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STABLE MAPS AND QUASIMAPS TO TORIC FANO VARIETIES

TOM COATES AND CRISTINA MANOLACHE

Abstract. We analyze the relationship between two compactifications of the moduli space
of maps from curves to a toric fano varieties: the Kontsevich moduli space of stable maps
and the Ciocan-Fontanine–Kim moduli space of stable quasi-maps. We exhibit the moduli
space of stable maps as a union of two (reducible) components: the moduli space of relevant
maps and the moduli space of irrelevant maps. We equip these spaces with virtual classes
such that their sum equals the virtual class of the moduli space of stable maps. The moduli
space of relevant maps is birational to the space of qusi-maps and the enumerative invariants
defined as virtual intersection numbers on the space of relevant maps are equal to the quasi-
maps invariants. On the other hand, the virtual intersection numbers on the space of stable
irrelevant maps are zero. This shows that Gromov–Witten invariants agree with quasi-map
invariants for toric Fano varieties.
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1. Introduction

In recent years many birational models of moduli spaces of stable maps have been con-
structed for particular targets. In this paper we consider the Kontsevich moduli spaces of
stable maps and the moduli spaces of stable quasi-maps to toric Fano varieties of Ciocan–
Fontanine and Kim. These are spaces which come equipped with virtual classes in the sense
of [1], [11]. The purpose of this paper is to understand the relation between the two virtual
fundamental classes: we will show that enumerative invariants defined as virtual intersection
numbers in the two moduli spaces coincide. We do this by analyzing the geometry of the two
types of moduli spaces. For this, we write the moduli space of stable maps as a union of two
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2 TOM COATES AND CRISTINA MANOLACHE

moduli spaces: the space of relevant maps and the space of irrelevant maps. The relation
between invariants is then proved in the following steps:

Step 1: we endow the space of relevant maps and the space of irrelevant maps with
virtual classes such that the virtual class of the moduli space of stable maps is the
sum of the virtual class of the space of relevant maps and the virtual class of the space
of irrelevant maps;

Step 2: we show that the invariants of the spaces of relevant maps and quasi-maps
agree;

Step 3: we show that the invariants of the spaces of irrelevant maps are zero.

This is achieved in Sections 2-3. The main ingredient is the construction of Ciocan–Fontanine
and Kim which exhibits the moduli space of stable maps and stable quasi-maps as the zero
locus of a section of a bundle on a smooth space. This allows us to define virtual classes
of unions of components of the moduli space of stable maps as in Step 1 above and to use
properties of Segre classes of cones in [8] to prove Steps 2 and 3.
In the last section we discuss a possible alternative approach to Steps 2 and 3 which does not
rely on the Ciocan-Fontanine–Kim construction. For this we construct a birational morphism
from the moduli space of relevant maps to the space of quasi-maps and a morphism from the
space of irrelevant maps to a space of smaller virtual dimension. To these morphisms we can
apply the virtual push-forward theorem in [15]. The missing part is Step 1, for which a more
general version of the virtual push forward theorem is needed.

Relation to other works. As explained above, the moduli space of stable maps consists of
a union of components which is virtually birational to the moduli space of stable quasimaps
and a union of components which do not contribute to the invariants. The main difficulty is
to define and relate virtual classes of components (or of some other space which dominates a
union of components) of the moduli space of stable maps. The phenomenon of relating virtual
classes has already appeared in several contexts such as the relationship between Gromov-
Witten and Gopakumar-Vafa invariants, the Li-Zinger formula for elliptic Gromov-Witten
invariants of a hypersurface in a projective space, and the relation between Gromov-Witten
invariants and quasi-map invariants. More precisely, Pandharipande [18] computes contri-
butions to Gromov–Witten invariants of Calabi–Yau 3-folds coming from components of the
moduli space of stable maps which consist of multiple covers. He also shows the vanishing
of contributions of covers of elliptic curves conjectured by Gopakumar and Vafa. Li–Zinger,
Vakil–Zinger, Zinger [12, 13, 20, 21] and Chang–Li [2] define virtual classes of (a desingulariza-
tion) of the main component of the moduli space of stable genus one maps to a hypersurface
in a projective space and prove that Gromov–Witten invariants are equal to invariants of
the main components plus genus zero Gromov–Witten invariants. Both analytic methods of
Zinger and the algebraic ones of the more recent work of Chang and Li are rather technical.
In [16] a relation between virtual classes of stable maps and quasi-maps to Grassmannians is
given. For Grassmannians one has a rational application from an open dense set inside the
moduli space of stable maps to the moduli space of stable quotients. Once we resolve the
indeterminacy locus the problem of relating virtual classes can be easily solved by applying
the general virtual push-forward theorem in [15].
In the case of Gromov–Witten invariants and quasi-map invariants one can employ a com-
pletely different method based on virtual localization. This has been done in [5, 6, 17, 19].
Although very powerful, virtual localization is rather mysterious and does not explain the
geometric picture. In this paper we continue the approach in [16] with the difference that
now we only have a morphism from a union of components. Our proof heavily relies on the



