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Learning Lambek grammars from proof frames

Roberto Bonato!* and Christian Retoré***

1 Questel SAS, Sophia Antipolis, France
2 IRIT, Toulouse, France & Univ. Bordeaux, France

Abstract. In addition to their limpid interface with semantics, catego-
rial grammars enjoy another important property: learnability. This was
first noticed by Buskowsky and Penn and further studied by Kanazawa,
for Bar-Hillel categorial grammars.

What about Lambek categorial grammars? In a previous paper we showed
that product free Lambek grammars where learnable from structured
sentences, the structures being incomplete natural deductions. These
grammars were shown to be unlearnable from strings by Foret and Le
Nir. In the present paper we show that Lambek grammars, possibly with
product, are learnable from proof frames that are incomplete proof nets.
After a short reminder on grammatical inference a la Gold, we provide
an algorithm that learns Lambek grammars with product from proof
frames and we prove its convergence. We do so for 1-valued also known
as rigid Lambek grammars with product, since standard techniques can
extend our result to k-valued grammars. Because of the correspondence
between cut-free proof nets and normal natural deductions, our initial
result on product free Lambek grammars can be recovered.

We are sad to dedicate the present paper to Philippe Darondeau, with
whom we started to study such questions in Rennes at the beginning of
the millennium, and who passed away prematurely.

We are glad to dedicate the present paper to Jim Lambek for his 90
birthday: he is the living proof that research is an eternal learning pro-
cess.

1 Presentation

Generative grammar exhibited two characteristic properties of the syntax
of human languages that distinguish them from other formal languages:
1. Sentences should be easily parsed and generated, since we speak and
understand each other in real time.
2. Any human language should be easily learnable, preferably from not
so many positive examples, as the study of first language acquisition
shows.

* 1T am deeply indebted to my co-author for having taken up again after so many
years our early work on learnability for k-valued Lambek grammars, extended and
coherently integrated it into the framework of learnability from proof frames.

** Thanks to CNRS and to IRIT for my sabbatical year, to the Loci ANR project for
its intellectual and financial support, to C. Casadio, M. Moortgat for their encour-
agement and to A. Foret and to the anonymous reviewers for their helpful remarks.
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Fig. 1. Human languages and the classes of the Chomsky hierarchy (with parsing
complexity).

Formally, the first point did receive a lot of attention, leading to the
class of mildly context sensitive languages [24]: they enjoy polynomial
parsing but are rich enough to describe natural language syntax. A formal
account of learnability was more difficult to find. Furthermore, as soon
as a notion of formal learnability was proposed, the first results seemed
so negative that the learnability criterion was left out of the design of
syntactical formalisms. This negative result can be stated as follows:
any class of languages that contains all the regular languages cannot be
learnt.

It should be explained why this result was considered so negatively. By
that time, languages were viewed through the Chomsky hierarchy (see
figure . Given that regular languages are the simplest class and that
human languages were known to go beyond regular languages, it seemed
that there could not exist an algorithm that learns a large class as the
one of human languages. This pessimistic viewpoint was erroneous for at
least two reasons:

— The class of human languages does not include all regular languages
and it is likely that it does not even include a single regular language.
The figure [I] gives the present hypothesis on the class of human
languages.

— The positive examples were thought to be sequences of words, while
it has been shown long ago that grammatical rules operate on struc-
tured sentences and phrases (that are rather trees or graphs), see
e.g. [9) for a recent account.

Although we shall recall it more precisely in the first section of the present
paper, let us make some comments on Gold’s notion of learning a class
of languages generated by a class of grammars G. According to Gold, a
learning function ¢ maps a sequence of sentences ei,...,e, to a gram-
mar G, = ¢(e1,...,e,) in the class G in such a way that, when the
examples (€;)sen enumerate a language £(G) of a grammar G in G i.e.
L(G) = {e; | © € N} there exists an integer N such that for all n > N



the grammars G,, are constantly equal to Gn which generates the same
language i.e. £L(Grn) = L(G) = {e; | i € N}. The fundamental point is
that the function learns a class of languages: the algorithm eventually
finds out that the enumerated language cannot be any other language
in the class. This means that the very same language can be learnable
as a member of a learnable class of languages, and unlearnable as the
member of another class of languages. Although surprising at first sight,
this notion according to which one learns in a predefined class of lan-
guages is rather compatible with our present knowledge of first language
acquisition.

Overtaking the pessimistic view of Gold’s theorem, Angluin established
in the 80s that some large but transversal classes of languages were learn-
able in Gold’s sense. [5] Regarding categorial grammars, Buszkowski and
Penn defined in late 80s [13I12] an algorithm that learns basic categorical
grammars from structured sentences, that are called functor-argument
structures, and Kanazawa proved in 1994 that their algorithm converges:
it actually learns categorial grammar in Gold’s sense. [26)25]

The result in the present paper is much in the same vein as the ones by
Buskowski, Penn and Kanazawa.

Section [2] We first recall the Gold learning paradigm, identification in
the limit from positive examples.

Sections [3], [4 Next we briefly present Lambek categorial grammars with
product, and define their parsing as the construction of cut-free proof
nets. We also introduce the structures we shall learn from, that we
call proof frames. Indeed, Lambek grammars (with or without prod-
uct) ought to be learnt from structured sentences since Foret and
Le Nir established that they cannot be learnt from strings [16]. In-
formally, proof-frames are name-free parse-structures, i.e. name-free
proof-nets, just like functor-argument structures are name-free nat-
ural deduction used to learn basic categorial grammars.

Sections After a reminder on unification in relation to categorial
grammars, we present our algorithm that learns rigid Lambek cat-
egorial grammars with product from proof frames. We illustrate it
on examples involving introduction rules (that are not part of basic
categorial grammars) and product rules (that are not part of prod-
uct free Lambek grammars). We then prove the convergence of this
algorithm.

Section [8] We there show that the present result strictly encompasses
our initial result [II] that learns rigid product-free Lambek gram-
mars from name-free natural deductions. To do so, we give the bijec-
tive correspondence between cut-free proof nets for the product-free
Lambek calculus and normal natural deduction that are commonly
used as parse structures.

