them. Specifically, these cases were YIN and

STRAIGHT, the former due to YIN not providing these decisions,

and the latter due to prohibitively high error rate, making compar-

isons incompatible, as will be explained further in Section 4

3. EXPERIMENTAL PROTOCOL

3.1. Database

For this study, the scope was constrained to vowels in order to limit

the effects of co-articulation on pitch extraction. Samples for 13

trained singers were extracted from the LYRICS database recorded

by [26, 27]. The selection comprised 7 bass-baritones (B1 to B7), 3

countertenors (CT1 to CT3), and 3 sopranos (S1 to S3). The record-

ing sessions took place in a soundproof booth. Acoustic and elec-

troglottographic signals were recorded simultaneously on the two

channels of a DAT recorder. The acoustic signal was recorded using

a condenser microphone (Brüel & Kjær 4165) placed 50 cm from

the singer’s mouth, a preamplifier (Brüel & Kjær 2669), and a con-

ditioning amplifier (Brüel & Kjær NEXUS 2690). The electroglotto-

graphic signal was recorded using a two-channel electroglottograph

(EG2, [28]). The selected singing tasks comprised sustained vow-

els, crescendos-decrescendos and arpeggios, and ascending and de-

scending glissandos. Whenever possible, the singers were asked to

sing in both laryngeal mechanisms M1 and M2 [29, 30]. Laryngeal

mechanisms M1 and M2 are two biomechanical configurations of

the laryngeal vibrator commonly used in speech and singing by both

male and females. Basses, baritones and countertenor singers mainly

use M1 for singing, but they also have the possibility to sing in M2

in the medium to high part of their tessitura. Sopranos mainly sing

in M2, but they can choose to sing in M1 in the medium to low part

of their tessitura.

3.2. Ground Truth

In order to objectively assess the performance of pitch trackers, a

ground truth (i.e a reference pitch contour) is required. To obtain

this, we used the RAPT algorithm on the synchronized electroglot-

tography (EGG) recordings. The choice of RAPT is justified by

the fact that it was shown in [15] to outperform other approaches

on clean speech signals. In addition, we produced pitch contours

extracted from both the EGG and the differentiated-EGG (dEGG)

signals, and applied a manual verification process by visually com-

paring each contour to the spectrogram of the EGG signal. We then

either selected the better of the two options, or excluded the consid-

ered sample from the experiment if both were found to be erroneous

in some parts. The resultant experiment database consists of 524

recordings for which we have a reliable and accurate ground truth.



3.3. Error Metrics

In order to assess the performance of the pitch extraction algo-

rithms,the following four standard error metrics were used [31]:

• Gross Pitch Error (GPE) is the proportion of frames, con-

sidered voiced by both pitch tracker and ground truth, for

which the relative pitch error is higher than a certain thresh-

old (usually set to 20% in speech studies [15]). In this work,

we fixed this threshold to one semitone, in order to make the

results meaningful from the musical perception point of view.

All error calculations are done in the unit of cents (one semi-

tone being 100 cents).

• Fine Pitch Error (FPE) is the standard deviation of the dis-

tribution of relative error values (in cents) from the frames

that do not have gross pitch errors. Both estimated and refer-

ence V/UV decisions must then be voiced.

• Voicing Decision Error (VDE) is the proportion of frames

for which an incorrect voiced/unvoiced decision is made.

• F0 Frame Error (FFE) is the proportion of frames for which

an error (either according to the GPE or the VDE criterion) is

made. FFE can be seen as a single measure for assessing the

overall performance of a pitch tracker.

4. RESULTS

Our experiments are divided into four parts. In Section 4.1, the need

to adapt pitch trackers for the analysis of singing voice is quanti-

fied. Sections 4.2 and 4.3 investigate the effect of singer category

(baritone, countertenor, soprano) and laryngeal mechanism on pitch

estimation performance. Finally the robustness to reverberation is

studied in Section 4.4.