STABLE MAPS AND QUASIMAPS TO TORIC FANO VARIETIES 3

very specific properties of moduli spaces of maps and quasi-maps to toric varieties (or more
generally to GIT quotients).
It would be highly desirable to have a general machinery of defining virtual classes (or ob-
struction theories) of components of the moduli space of stable maps and a more general push
forward theorem in order to address similar questions. We will address this in future work.

Notation and conventions. We take the ground field to be C.
Unless otherwise specified we will try to respect the following convention: we will use normal
fonts for Deligne-Mumford stacks (e.g. Mg,n(X,β), Qg,n(X,β), etc.), Artin stacks for which
we know that they are not Deligne-Mumford stacks will be generally denoted by gothic letters
(e.g. Mg,n, Picg,n, etc).
By a commutative diagram of stacks we mean a 2-commutative diagram of stacks and by a
cartesian diagram of stacks we mean a 2-cartesian diagram of stacks.

Acknowledgements. We thank Ionut Ciocan-Fontanine and Alessio Corti for a number
of useful discussions. T.C. was supported in part by a Royal Society University Research
Fellowship, ERC Starting Investigator Grant number 240123, and the Leverhulme Trust.
C.M. was supported by a Marie Curie Intra-European Fellowship for Career Development.

2. Stable quasi-maps to toric varieties

2.1. Stable maps and stable quasimaps. We begin by recalling the definition of stable
quasimaps to a toric variety [3]. We use the following notation throughout the paper.

Notation 2.1. Let X denote a smooth projective toric variety defined by a fan Σ. Fix a
Z-basis L1, . . . ,Lr for Pic(X).

Definition 2.2. Fix an integer g and integers dρ for all ρ ∈ Σ(1). A stable quasimap to X
consists of the data

(C, p1, ..., pn, {Lρ}ρ∈Σ(1), {uρ}ρ∈Σ(1), {φm}m∈M )

where

(1) C is a nodal curve of arithmetic genus g
(2) p1, . . . , pn are distinct marked smooth points on C
(3) Lρ is a line bundle on C of degree dρ
(4) uρ is a global section of Lρ

(5) φm is an isomorphism from ⊗ρ∈Σ(1)L
〈ρ,m〉
ρ to OC

such that

• (nondegeneracy) there is a finite, possibly empty, set of non-singular points B ⊂ C,
disjoint from {p1, . . . , pn}, such that for every y ∈ C\B, there exists a maximal cone
σ ∈ Σ with uρ(y) 6= 0 for all rays ρ of Σ such that ρ 6∈ σ

• (stability) ωC(
∑

pi)⊗ Lǫ is ample for all ǫ > 0, where L = ⊗Lρ.

The degree of this stable quasimap is the element β ∈ H2(X;Z) defined by β ·Dρ = dρ for all
ρ ∈ Σ(1). Here Dρ ⊂ X is the toric divisor corresponding to the ray ρ of Σ.

Ciocan-Fontanine–Kim (ibid.) have defined what it means for two stable quasimaps to be
isomorphic, and what is meant by a family of quasimaps.