In the conclusion, we discuss the merits and limits of the present
work. We briefly explain how it can generalise to k-valued Lambek
grammars with product and suggest direction for obtaining corpora
with proof frame annotations from dependency-annotated corpora.



2 Exact learning a la Gold: a brief reminder

We shall just give a brief overview of the Gold learning model of [21],
with some comments, and explain why his famous unlearnability theorem
of [21] (theorem [If below) is not as negative as it first scemed — as the
result of [5] and of the present article shows.

The principles of first language acquisition as advocated by Chomsky [35]
and more recently by Pinker [36I37] can be very roughly summarised as
follows:

1. One learns from positive examples only: an argument says that in
certain civilisations children uttering ungrammatical sentences are
never corrected although they learn the grammar just as fast as
ours — this can be discussed, since the absence of reaction might
be considered as negative evidence, as well as the absence of some
sentences in the input.

2. The target language is reached by specialisation, i.e. by restricting
word order from tentative languages with a freer word order: rare
are the learning algorithms for natural language that proceed by
specialisation although, when starting from semantics, there are such
algorithms as the one by Tellier [45]

3. Root meaning is learnt first, and as part of this root meaning, the
argumental structure (also known as valencies in dependency gram-
mars) are known before the grammar learning process actually starts.
This implies that in the learner’s utterances exactly all needed words
are present, possibly in a non correct order. This enforces the idea
that one learns by specialisation — the afore mentioned work by
Tellier actually uses argument structures as inputs [45]

4. The examples that the child is exposed to are not so numerous:
this is known as the Powverty Of Stimulus argument. It has been
widely discussed since 2000 in particular for supporting quantitative
methods. [35I383919]

In his seminal 1967 paper, Gold introduced a formalisation of the process
of the acquisition of one’s first language grammar. It strictly follows the
first principle stated above, which is the easiest to formalise: the formal
question he addressed could be more generally stated as grammatical
inference from positive examples. It also should be said that Gold’s notion
of learning may be used for other purposes, every time one wants to
extract some regularity out of sequences observations. It has been applied
to genomics (what would be a grammar generating the strings issued
from DNA sequences) and diagnosis (what are the regular behaviours of
the system, what would be a grammar generating the sequences of normal
observations provided by captors for detecting abnormal behaviours).

We shall provide only a minimum of information on formal languages
and grammars. Let us just say that a language is a subset of an induc-
tive class U. Elements of U usually are finite sequences (a.k.a. strings)
of words, or trees whose leaves are labelled by words, or graphs whose
vertices are words. E| A grammar G is a finitely described process gener-

3 We here say “words” because they are linguistic words, while other say “letters” or
“terminals,” and we say “sentences” for sequences of words where others say “words”
for sequences of “letters” or “terminals”



ating the objects of a language £(G) c U. The membership question is
said to be decidable for a grammar G when the characteristic function of
L(G) in U is computable. The most standard example of U is X the set
of finite sequences over some set of symbols (e.g. words) X. The phrase
structure grammars of Chomsky-Schutzenberger are the most famous
grammars producing languages that are parts of X*. Lambek categorial
grammars and basic categorial grammars are an alternative way to gen-
erate sentences as elements of X*: they produce the same languages as
context-free languages [8I34/30, chapters 2]. Finite labeled trees also are
a possible class of objects. For instance a regular tree grammar produces
a tree language, whose yields define a context free string language. In the
formal study of human languages, U usually consists in strings of words
or in trees with words on their leaves.

Definition 1 (Gold, 1967, [21]). A learning function for a class of
grammars G producing U-objects (L(G) cU) is a partial function ¢ that

maps any finite sequence of positive examples ex1,exs, ..., ex, with ex; €
U to a grammar G; = ¢(ex1,exs,...,exy) of the class of grammars G
such that:

if (€:)ser is any enumeration of a language L(G) cU with G € G,
then there exists an integer N such that:

— Gp=Gn forall P> N.

— L(GnN) = L(G).

Several interesting properties of learning functions have been considered:

Definition 2. A learning function ¢ is said to be

— effective or computable when ¢ is recursive. In this case one often
speaks of a learning algorithm. In this article, we shall only consider
effective learning functions: this is consistent both with language be-
ing viewed as a computational process and with applications to com-
putational linguistics. Observe that the learning function does not
have to be a total recursive function: it may well be undefined for
some sequences of sentences and still be a learning function.

— conservative if ¢(e1,...,ep,eps1) = d(e1,...,6p) whenever eps1 €
L(¢(617 e aeP))'

— consistent if {e1,...,ep} c L(¢p(e1,...,ep)) whenever ¢(e1,...,ep)
is defined.

— set driven if ¢(e1,...,ep) = @(el,...,e;) whenever {e1,...,ep} =
{e1,...,e,} — neither the order of the examples nor their repetitions
matters.

— incremental if there exists a binary function ¥ such that
¢(617 -++5€py eP+1) = W(¢(€1, ey eP)7 6P+1)

— responsive if the image ¢(e1,...,ep) is defined whenever there exists
L in the class with {ei1,...,ep} c L
— monotone increasing when ¢(e1,...,ep,eps1) € P(e1,...,€p)

The algorithm for learning Lambek grammars that we propose in this
paper enjoys all those properties. All of them seem to be sensible with
respect to first language acquisition but the last one: indeed, as said
above, children rather learn by specialisation.



It should also be observed that the learning algorithm applies to a class
of languages. So it is fairly possible that a given language L which both
belongs to the classes Gi and G2 can be identified as a member of G;
and not as a member of Go. Learning L in such a setting is nothing more
than to be sure, given the examples seen so far, that the language is not
any other language in the class.

The classical result from the same 1967 paper by Gold [2I] that has be
over interpreted see e.g. [6)23] can be stated as follows:

Theorem 1 (Gold, 1967, [21]). If a class G- of grammars generates
— languages (L;); € N with L; € N which are strictly embedded that is
L; & Liv1 fOT‘ allie N
— together with the union of all these languages U;enL; € Gy
then no function may learn G,.

Proof. From the definition, we see that a learning function should have
guessed the grammar of a language £(G) with G € G after a finite number
of examples in the enumeration of £(G). Consequently, for any enumer-
ation of any language in the class,

(1) the learning function may only change its mind finitely many
times.