4.1. Utility of Adapting Pitch Trackers to Singing Voice

The overall performance of the compared techniques (with their

variants) across the whole database is displayed in Table 1. To dis-

tinguish between the two steps mentioned in Section 2.2(parameter

optimization and post-processing), an asterisk denotes the post-

processed version of the algorithm output, letter v denotes that

V/UV decisions from RAPT was used instead of the algorithm’s

own, and letter u denotes ”unoptimized”, meaning the results were

obtained with default input parameters. Optimization was done on

window length and V/UV threshold, for SRH, SSH, YIN, and SRH,

SSH, PRAAT, respectively. The effect of optimization is marginal on

PRAAT results, however, it is significant on SRH and SSH. This is

due in great extent to a proper selection of the window length which

results in a noticeable decrease of GPE, as well as slight reduction of

FPE. For YIN, we observe a small and acceptable trade-off between

GPE and FPE when optimized for GPE.

As mentioned in Section 2.2, V/UV decisions from RAPT are

used for all error calculations of STRAIGHT and YIN. Using the

V/UV decisions from STRAIGHT, we observed VDE rates higher

than 30% among all data groupings we investigated. While this had

the side effect of greatly improving GPE due to selection bias, it

was not a consistent comparison to the other methods, thus we com-

pletely discarded V/UV decisions from STRAIGHT.

Except for STRAIGHT and PRAAT, it can be observed that ap-

plying the post-process yields an appreciable improvement for all

other techniques. While maintaining a constant efficiency in terms

of voicing decisions, and similar FPE performance, the post-process

allows an important reduction of GPE. This is particularly well em-

phasized for RAPT and YIN algorithms. In the remainder of our

experiments, we will always refer to the optimized, post-filtered re-

sults from an algorithm as it leads to the best results.

Comparing the various techniques in Table 1, we observe that

PRAAT, followed by RAPT, gives the best determination of voicing

boundaries. Regarding the accuracy in the pitch contour estimation,

RAPT* and YIN* provide the lowest gross error rates, while YIN is

clearly seen to lead to the lowest FPE.

Table 1. Error Rates Across the Whole Dataset

GPE (%) FPE (C) VDE (%) FFE (%)

RAPT 1.01 21.96 1.05 1.99

RAPT* 0.65 21.98 1.05 1.66

STRAIGHTv 1.26 17.22 1.05 2.22

STRAIGHTv* 1.25 17.22 1.05 2.21

PRAATu 1.47 21.91 0.81 2.18

PRAAT 1.41 21.93 0.81 2.15

PRAAT* 1.41 21.94 0.81 2.13

SRHu 1.91 18.99 1.28 3.08

SRH 1.72 17.33 1.33 2.95

SRH* 1.61 17.36 1.33 2.84

SSHu 3.51 19.66 1.27 4.55

SSH 2.40 19.46 1.39 3.61

SSH* 1.91 19.43 1.39 3.16

YINvu 2.69 8.38 1.05 3.56

YINv 2.44 12.79 1.05 3.32

YINv* 0.91 12.95 1.05 1.9

4.2. Effect of Singer Categories

Three categories of singers, characterized by different vocal ranges

(indicated hereafter between parentheses as musical notes) are rep-

resented in our database: baritones (F2 to F4), countertenors (F3 to

F5), and sopranos (C4 to C6). The effect of the singer category on

the GPE, which should reflect the pitch range differences, is given

in Figure 1. Except for SRH which suffers for a dramatic degra-

dation for sopranos, the performance of all other techniques follow

the same trends: GPE decreases as the vocal range goes towards

higher pitches. Going from baritones to sopranos, GPE is observed

to be divided by a factor between 2 and 4, depending on the consid-

ered technique. Our results on FPE revealed similar conclusions: for

all methods, the standard deviation of the relative pitch error distri-

bution decreases from baritones to sopranos. This reduction varies

between 2 and 7 cents across algorithms, with the best performance

achieved by YIN* (15 cents for baritones, and 8.4 cents for sopra-

nos).