Notation 2.3. We denote the moduli space of stable quasimaps [3] to X by Qg,n(X,β). We

denote the moduli space of stable maps [9, 10] to X by Mg,n(X,β).
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2.2. The main constructions.

Notation 2.4. Let Mg,n denote the stack of prestable curves of genus g with nmarked points,
and let Picg,n → Mg,n denote the relative Picard stack. Let Picrg,n denote the r-fold fiber
product of Picg,n over Mg,n.

Notation 2.5. Consider the universal curve π : C → M g,n(X,β). Let ρ ∈ Σ(1). We denote
by Lρ the line bundle over C given by the pullback of O(Dρ) along the canonical map C → X.

Construction 2.6. Let π : C → Mg,n(X,β) be the universal curve and ν : M g,n(X,β) →
Picrg,n be the forgetful morphism. Then R•π∗Lρ is a perfect relative obstruction theory for ν.

The same holds if we replace Mg,n(X,β) by Qg,n(X,β).

Definition 2.7. Let (aiρ) denote the matrix entries of the canonical map Z
Σ(1) → Pic(X)

with respect to the canonical basis for ZΣ(1) and our chosen basis L1, . . . ,Lr for Pic(X). Let
π : C → Picrg,n be the universal curve and let Q1, . . . ,Qr denote the canonical line bundles on
C. We define line bundles Lρ → C, ρ ∈ Σ(1), by:

Lρ := ⊗r
i=1Q

aiρ
i

Construction 2.8. We present a construction of Ciocan-Fontanine–Kim [3]. Let π : C →
Picrg,n be the universal curve and consider the open substack of Picrg,n obtained by requiring
that

A = ωC(
∑

pi)⊗ Lǫ

is π-relatively ample for some ǫ. By abuse of notation we will continue to denote by π :
C → Picrg,n the universal curve and by Lρ the universal line bundles. Note that π is now a
projective morphism. Let us fix OC → OC(1) a global section. Fix m depending on g, n, β
sufficiently large as in Theorem 3.2.5 in [4]. Let Picrg,n,β be the substack of Picrg,n such that

• the degree of Lρ is dρ
• H1(C,Lρ(m)) = 0

Let X be the total space of the bundle ⊕ρπ∗Lρ(m) over Picrg,n,β. Note that X is an Artin
stack which parametrizes

(C, p1, ..., pn, Lρ, vρ ∈ H0(Lρ(m)))

Let V be the open substack of X such that

(1) (generic nondegeneracy) uρ sends all but possibly finitely many points of C to Z(Σ)
(2) (stable map stability) ωC(

∑

pi)⊗ Lǫ is ample for all ǫ > 2

Let Nρ be the vector bundle on C → Picrg,nβ determined by the exact sequence

(1) 0 → Lρ → Lρ(m) → Nρ → 0

We denote by r : V → Picrg,n,β the projection. We consider the vector bundle

N = r∗π∗ ⊕Nρ

on V which comes equipped with a tautological section v induced by the morphisms Lρ →
Lρ(m). Let M be the zero locus of v. Then we have that M0,n(X,β) is the open substack of

M obtained by imposing the strong nondegeneracy condition. If f : M0,n(X,β) → V is the
embedding we have obtained that the complex

[f∗TV → f∗N ]
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concentrated in [0, 1] is a dual obstruction theory for M0,n(X,β) relative to Picrg,nβ. It can
be seen that this obstruction theory is the same as the previous one.

In a completely analogous fashion we can construct a smooth stack V̂ and a vector bundle
N̂ equipped with a section v̂ such that Q0,n(X,β) is the open substack of Z(v̂) by imposing
the strong nondegeneracy condition. The only difference is that in the above construction we
replace the stable map stability with the stable quotient stability condition.