Assume that is a learning function ¢ for the class G,. Since the L; are
nested as stated, we can provide an enumeration of L = UL; according
to which we firstly see examples z, -, xp® from Lo until ¢ proposes Go
with £LGo = Lo, then we see examples a:%, TR x’f in Ly until ¢ proposes G1
with £G1 = L1, then we see examples x5, -, z} in Lo until ¢ proposes Ga
with £LG2 = Lo, etc. In such an enumeration of L the learning function
changes its mind infinitely many times, conflicting with . Thus there
cannot exists a learning function for the class G,.

Gold’s theorem above has an easy consequence that was interpreted quite
negatively:

Corollary 1. No class containing the regular languages can be learnt.

Indeed, by that time the Chomsky hierarchy was so present that no one
thought that transverse classes could be of any interest, let alone that
they could be learnable. Nowadays, it is assumed that the syntax of
human languages contains no regular languages and goes a bit beyond
context free languages — as can be seen in figure[I] It does not seem likely
that human languages contain a series of strictly embedded languages as
well as their unions. Hence Gold’s theorem does not prevent large and
interesting classes of languages, like human languages, from being learnt.
For instance Angluin showed that pattern languages, a transversal class
can be learnt by identification in the limit [5] and she also provided a
criterion for learnability base on telltale sets:

Theorem 2 (Angluin, 1980, [6]). An enumerable family of languages
L; with a decidable membership problem is effectively learnable whenever
for each i there is a computable finite T; cy L; such that if T; c L; then
there exists w e (L; ~ L;).



As a proof that some interesting classes are learnable, we shall define
particular grammars, Lambek categorial grammars with product, and
their associated structure languages, before proving that they can be
learnt from these structures, named proof frames.

3 Categorial grammars and the LCG,, class

Given a finite set of words X and an inductively defined set of categories C
including a special category s and an inductively defined set of derivable
sequents - ¢ (C* x C) (each of them being written t1,...,t, + ) a
categorial grammar G is defined as map lexg from words to finite sets of
categories. An important property, as far as learnability is concerned, is
the maximal number of categories per word i.e. maxyex |lexg(w)|. When
it is less than k, the categorial grammar G is said to be k-valued and
1-valued categorial grammars are said to be rigid.

Some standard family of categorial grammars are:

1. Basic categorial grammars BCG also known as AB grammars have
their categories in C :='s | B | C\C | C/C and the derivable sequents are
the ones that are derivable in the Lambek calculus with elimination
rules only A+ A and I' + B [/ A (respectively I' - A\ B) yields
I''A + B (respectively A,I' - B) — in such a setting the empty
sequence is naturally prohibited even without saying so. [7]

2. The original Lambek grammars [27] also have their categories in the
same inductive set C :=s ‘ B | Cc\¢C | C/C and the derivable sequents
are the ones that are derivable in the Lambek calculus without empty
antecedent, i.e. with rules of figure [3| except ®; and ®; — a variant
allows empty antecedents.

3. Lambek grammars with product (LCGp) have their categories in
Co = s | B | Co \Co | Ceo [ Ce | Ce ® Cg and the derivable sequents
are the ones that are derivable in the Lambek calculus with product
without empty antecedents with all the rules of figure[3]— a variant
allows empty antecedents.

A phrase, that is a sequence of words wi---wn, is said to be of category
C' according to G when, for every ¢ between 1 and p there exists t; €
lexg(w;) such that t1,...,t, + C is a derivable sequent. When C' is s
the phrase is said to be a sentence according to G. The string language
generated by a categorial grammar is the subset of X* consisting in
strings that are of category s i.e. sentences. Any language generated by
a grammar in one of the aforementioned classes of categorial grammars
is context free.

In this paper we focus on Lambek grammars with product (LCG;). The
explicit use of product categories in Lambek grammars is not so com-
mon. Indeed, one rather sees negative products that can be treated with
categorial implication \ and /. For instance a category like (a ® b) \ ¢
can be viewed as b\ (a ¢) so they do not really involve a product. The
comma in the left-hand side of the sequent, corresponding to the blanks
between words are implicit products, but grammar and parsing of those
can be defined without explicitly using the product. Nevertheless, there
are cases when the product is appreciated:



The derivable sequents of the Lambek syntactic calculus with product are obtained
from the axiom C + C for any category C and the rules are given below, where A, B
are categories and I, A finite sequences of categories:

I'B,I'-C ArA ATw-C
—\i I'+go
I'AA\B, T'+C '~ A\C
I'B,I'-C ArA rA-C
— /i T'+@
I''B/A AT +C r'-C/A
I'A,B,I"+C A+A I'+B
—® —— ®;
INA® B, I''+C AT'-A®B

Fig. 2. Sequent calculus rule for the Lambek calculus

— For analysing the French Treebank, Moot in [29] assigns the category
((npepp)\ (np®pp)) [ (np®pp) to “et” (“and”) for sentences like:

(2) Jean donne un livre & Marie et une fleur & Anne.

— According to Glyn Morrill [32I31] past participles like “raced” should
be assigned the category ((CN\CN)/(N\(N\s-))® (N\(N\s-))
where s— is an untensed sentence in sentences like:

(3) The horse raced past the barn fell.

4 Categorial grammars generating proof frames

The classes of languages that we wish to learn include some proper con-
text free languages [§], hence they might be difficult to learn. So we shall
learn them from structured sentences, and this section introduces proof
frames that we shall use as structured sentences.

A neat natural deduction system for Lambek calculus with product is
rather intricate [4J2], mainly because the product elimination rules have
to be carefully commuted for having a unique normal form. Cut-free se-
quent calculus proofs neither are fully satisfactory because they are quite
redundant and some of their rules can be swapped. As explained in [30}
chapter 6] proof nets provide perfect parse structures for Lambek gram-
mars even when they use the product — when the product is not used,
cut-free proof nets and normal natural deduction are isomorphic, as we
shall show in subsection Consequently the structures that we used
for learning will be proof frames that are proof nets with missing infor-
mations. Let us see how categorial grammars generate such structures,



and first let us recall the correspondence between polarised formulae of
linear logic and Lambek categories.