4.3. Effect of Laryngeal Mechanisms

Laryngeal mechanisms used by singers have been described in Sec-

tion 3.1. We now inspect what the influence of these mechanisms is

on the efficiency of the compared pitch estimation techniques. The

impact on FPE is illustrated in Figure 2. Again, it is observed that

YIN* provides the best FPE results. Consistently across all algo-

rithms, M2 is noticed to lead to lower FPE values. This actually

corroborates our findings on the singer category: FPE performance

improves as the pitch increases. In the same way, the conclusions
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we have drawn in Section 4.2 for GPE are also observed here1: M2

is characterized by lower GPE values for all methods except SRH*

(whose results for M2 are the worst by a significant margin).
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4.4. Robustness to Reverberation

In many concrete cases, singers are placed within large rooms or

halls, where the microphone might capture replicas of the voice

sound stemming from reflections on the surrounding walls or ob-

jects. To simulate such reverberant conditions, we considered the

L-tap Room Impulse Response (RIR) of the acoustic channel be-

tween the source to the microphone. RIRs are characterized by the

value T60, defined as the time for the amplitude of the RIR to decay

to -60dB of its initial value. A room measuring 3x4x5 m and T60

ranging {100, 200, . . . , 500} ms was simulated using the source-

image method [32] and the simulated impulse responses convolved

with the clean audio signals.

Results of GPE as a function of the level of reverberation are pre-

sented in Figure 3. Even in the less severe condition (i.e. when T60 is

100 ms), the performance of pitch estimation techniques is observed

to be affected (these results are to be compared with those reported

in Table 1 for non-reverberant recordings). More particularly, YIN*

suffers from the most important degradation: with a GPE of 0.91%,

it now reaches a value around 7%. In contrast, STRAIGHTv* turns

out to be the most robust as it keeps almost the same GPE as in the

1Figure omitted due to space constraints.

clean conditions. Regarding their evolution with the reverberation

level, all techniques exhibit a similar behavior, with an increase of

GPE between 3 and 6% as T60 varies from 100 to 500 ms.
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The impact of reverberation on FPE is also examined1. Although

all techniques but STRAIGHTv* were found to suffer from a sub-

stantial increase of GPE even when T60 is 100 ms, the effect on FPE

is much less pronounced. At that level, we observed that pitch esti-

mators have their FPE increasing by 3 to 5 cents, which is relatively

minor; with the exception of YIN*: shown to exhibit the strongest

degradation in terms of gross pitch errors, here, it reaches the best

accuracy. Regarding their evolution with the reverberation degree,

all methods behave very similarly with an increase of FPE between

9 and 13 cents as T60 goes from the slightest to the strongest degra-

dation. As a conclusion; even though some techniques (especially

YIN*) produce a much higher number of gross errors in reverberant

environments, it seems that their ability to precisely follow the pitch

contour (when no gross error is made) is rather well preserved.

5. CONCLUSION

As a first step towards developing efficient techniques of singing

voice analysis and synthesis, this paper provided a comparative

evaluation of pitch tracking techniques. This problem has been ad-

dressed extensively for the speech signal, and the goal of this paper

was to answer two open questions: i) what adaptation is required

when analyzing singing voice?, and ii) what is the best method to

extract pitch information from singing recordings? Six of the most

representative state-of-the-art methods were compared on a large

dataset containing a rich variety of singing exercises. As an answer

to question i, both the use of parameter settings specific to singing

voice and post-processing of pitch estimates led to an appreciable

reduction of gross pitch errors. The answer to question ii depended

on the considered error metric. PRAAT and RAPT provided the

best determination of voicing boundaries. RAPT reached the lowest

number of gross pitch errors. YIN achieved the best accuracy. Pitch-

estimation performances were better for sopranos than for baritones

and counter tenors, and for singers in laryngeal mechanism M2. Fi-

nally, the robustness of the techniques in reverberant conditions was

studied, showing that YIN suffered from the strongest degradation,

while STRAIGHT was the most robust.
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