Construction 2.9. Let A be a relatively very ample line bundle for C → Picrg,n. Let Dα

be a divisor consisting of rational tails and let p : C → Ĉ be the contraction of rational tails.
Then Â = p∗A(mαDα) is relatively very ample for Ĉ → Picrg,n. Then we have that the line

bundles A and Â determine stacks V and V̂ which are birational. More precisely we have a
morphism q : V → V̂ defined on fibers in the following way. Let C be a curve with rational
tail free part Ĉ and rational tails C0

1 , ...C
0
s attached to Ĉ in xi. Then

(2) q(C, p1, ..., pn, Gρ, uρ) = (Ĉ, p1, ..., pn, Ĝρ, ûρ)

where Ĝρ = Gρ|Ĉ(
∑

i bixi) and bi denotes the degree of Gρ on c0i .

The image of the moduli space of stable maps in V̂ . We have the composition

(3) M0,n(X,β)
f

//

$$■
■

■

■

■

■

■

■

■

■

V

q
��

V̂

Let us determine the image of M0,n(X,β) in V̂ . We will see that this image strictly contains

Q0,n(X,β) and in particular q does not define a map from M0,n(X,β) to Q0,n(X,β) but only

from a substack of M0,n(X,β).
Let (C,Lρ, uρ) be a stable map to X. Suppose Lρ has negative degree (−a) on some rational
tail and the image in V has positive degree b on the rational tail. Then its image in V is
a stable quotient (Ĉ, L̂ρ, ûρ) with ûρ = xbuρ|Ĉ . Note that by construction Â has a zero of

order a+ b at x. This shows that q(C,Lρ, uρ) is not in a zero locus of a section of N̂ . More

precisely, if ZA denotes the zero locus of the fixed section of A, the image of M0,n(X,β) in V
is the subset of V

{(C,L′
ρ, uρ)|L

′
ρ has degree d+m,uρ ∈ H0(C,L′

ρ), uρ(ZA) = 0}.

If ZÂ denotes the zero locus of the fixed section of Â, then ZÂ comes with points xj of
multiplicity mα which correspond the contraction of the divisor Dα. Then the image of
q(M0,n(X,β)) in V̂ is the subset of V̂

⋃

i≤mα

{(Ĉ, L̂′
ρ, ûρ)|L̂

′
ρ has degree d+m, ûρ ∈ H0(Ĉ, L̂′

ρ),

ûρ has a zero of order i at xj and simple zeroes for the other x ∈ ZÂ}

Construction 2.10. This is very similar to Construction 2.8 and it will be the key ingredient
in the proof of the main theorem. We construct an additional space W with embeddings

M0,n(X,β)
i
→֒W

j
→֒ V such that j ◦ i = f and i and j have perfect obstruction theories.
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For this consider the morphism which contracts rational tails defined in [16]

(4) C
p

##●
●

●

●

●

●

●

●

●

●

π

��
✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

✸

Ĉ

π̂
��

Picrg,n,β

As in Construction 2.8, by considering an open subset of Picrg,n,β we may assume that π

and subsequently π̂ are projective. Let OĈ(1̂) be a π̂-ample line bundle and OC(1) be a π-

ample line bundle. We have that p∗OĈ(1̂)⊗OC(1) is π-ample. As before, we fix m1,m2 ∈ Z

sufficiently large and we consider Picrg,n,β the open substack of Picrg,n such that

(1) the degree of Lρ is dρ
(2) H1(Ĉ, Lρ|Ĉ(m11̂)) = 0

(3) H1(C,Lρ(m21)) = 0

where Lρ|Ĉ(m11̂) denotes the line bundle Lρ|Ĉ ⊗ OĈ(1̂)
⊗m1 and Lρ(m21) denotes the line

bundle Lρ ⊗ OC(1)
⊗m2 . Let us fix ŝ : OC → p∗OĈ(1̂m1) a global section of p∗O(1̂m1),

s : OC → OC(1m2) a global section of OC(1m2) and ŝ⊗ s a global section of p∗OĈ(1̂)⊗OC(1).