4.1 Polarised linear formulae and Lambek categories

A Lambek grammar is better described with the usual Lambek cate-
gories, while proof nets are better described with linear logic formulae.
Hence we need to recall the correspondence between these two languages
as done in [30, chapter 6]. Lambek categories (with product) are Cg de-
fined in the previous section [3] Linear formula L are defined by:

La=P | P | (Lel) | (Lpl)

The negation of linear logic _)* is only used on propositional variables
from P as the De Morgan laws allow:

(A=A (ApB)=(B'®AY)  (AeB)=(B'eA)
To translate Lambek categories into linear logic formulae, one has to
distinguish the polarised formulae, which are either outputs or positive
formulae of L° or inputs or negative formulae of L* with F' € L° «—

F*el®and (L°uL®) ¢ L:
L° == P (L°®L°%) | (L*pL°) | (L°pL®)
L* == P* | (L°pL®) | (L°®L®%) | (L*®L°)
Any formulae of the Lambek L calculus can be translated as an out-

put formula +L of multiplicative linear logic while its negation can be
translated as an input linear logic formulae —L:

[L]laeP[L=M®N[L=M\N[L=N /M|
+L|| a |+M®+N |-Mp+N|+Ngp-M
Ll o' [ -Np-M[-N@+M|+M ®-N

Conversely any output formula of linear logic is the translation of a
Lambek formula and any input formula of linear logic is the negation
of the translation of a Lambek formula. Let (...){, denotes the inverse
bijection of “+”, from L° to Lp and (...){, denotes the inverse bijection
of “~” from L*® to Lp. These two maps are inductively defined as follows:

Fel°[ aeP [(Gel®) ® (HeL®)[(Gel") o (HeL™)[(Gel®) p (HeL")
F || o G, ® Hi, Gip \ Hi, Gi, [ HE,
Fel®||a*eP*|(GeL®) p (HeL®)|[(GeL®) ® (Hel®)|(Gel®) ® (HelL®)
F, a H,® Gy, Hy, | GL, H\ Gy,

4.2 Proof nets

A proof net is a graphical representation of a proof which identifies es-
sentially similar proofs. A cut-free proof net has several conclusions, and
it consists of
— the subformula trees of its conclusions, that possibly stops on a sub
formula which is not necessarily a propositional variable (axioms
involving complex formulae simplify the learning process).



— a cyclic order on these sub formula trees

— axioms that links two dual leaves F and F'* of these formula subtrees.
Such a structure can be represented by a sequence of terms — admittedly
easier to typeset than a graph — with indices for axioms. Each index
appears exactly twice, once on a formula F' (not necessarily a proposi-
tional variable) and one on F*. Here are two proof nets with the same
conclusions:

(4) s'e(2pmpt®),np’ @ (s* ®@np)”, (np ps)” @st? s
(5) s @ (spnp’),np’ ® (s @np”), (np*° ps?) ® s+, s!

The second one is obtained from the first one by expansing the complex
axiom (s* ® np)”, (np* p s)” into two axioms: (s** ® np®), (np*’ p s?).
Complex axioms always can be expansed into atomic axioms — this is
known as n-expansion property. This is the reason why proof nets are
often presented with atomic axioms. Nevertheless, we shall substitute
propositional variables with complex formula during the learning process,
and therefore we need to consider complex axioms as well — see the
processing of the example |§| in section @

No any such structure does correspond to a proof:

Definition 3. A proof structure with conclusions C*,I1,... I} is said
to be a proof net of the Lambek calculus when it enjoys the correctness
criterion defined by the following properties:
1. Acyclic: any cycle contains the two branches of a g link
2. Intuitionistic: exactly one conclusion is an output formula of L°, all
other conclusions are input formulae of L*
3. Non commutative: no two axioms cross each other
4. Without empty antecedent: there is no sub proof net with a single
conclusion

The first point in this definition is not stated precisely but, given that
we learn from correct structured sentences, we shall not need a precise
definition. The reader interested in the details is referred to [30, chapter
6]. Some articles on proof nets add to the criterion above a form of
connectedness but it is not actually needed since this connectedness is
a consequence of the first two points see [22] or [30, section 6.4.8 pages
225-227).

Definition 4. Proof nets for the Lambek calculus can be defined induc-
tively as follows (observe that they contain exactly one output conclu-

sion):

— given an output formula F an aziom F,F* is a proof net with two
conclusions F' and F* — we do no require that F is a propositional
variable.

— given a proof net ©* with conclusions O, I1,..., I} and a proof net
7% with output formula O, I3, ..., Iz where O and O? are the output

conclusions, one can add a ®-link between a conclusion of one and
a conclusion of the other, at least one of the two being an output
conclusion. We thus can obtain a proof net whose conclusions are:
e O'® I, I} y,.... I3, 0} I IR 1, I1,..., I, — O being the out-
put conclusion



e [ ®O° I7,....I2, I}y, ..., I},O" I}, ..., I";, — O" being the
output conclusion
e O'® 02,I127...7II2,,1117...,I,11 — O0' ® O? being the output con-
clusion.

— given a proof net w* with conclusions O, I+, ... I} one can add a p
link between any two consecutive conclusions, thus obtaining a proof
nets with conclusions:

e« ONIL, ... LipIi,...,I} — O being the output conclusion
e O'pIl, I3....I} — O'pIi being the output conclusion
o I}pOIl... I}, — O p I being the output conclusion

A key result see e.g. [30, Theorem 6.28]. is that:

Theorem 3. The inductively defined proof nets of definition[{] i.e. proofs,
exactly correspond to the proof nets defined as graphs enjoying the uni-
versal properties of the criterion@

A parse structure for a sentence w',...,w” generated by a Lambek
grammar G defined by a lexicon lex¢ is a proof net with conclusions
(¢")7,...,(c")",s" with ¢’ e lex(w"). This replaces the definition of parse

structure as normal natural deductions [46] which does not work well
when the product is used [412].

Non-commutative proof-nets were first introduced by Roorda in his the-
sis [42] but he only showed the soundness of the criterion: the inductively
defined proof nets enjoys a correctness criterion, namely the Danos Reg-
nier criterion [14] augmented with intuitionistic and non-commutative
conditions. We provided the first proof of the converse in [4I]. There
are several equivalent notions of proof nets for cyclic multiplicative in-
tuitionistic linear logic that is Lambek calculus. For instance the proof
nets for non commutative linear logic by Abrusci and Ruet [I], restricted
to the non commutative multiplicative connectives and to intuitionistic
formulae also are a presentation of proof nets for Lambek calculus. It
should be underlined, however that all these notions of proof nets do
not properly handle cuts except the one by Mellies [28] — see e.g. the
discussions in [19] chapters 11 and 18].

4.3 Structured sentences to learn from: s proof frames

An s proof frame (sPF) is simple a parse structure of a Lambek grammar
i.e. a proof net whose formula names have been erased, except the s on
the output conclusion. Regarding axioms, their positive and negative tips
are also kept. Such a structure is the analogous of a functor argument
structure for AB grammars or of a name free normal natural deduction
for Lambek grammars used in [I3JI2J1T] and it can be defined inductively
as we did in[@ or by the conditions in definition [3]

Definition 5 (s proof frames, sPFs). An s proof frame (sPF) is a
normal proof net w such that:
— The output of 7 is labelled with the propositional constant s — which
is necessarily the conclusion of an axiom, the input conclusion of this
aziom being labelled s*.



— The output conclusion of any other axiom in 7 is O its input con-
clusion being O* = 1.

Given an s proof net w its associated s proof frame my is obtained by
replacing in m the output of any axiom by O (and its dual by I = O*)
except the s that is the output of w itself which is left unchanged.
A given Lambek grammar G is said to generate an sPF p whenever there
exists a proof net w generated by G such that p = ', In such a case we
write p € sPF(Q).

The sPFs associated with the two proof nets E| and |5| above are:
6) s*'®(0%pI?),0° (I'®0°),(0°p0") e I%s
(7) ' ®(0%pI?),0°01",0"®I%s

Are proof frames related to partial proof nets or modules that first ap-
peared in [I8]? They only partly are! Indeed, modules are name-free parts
of proof-nets and generalised such structures that can be combined to
obtained real multiplicatives proof nets. Here we only consider name-free
complete proof nets, and as far as proof net surgery is concerned, we only
replace some axioms with their n-expansion as explained in [19, chapter
11].

5 Unification, proof frames and categorial
grammars

In this section, we shall briefly describe how categories, and more gener-
ally categorial grammars can be unified. Indeed, our learning algorithm
makes a crucial use of category-unification, and this kind of technique is
quite common in grammatical inference [33].

As said in paragraph |3 a categorial grammar is defined from a lexicon
that maps every word w to a finite set of categories lexg(w). Categories
are usually defined from a finite set B of base categories that includes
a special base category s. Here we shall consider simultaneously many
different categorial grammars since the learning hypothesis varies in the
class of categorial grammars. In order to have a common set of base type
for all categorial grammars, we shall consider an infinite set of base cate-
gories B whose members will be s and infinitely many category variables
denoted by z, y, x1, T2, ..., Y1, Y2, ... In other words, B ={s}uV,s¢V,
V being an infinite set of category variables. The categories arising from
B are defined as usual by V :=s | V | V\V | V/V | V@V. This infinite set of
base categories does not really modify categorial grammars: a given cat-
egorial grammar only makes use of finitely many base categories. Indeed,
there are finitely many words each of them being associated with finitely
many categories: there are finitely many symbols in the lexicon hence
only a finite number of base categories are used by a given categorial
grammar. Choosing an infinite set of base categories is rather important,
as we shall substitute a category variable with a complex category using
fresh variables, thus turning a categorial grammar into another one, and
considering families of grammars over the same base categories.



A substitution o is a function from categories V to categories V that is
generated by a mapping ov of finitely many variables x;,,--, z;, in V' to
categories of V:

o(s) =s
oy (x) if = z;, for some k
x otherwise

o(A\B) = 0(A)\o(B)

o(B[A)=0(B)/o(A)
The substitution o is said to be a renaming when oy is a bijective
mapping from V to V — otherwise stated oy is a permutation of the
Tiy, oy Tiy )-
As usual, substitutions may be extended to sets of categories by stipulat-
ing 0(A) = {o(a)|a € A}. Observe that 0(A) can be a singleton while A is
not: {(a/(b\c)), (a/u)}[u— (b\c] = {a/(b\c)}. A substitution can also be
applied to a categorial grammar: o(G) = G’ with lexg (w) = o (lexg(w))
for any word w. Observe that a substation turns a k-valued (as defined in
section [3)) categorial grammar into a k’-valued categorial grammar with
k' <k, and possibly into a rigid (or 1-valued) categorial grammar .
A substitution o on Lambek categories (defined by mapping finitely
many category variables x; to Lambek categories L;, x; — L;) clearly
defines a substitution on linear formulae o* (by x; = L}), which pre-
serves the polarities o/ (F') is positive(respectively negative) if and only
if F'is. Conversely, a substitution p on linear formulae defined by map-
ping variables to positive linear formulae (x; — F;) defines a substitution
on Lambek categories pL with the mapping x; — F{,. One has: o(L) =
(o (L)), and p(F) = (p"(F3,))+ if F e L° and p(F) = (p"(F5,))-
Roughly speaking as far as we use only polarised linear formulae and
substitution that preserve polarities, it does not make any difference to
perform substitutions on linear formulae or on Lambek categories.
Substitution preserving polarities (or Lambek substitutions) can also be
applied to proof nets: o(m) is obtained from 7 by applying the substi-
tution to any formula in 7. A substitution turns an s Lambek proof net
into an s Lambek proof net — this is the reason why proof nets in this
paper may contain axioms on complex formulae.

givenz eV, o(x)=

Proposition 1. If
— o is a substitution preserving polarities and
— 7 a proof net generated by a Lambek grammar G,
then
— o(n) is generated by o(G) and
— 7 and o(w) have the same associated s proof frame: o(m)y = my

Two grammars G; and G2 with their categories in V are said to be equal
whenever there exists a renaming v such that v(G1) = Ga.