As before, let Y be the total space of the sheaf (not bundle!) ⊕ρπ∗Lρ(m1̂) on Picrg,n. Note
that Y is an Artin stack which parametrizes

(C, p1, ..., pn, Lρ, vρ ∈ H0(Lρ(m1̂)))

Let W be the open substack of Y such that stable map stability and generic nondegeneracy
hold. Note that W is a Deligne-Mumford stack.
Let N i

ρ be the vector bundle on C → Picrg,n,β determined by the exact sequence

(5) 0 → Lρ → Lρ(m11̂) → N i
ρ → 0

We denote by rW : W → Picrg,n,β the projection. We consider the vector bundle

N i = r∗π∗ ⊕N i
ρ

on W which comes equipped with a tautological section vi induced by the morphisms Lρ →

Lρ(m11̂). Let M be the zero locus of vi. Then we have that M0,n(X,β) is the open substack

of M obtained by imposing the nondegeneracy condition. Denote by i :M0,n(X,β) →W the
embedding.

Let us now embed W in V . Let N j
ρ be the vector bundle on C → Picrg,n determined by the

exact sequence

(6) 0 → Lρ(m1̂) → Lρ(m11̂⊗m21) → N j
ρ → 0

If rV : V → Picrg,n,β is the projection, let us consider the vector bundle

N j = r∗V π∗ ⊕N j
ρ

on V which comes equipped with a tautological section vj . Then W is the zero locus of a
section of vj and we denote the embedding of W in V by j.
To conclude, by the above constructions we have a sequence of embeddings

(7) M0,n(X,β)
i
→֒W

j
→֒ V
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such that j◦j = f . Moreover, if in notations of Construction 2.9 we take A = p∗OĈ(1̂)⊗OC(1)
and Nρ is the vector bundle determined by the exact sequence

(8) 0 → Lρ → Lρ(m11̂⊗m21) → Nρ → 0

we have that N = ⊕r∗V Nρ contains the normal cone Cf .

Construction 2.11. Let us factorize the map Q0,n(X,β) →֒ V̂ through a suitable Ŵ . In

notation as above let Ŵ be the substack of Y defined by imposing generic nondegeneracy and
quasi-map stability. Note that by our condition on OĈ(1̂) we have that Ŵ is smooth.

Definition 2.12. By Construction 2.10 we can define the virtual class of W by

[W ]virt = j![V ].

Lemma 2.13. We have

[M0,n(X,β)]
virt = (i![W ]virt) ∩M0,n(X,β)

[Q0,n(X,β)]
virt = (i![Ŵ ]) ∩Q0,n(X,β)

Proof. Let us prove the first equality. It is enough to show that [M ]virt = (i![W ]virt). Putting
the definitions together we get a commutative diagram of vector bundles on C

(9) 0 // Lρ
//

��

Lρ(m11̂) //

��

N i
ρ

//

��

0

0 // Lρ
// Lρ(m11̂⊗m21) //

��

Nρ
//

��

0

N j
ρ

// N j
ρ

The snake lemma implies that the following sequence is exact

(10) 0 → N i
ρ → Nρ → N j

ρ → 0.

Let C be a fiber of π : C → Picrg,n in some point and N i
ρ = N i

ρ|C . Note that since N i
ρ is

supported on some points of C we have that H1(C,N i
ρ) = 0. The same argument holds for

the other two vector bundles. This shows that pushing forward the above sequence along π
we get an exact sequence of vector bundles on V

(11) 0 → N i → N → N j → 0.

This shows that [M0,n(X,β)]
virt = i!(j![V ]) and by the definition of [W ]virt we get the con-

clusion.
The proof of the second equality copies verbatim.

�

2.3. A dimension count.

Lemma 2.14. Let Dα, with α = (a1, ..., ak), with ai > 0 be the divisor in M0,n(X,β) such
that the degrees of L1, ..., Lk on the generic rational tail are equal to −a1, ...,−ak. Suppose

that the degrees of L1 ⊗A, ..., Lk ⊗A on the same rational tail are b1, ..., bk. Let a =
∑k

i=1 ai
and b =

∑k
i=1 bi. Then

q∗D
j
α · [V ] = 0

for j ≤ a+ b.
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Proof. We have that β = β0 + β1 where β0 is the class of the fixed rational tail and β1 the
class of the rest of the curve. We have that

KX · β0 =
l
∑

i=1

deg(Li|C
0)

=

k
∑

i=1

−ai +
l
∑

i=k+1

deg(Li|C
0).

The Fano condition implies that KX ·β0 > 0 and by the above
∑k

i=1 ai <
∑l

i=k+1 deg(Li|C
0).

On the other hand
∑l

i=1 deg(Li|C
0)⊗A =

∑k
i=1 bi +

∑l
i=k+1 deg(Li|C

0). The above implies
that

(12)
l
∑

i=1

deg(Li|C
0)⊗A > b+ a.

We have that p(Dj) ⊂ q(D) and q(D) ≃ D̂, where D̂ is the space of sections of line bundles
L′
i of degrees equal to KX · β1 + deg(A|Ĉ). By (12)

dimD̂ < dim(V )− (b+ a).

From this we obtain that dim(Dj) = dim(V ) − j > dimD̂ for j ≤ a + b and therefore
q∗D

j · [V ] = 0 for all j ≤ a+ b. �

Proposition 2.15. q∗c(N)[V ] = c(N̂ )[V̂ ]

Corollary 2.16.
∏

i ψ
ki
i [M0,n(X,β)]

virt =
∏

i ψ
ki
i [Q0,n(X,β)]

virt.

3. The geometry of the components of the moduli space of quasi-maps

3.1. Relevant and irrelevant maps. To a component of the moduli space of maps we can
associate a decorated graph τα, such that the general curve C is of topological type τ and
to each edge e of the graph we associate αe = (ae1, ..., a

e
k) ∈ Z if Lρ has degree aρ on the

corresponding irreducible subcurve of C. We will denote such a component by M τα . Then
we can define the following partial ordering of the components of M 0,n(X,β) (or Q0,n(X,β)).

Definition 3.1. We say that τα1
≤ τα2

if τα1
is obtained from τα2

by replacing a union of

edges e1, ..., et in τα2
with one edge e and αe =

∑t
i=1 α

ei . In this case we call M τα1 smaller
than M τα1 .

Proposition 3.2. There exists a morphism c : M
rel
0,n(X,β) → Q0,n(X,β) and similarly d :

W rel → Ŵ

Proof. This essentially follows from the fact that we have a morphism q : V → V̂ and

q(M
rel
0,n(X,β)) is included in Q0,n(X,β). We use notations as in Construction 2.9. Let us

consider family of prestable curves C → B with smooth generic fiber and special fiber C0 iso-
morphic to Ĉ ∪D where D is some tree of rational curves and let f : C → X be a morphism
over B. Then it suffices to show that q(C0, L

′
ρ, u

′
ρ) is such that u′ρ has a zero of order at least

a + b at x. A section of Lρ determines a Weil divisor W on C which intersects the generic
curve in d points. Then, Lρ vanishes on D with multiplicity at least a. This shows that u′ρ
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has a zero of order at least a+ b at x.
Moreover, we have a commutative diagram

(13) M
rel
0,n(X,β) //

c

��

M rel

��

i
//

��

W rel j
//

d
��

V

q

��

Q0,n(X,β) // Q // Ŵ // V̂

and by definitions it can be easily seen that the square in the middle is cartesian. �

3.2. Separating components.

Definition 3.3. Let [W rel] be the fundamental class of the component of W whose general
curve is smooth. Define

[W irrel]virt = [W ]virt − [W rel].

Remark 3.4. As W rel is of pure dimension equal to the virtual dimension the definition makes
sense.

Lemma 3.5. We have that d(W rel) = Ŵ and for any cycle T which represents [W irrel]virt

in A∗(W
irrel) we have that the image d(T ) has dimension strictly smaller than k, where k is

the dimension of Ŵ .

Proof. First equality is obvious. By the same dimension count as before the dimension of
q(W irrel) is too small. �

Definition 3.6. We define

[M
rel
0,n(X,β)]

virt = {(s(M/W rel)c(N̂ i)}m ∩M
rel
0,n(X,β).

Proposition 3.7. We have that c∗[M
rel
0,n(X,β)]

virt = [Q0,n(X,β)]
virt.