A substitution o is said to unify two categories A, B if one has o(A) =
o(B). A substitution is said to unify a set of categories T or to be a
unifier for T if for all categories A, B in T one has 0(A4) = o(B) — in
other words, o(T) is a singleton.

A substitution o is said to unify a categorial grammar G or to be a unifier
of G whenever, for every word in the lexicon o unifies lexg(w), i.e. for



any word w in the lexicon lex,(g)(w) has a unique category — in other
words o(G@) is rigid.

A unifier does not necessarily exists, but when it does, there exists a most
general unifier (mgu) that is a unifier o, such for every unifier 7 there
exists a substitution o, such that 7 = o, o g,,. This most general unifier
is unique up to renaming. This result also holds for unifiers that unify a
set of categories and even for unifiers that unify a categorial grammar.
[26)

An algorithm for unifying two categories C; and C3 may proceed by managing a
finite multi-set E of potential equations on terms, until it fails or reaches a set of
equations whose left hand side are variables, each of which appears in a unique such
equation — a measure consisting in triple of integers ordered ensures that this algorithm
always stops. This set of equations x; = t; defines a substitution by setting v(x;) = t;.
Initially £ = {C1 = C2}. In the procedure below, upper case letters stand for categories,
whatever they might be, x for a variable, * and ¢ stand for binary connectives among
\,/, ®. Equivalently, unifications could be performed on linear formulae, as said in this
article. The most general unifier of n categories can be performed by iterating binary
unification, the resulting most general unifier does not depend on the way one proceeds.

Eu{C=C} — FE
Fu {Al*B1=A2*Bz} — Fu {A1=A2,Bl=B2}

Eu{C=z} — Eu{z=C}

ifeeVar(C) Eu{z=C} — L
ifx¢ Var(C)rxzeVar(E) Eu{z=C} — E[z:=C|u{z=C}

if o % EU{Al*BlZAQOBQ}—)l
EU{S:AQ*BQ} —> 1
Fu {Al*Bl=S} — 1

Fig. 3. The unification algorithm for unifying two categories

Definition 6. Let m be an s proof net whose associated sPF is w¢. If all
the azioms in w but the s,s* whose s is m’s main oulput are oy, o with
o # oy when @ # j, ™ is said to be a most general labelling of w¢. If 7y
1s the associated sPF of an s proof net m and m, one of the most general
labelling of my, then m, is also said to be a most general labelling of .
The most general labelling of an s proof net is unique up to renaming.

We have the following obvious but important property:

Proposition 2. If 7w, is a most general labelling of an s proof net w,
then there exists a substitution o such that © = o(my).

6 An RG-like algorithm for learning Lambek
categorial grammars from proof frames
Assume that we wish to define a consistent learning function ¢ from pos-

itive examples for a class of categorial grammars (see definition . As-
sume that ¢ already mapped e, ..., e, to a grammar G,, witheq,... e, c



L(Gr) (¢ being consistent). If e,+1 € L(G,) it is natural to define
o(e,. .. n,eni1) = Gns1 as being G,. Otherwise, that is when en41 ¢
L(Gr), there exists some word w” in the sentence en+1 such that no
category of lexg, (w) is able to account for the behaviour of w® in the
sentence e,+1. A natural but misleading idea would be to say: if word
w” needs category cﬁﬂ in example en+1, let us add & to lexGn(wk)
to define lexg,,,, (w*). Doing so for every occurrence of a problematic
word in the sentence e,.1, actually leads to e1,...,en,ens1 € L(Gns1)
and in the limit we should obtain the smallest grammar G« such that
Viei,...,e; € LGo. Doing so, there is little hope to identify a language in
the limit in Gold sense. Indeed, nothing guarantees that the process will
stop, and a categorial grammar with infinitely many categories for some
word is not even a grammar, that is a finite description of a possibly
infinite language. Thus, an important guideline for learning categorial
grammars is to bound the number of categories per word. That is the
reason why we introduced in section [3] the notion of k-valued categorial
grammars, with at most k categories per word. We shall start by learning
rigid (1-valued) Lambek categorial grammars with product (LCGy) and
this method extends to k-valued LCGy,.

Our algorithm can be viewed as an extension to Lambek grammars with
product of the RG algorithm (learning Rigid Grammars) introduced by
Buszkowski and Penn in [T2J13] initially designed for rigid AB grammars.
A difference from their seminal work is that the data ones learns from
were functor argument trees while here they are proof frames (or natural
deduction frames when the product is not used see section . Proof
frames may seem less natural than natural deductions, but we have two
good reasons for using them:

— Product is of interest for some grammatical constructions as exam-
ples[2] and [3] show while there is no fully satisfactory natural deduc-
tion for Lambek calculus with product. [42]

— Proof frames resemble dependency structures, since an axiom be-
tween the two conclusions corresponding to two words expresses a
dependency between these two words.

To illustrate our learning algorithm we shall proceed with the three ex-
amples below, whose corresponding s proof frames are given in figure
As their sPF structures show, the middle one @D involves a positive
product (the IpI in the category of “and”) and the last one involves
an introduction rule (the O p I in the category of “that”).

(8) Sophie gave a kiss to Christian
(9) Christian gave a book to Anne and a kiss to Sophie
(10) Sophie liked a book that Christian liked.

Usually, in order to manipulate right handed sequents with conclusions
only, proof nets reverse the order of the hypotheses which correspond to
words, as explained in section@— in some papers by Glynn Morrill e.g.
[32] the order is not reversed, but then the conclusions of the proof net,
that are the linear formulae which are the dual of the Lambek categories
are less visible. One solution that will make the supporters of either
notation happy is to write the sentences vertically as we do in figure [4



ExAMPLE 1 EXAMPLE 2 EXAMPLE 3

11 [} Sophie 21 I} Christian 31 I} Sophie
—~ 21 0 —~
11 o o 31 0
® 00 s* [ gave ®
00 st s 00 s* ( liked
® r gave 2 8 ®
N 32 O
12 O — -
® 23 I
®a —
130 24 0 32 1
— ® a
24 I}book 33 O
13 I _
®a »no T 34 I} book
14 O ®to
~ 26 O P
14 I} kiss 2 I} Anne 34 O
®
- - 33 1
12 I - —
® ( to 25 O ®  that
5 0O ® -
— 23 0 3% I
s ©
15 I} Christian 99 Vand 36 O
® N—
00 s} (sentence) —_
270 37 1 } Christian
®
28 0 .
37 O
28 1 e ..
ola 36 \-I/ liked
n 0 s
35 O
29 I} kiss —
97 1 00 s} (sentence)
® ¢ to
20 O

20 I} Sophie
00 s} (sentence)

Fig. 4. Three S proof frames: three structured sentences for our learning algorithm.