Proof. By definition [M
rel
0,n(X,β)]

virt = {(s(M rel/W rel)c(N̂ i)}m ∩M
rel
0,n(X,β). Let M rel be

thesubstack ofM such that the following diagram is cartesian

M rel //

g

��

W rel

d
��

Q // Ŵ

The morphism d is not proper, so we need to adapt the result in [8]. However, we still

have a morphism G : P(CMrel/W rel) → P(CQ/Ŵ ) and if ξ is c1(OP(C
Mrel/Wrel)(1)) and ξ̂ is

c1(OP(C
Q/Ŵ

)(1)) then G
∗ξ̂ = ξ. Moreover, the restriction of G to P(CMrel/W rel) ∩M

rel
0,n(X,β)

is proper. Let π : P(CMrel/W rel) → M rel and π̂ : P(CQ/Ŵ ) → M rel be the projections to the

base. By the fact that intersection products commute with restrictions to open subsets we
have

c∗(s(M
rel/W rel) ∩M

rel
0,n(X,β) = c∗π∗(ξ

i
P(CMrel/W rel)) ∩M

rel
0,n(X,β)(14)

= c∗π∗ξ
i(P(CMrel/W rel) ∩M

rel
0,n(X,β))(15)
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If we look at the commutative diagram

(16) P(CMrel/W rel) ∩M
rel
0,n(X,β)

π
//

G

��

M
rel
0,n(X,β)

c

��

P(CQ/Ŵ ) ∩Q0,n(X,β)
π̂

// Q0,n(X,β)

we get

(17) c∗(s(M
rel/W rel) ∩M

rel
0,n(X,β) = π̂∗ξ̂

iG∗P(CMrel/W rel).

By the proof of Proposition 4.2 in [8] the morphism G is generically bijective which means
that its restriction to an open subset is still generically bijective. We have thus obtained that

c∗[M
rel
0,n(X,β)]

virt = {(s(Q0,n(X,β)/Ŵ )c(N̂ i)}m.

�

Proposition 3.8. Gromov-Witten invariants are equal to quasi-map invariants for toric Fano
varieties.

Proof. We have that

[M0,n(X,β)]
virt = {s(M/[W ]virt)c(N i)}m ∩M 0,n(X,β).

Denote by W i the components of W and by M i the stack W i ∩M . (The point here is that

any M i different from M
rel
0,n(X,β) is not included in W rel!) By Lemma 4.2 in [8] we have

(18) s(M/[W ]virt) =
∑

i

mis(M
i/[W i]virt)

where mi is the multiplicity of [W i]virti in W . This shows that

(19) s(M/W ) = s(M rel/W rel) +
∑

i

mis(M
irrel/[W irrel]virt)

and by this we get

(20) [M ]virt =

{(

s(M rel/W rel) +
∑

i

mis(M
irrel/[W irrel)]virt

)

c(N i)

}

m

By Proposition 3.7 we have that

(21) c∗({s(M
rel/W relc(N i)} ∩M0,n(X,β)) = [Q0,n(X,β)]

virt

By abuse of notation we denote by q the restriction of q to M0,n(X,β). Unlike q : V → V̂ the

restriction to M0,n(X,β) is proper. With this convention let us now prove that

(22) q∗

(

{s(M irrel/W irrel)c(N i)}m ∩M0,n(X,β)
)

= 0

Intersection with chern classes commutes with flat pull-backs and in particular with restricting
to open subsets. This shows that

{(s(M irrel/[W irrel]virt) ∩M
irrel
0,n (X,β))c(N i)}m =(23)

q∗

(

{s(M irrel/[W irrel]virt) ∩M0,n(X,β)}m+jcj(N
i)
)

.(24)
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We now use projection formula and the fact that N i = q∗N̂ i, which means that we are left to
prove

(25) q∗

(

{s(M irrel/[W irrel]virt)}m+j ∩M0,n(X,β)
)

= 0

for all j ≥ 0. This follows from lemma 3.5 and the argument in the above proposition. By
20, 21, 22 and the projection formula we get

(26)
∏

ev∗i γiψ
ki
i · [M0,n(X,β)]

virt =
∏

ev∗i γiψ
ki
i · [Q0,n(X,β)]

virt

�

4. Further discussion

Obstruction theories of components.