Definition 7 (RG like algorithm for sPFs). Let D = (W’f“)lgkgn be the
s proof frames associated with the erxamples (e'f«)l <k<n, and let (7%)
be most general labellings of the (ﬂ];)lgkgn. We can assume that they
have no common category variables — this is possible because there are
infinitely many category variables is infinite and because most general
labellings are defined up to renaming. If example €* contains n words
wl, ..., wk then 7" has n conclusions (c¥)—-, ..., (w)-,s, where all the
c® are Lambek categories.

Let GF(D) be the (non necessarily rigid) grammar defined by the as-
signments wk : ¥ — observe that a for a given word w there may exist

several i and k such that w = wr.

Let RG(D) be the rigid grammar defined as the most general unifier
of the categories lex(w) for each word in the lexicon when such a most
general unifier exists.

We define ¢(D) as RG(D). When unification fails, the grammar is de-
fined by lex(w) = @ for those words whose categories do not unifyﬁ

With the sPF of our examples in E| yields the following type assignments
where the variable x,, corresponds to the axiom number n in the ex-
amples, they are all different as expected — remember that s is not a
category variable but a constant.

4 There is an unimportant choice here: we could either say that ¢ is undefined in this
case. In both cases ¢ does not seem to be consistent, that is to propose a grammar
that actually generates the examples seen so far. However, as we shall see, in the
convergence proof, when the algorithm is applied to a language in the class, categories
of a given word always unify, and ¢ is a total and consistent learning function.



word category (Lambek) category" (linear logic)
and ((($23®l‘25)\$22)... (($28®$27)®...
.../(m28®x27)) ...(:E22®(1723®:L'25)))
that ((z34\ w33) [ (w36 [ w35)) |((w36 o 735) ® (233 ® T34))
liked ($31 \S) /I32 32 @ (S ® 1‘31)
(3?37 \ 3336) /3?35 T35 ® (3336 ® 3337)
gave ((mll\s)/(mg@xm)) (1‘13®$12)®(S®l’11)
((3:21\5)/3322) $22®($®x21)
to 12 /$15 T15 @ $J1'2
x25 [ 26 Tas ® T35
xa7 [ T20 Z20 ® T3y
a z13 [ T14 T14 ® T13
23 /9624 24 ® :C$3
Tas [ T29 T29 ® Tog
32 /3333 33 ® xéz
Anne 26 T3
Sophie T11 11
T20 5530
T31 1»’§1
Christian |z15 15
o1 xél
37 T37
book T24 T54
T34 T34
kiss T14 T14
29 T3g

Unifications either performed on Lambek categories c® or on the corre-
sponding linear formulae (the (cf)- that appear in the second column)

yield the following equations:

liked

31 = T37

36 =S

T32 = T35

gave

T11 =T21

T2 = X13 @ T12
to

T12 = T25 = T27
T15 = T26 = T20

a

T13 = T23 = T28 = T32
T14 = T24 = T29 = 33

Sophie

T11 = T20 = T31

Christian

T15 = T21 = T37

kiss

14 = T29

book

T24 = T34

These unification equations can be solved by setting:




Tr3e =S
T22 =13 ® T12 = NP @ pp

T12 = 25 = Tay = PP prepositional phrase introduced by “to”
T13 = T23 = X28 = T32 = T35 = NP noun phrase

T14 = T24 = T29 =T33 =T34 =CN common noun

T11 =220 = T31 = T15 = T21 = T37 = T15 = T26 = PN proper name

The grammar can be unified into a rigid grammar G, , namely:

word category(Lambek) category" (linearlogic)
and (((np®pp) \ (np®pp)... |((np®pp)® ...

-/ (np®pp))| -..((np@pp)” ® (np@pp)))
that [\ /G ) (G ) ® (" on))
liked (pp\s) [/ np np ® (s ® pn)
gave (pp\s) / (pp ® np)) (np ® pp) ® (s ® pn)
to np [ pn o ® np*

a np/cn cn ® pp*
Anne pn pn*
Sophie on pn*
Christian |pn pnt
book cn ent
kiss cn ent

As stated in proposition [1} one easily observes that the sPF are indeed
produced by the rigid grammar G,..

Earlier on, in the definition of an sPF, we allowed non atomic axioms,
and we can now precisely see why: the axiom 22 could be instantiated
by the single variable x22 but, when performing unification, it got finally
instantiated with x13 ® x12. Thus, if we would have forced axioms to
always be on propositional variables, the grammar G, would not have
generated the sPF of example 2 but the slightly different sPF with the
axioms z13, 213 and x1,, 212 linked by an ® link 275 ® x12 and by a p link
212 13 in place of the axiom 22.

7 Convergence of the learning algorithm

This algorithm converges in the sense defined by Gold [21], see definition
[[l The first proof of convergence of a learning algorithm for categorial
grammars is the proof by Kanazawa [25] of the convergence of the al-
gorithm of Buszkowki and Penn [13] for learning rigid basic categorial
grammars from functor argument structures (name free natural deduc-
tion with \ and / elimination rules only). Although we learn a different
class of grammars from different structures, our proof is quite similar. It
follows [10] that is a simplification of [26].

The proof of convergence makes use of the following notions and nota-
tions:



G c G’ This reflexive relation between G and G’ holds whenever every
lexical category assignment a : T in G is in G’ as well — in particular
when G’ is rigid, so is G, and both grammars are identical. Note
that this is just the normal subset relation for each of the words
in the lexicon G': lexg(a) c lexgr(a) for every a in the lexicon of
G', with lexg(a) non-empty. Throughout the proof, we shall also
use the subset relation symbol to signify inclusion of the generated
languages; the intended meaning of “c” should always be clear from
the context.

size of a grammar The size of a grammar is simply the sum of the sizes
of the occurrences of categories in the lexicon, where the size of a
category is its number of occurrences of base categories (category
variables or s).