Lemma 4.1. Let M̄≥τα0 = ∪ταi≥τα0
M

ταi be the union of components of Q0,n(X,β) greater

than a fixed τα0
. Similarly, let M

≤τα0 = ∪ταi≤τα0
M

ταi be the union of components of

Q0,n(X,β) lower than a fixed τα0
. Then we have that

(1) the obstruction theory in any point of M̄≥τα0 is equal to R•π∗f
∗TX .

(2) the obstruction theory in any point of M̄≤τα0 which is not in M
≥τα0 ∩M

≤τα0 is equal
to R•π∗f

∗TX .

Proof. Clear. �

Definition 4.2. Let M
rel
0,n(X,β) be the the union of components of M0,n(X,β) such that all

Lρ are nonnegative on rational tails. Let M
irrel
0,n (X,β) be the closure of the complement of

M
rel
0,n(X,β) in M0,n(X,β).

Corollary 4.3. The stack M
irrel
0,n (X,β) has a perfect obstruction theory

Proposition 4.4. GW invariants of M
irrel
0,n (X,β) are zero.

Proof. We have that

M
irrel
0,n (X,β) =

⋃

β1+β2=β

M 0,n+1(X,β1)×X M 0,1(X,β2)

and for at least one ρ we have that c1(Lρ) · β2 < 0. Let p1 : M
irrel
0,n (X,β) →

⋃

β1
M0,n(X,β1)

be the projection on the first factor. If X is Fano of index at least two we have that the virtual
dimension of M0,n(X,β1) is strictly lower than the virtual dimension of M0,n(X,β). Let us

show that p1∗[M 0,n(X,β)]
virt = 0. The proof ifollows by the virtual push forward theorem.

Consider the following commutative diagram

(27) M0,n+1(X,β1)×X M0,1(X,β2)
p1

//

ǫ

��

M0,n(X,β1)

��

Mg,n
p

// Mg,n

where p is the contraction of rational tails. We have a normalization sequence

0 → f∗TX → f∗1TX ⊕ f∗2TX → C
k → 0
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Taking cohomology we see that we have a surjective morphism

(28) H1(C, f∗TX) → H1(C1, f
∗
1TX)⊕H1(C2, f

∗
2TX) → 0

Composing with the projection on the first factor we get a surjective morphismH1(C, f∗TX) →
H1(C1, f

∗
1TX) and with this we are under the hypothesis of the virtual push-forward theorem.

The Fano condition implies that the rank of the vector bundle with fiber H1(C, f∗TX) is
strictly larger than the rank of the vector bundle with fiber H1(C1, f

∗
1TX). This shows that

p1∗[M
irrel
0,n (X,β)]virt = 0. By projection formula we obtain that

p1∗ev
∗
i γ · [M

irrel
0,n (X,β)]virt = ev∗i γ · p1∗[M 0,n(X,β)]

virt

= 0

�

Proposition 4.5. Let M rel(X,β) be the subset of M
rel
0,n(X,β) such that for all Lρ which

have (overall) negative degree (−a) on the rational tails the sections uρ vanish on all irre-
ducible components of the rational tails with multiplicity −a. Then the obstruction theory of
M rel(X,β) relative to Picrg,n is R•(L̂ρ).

Proof. Construct a (compact) moduli space M ′ which parametrizes (C → Ĉ, Lρ, L̂, u
′
ρ). The

natural morphism M
rel
0,n(X,β) →M ′ is an isomorphism around a point as in our hypothesis.

�

Proposition 4.6. q∗[M
rel
0,n(X,β)]

virt = [Q0,n(X,β)]
virt

Proof. By the push forward theorem. �

Remark 4.7. Propositions 4.4 and 4.6 are not enough to conclude that q∗[M
rel
0,n(X,β)]

virt =

[Q0,n(X,β)]
virt.
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