G c© G’ This reflexive relation between G and G’ holds when there
exists a substitution o such that o(G) c¢ G’ which does not identify
different categories of a given word, but this is always the case when
the grammar is rigid.

sPF(G) As said earlier, sPF(G) is the the set of s proof frames generated
by a Lambek categorial grammar G.

GF (D) Given a set D of structured examples i.e. a set of s proof frames,
the grammar GF' (D) is define as in the examples above: it is obtained
by collecting the categories of each word in the various examples of
D.

RG(D) Given a set of sPFs D, RG(D) is the rigid grammar /lexicon
obtained by applying the most general unifier, when it exists, to
GF(D) — in case the categories of a given word do not unify no
category is assigned to this word, see footnote

Proposition 3. Given a grammar G, the number of grammars H such
that H c G is finite.

Proof. There are only finitely many grammars which are included in G,
since G is a finite set of assignments. Whenever o(H) = K for some
substitution o the size of H is smaller or equal to the size of K, and, up
to renaming, there are only finitely many grammars smaller than a given
grammar.

By definition, if H © G then there exist K ¢ G and a substitution o
such that o(H) = K. Because there are only finitely many K such that
K c G, and for every K there are only finitely many H for which there
could exist a substitution o with o(H) = K (substitutions increase the
category sizes) we conclude that, up to renaming, there are only finitely
many H such that H c G. O

From the definition of = and from proposition [I] one immediately has:
Proposition 4. If G = G’ then sPF(G) c sPF(G").
Proposition 5. If GF(D) c G then D c sPF(G).

Proof. By construction of GF (D), we have D c sPF(GF(D)). In addi-
tion, because of proposition |4} we have sPF(GF (D)) c sPF(G). u]



Proposition 6. If RG(D) ezists then D c sPF(RG(D)).

Proof. By definition RG(D) = 0,(GF(D)) where o, is the most gen-
eral unifier of all the categories of each word. So we have GF(D) c
RG(D), and applying proposition [5| with G = RG(D) we obtain D c
sPF(RG(D)). o

Proposition 7. If D c sPF(G) then GF (D) cG.

Proof. By construction of GF (D), each category variable x labels at
most one axiom of at most one sPF of D. According to the hypothesis
D c sPF(@G), every sPF ¢; in D is the sPF associated with an s proof net
m; generated by GG, and let us chose one such 7; in case there are several
of them. For every category variable = labelling the positive tip of an
axiom ax{ in some of the e; we can define a substitution by o(z) = T
where T is the category that labels the positive tip of the same axiom
az? in m;: indeed x occurs once, and such a substitution is well defined.
When this substitution is applied to GF (D) it yields a grammar which
only contains assignments from G — by applying the substitution to
the whole sPF, it remains a well-categorised sPF, and in particular the
formulae on the conclusions corresponding to the words, that are the
dual of the Lambek categories in the lexicon, must coincide. EI Hence we
find a substitution such that GF(D) c G. u]

Proposition 8. When D c sPF(G) with G a rigid grammar, the gram-
mar RG(D) exists and RG(D) c G.

Proof. By propositionwe have GF (D) e G, so there exists a substitu-
tion o such that o(GF (D)) c G.

As G is rigid, o unifies all the categories of each word. Hence there exists
a unifier of all the categories of each word, and RG(D) exists.

RG(D) is defined as the application of most general unifier o, to GF (D).
By the definition of a most general uniﬁelﬂ there exists a substitution 7
such that o =70 0y.

Hence 7(RG(D)) = 7(0.(GF(D))) = o(GF(D)) c G;

thus 7(RG(D)) c G, hence RG(D) c G. o

Proposition 9. If D ¢ D' c sPF(G) with G a rigid grammar then
RG(D) e RG(D') e @G.

Proof. Because of proposition [8| both RG(D) and RG(D') exist. We
have D ¢ D' and D' c sPF(RG(D")), so D c sPF(RG(D")); hence, by
proposition [§| applied to D and G = RG(D') (a rigid grammar) we have
RG(D) e RG(D"). u]

Theorem 4. The algorithm RG for learning rigid Lambek grammars
converges in the sense of Gold.

® One can alternatively proceeds with positive linear formulae F as subsection
shows.

5 Unifiers and most general unifiers work as usual even though we unify sets of cate-
gories, see section E}



Proof. Let (D;)ien be an increasing sequence of sets of examples in
sPF(G) enumerating sPF(G), in other words Uje, D; = sPF(G):

D1 C D2 C Dl [ Di+1~" C SPF(G)

Because of proposition |8 for every ¢ € w the rigid grammar RG(D;)
exists and because of proposition |§| the rigid grammars RG(D;) define
a c-increasing sequence of grammars which by proposition [§] is bounded
by G:

RG(D1) e RG(D2) & -+-RG(D;) € RG(Dys1)c G

As they are only finitely many grammars H c G (proposition [3|) this se-
quence RG(D;) is stationary after a certain rank: there exists an integer
N such that for all n > N RG(D,) = RG(Dn).

Let us show that the langue generated by RG(Dy) is the one to be
learnt, i.e. let us prove that sPF(RG(Dx)) = sPF(G) by proving the two
inclusions:

1. Firstly, let us prove that sPF(RG(Dn)) o sPF(G) Let my be an
sPF in sPF(G). Since UjewD; = sPF(G) there exists a p such that
my € sPF(Dy).

— If p < N, because D, ¢ Dy, 7y € Dy, and by proposition |§|
Tf € SPF(RG(DN))

— If p > N, we have RG(D,) = RG(Dy) since the sequence of
grammars is stationary after N. By proposition@we have D, c
sPF(RG(Dy)) hence 7y € sSPF(RG(Dn)) = sPF(RG(D5)).

In all cases, 7y € SPF(RG(Dn)).

2. Let us finally prove that sSPF(RG(Dn)) c sPF(G): Since RG(Dn) ©

G, by proposition [i] we have sPF(RG(Dy)) c sPF(G) u]

This precisely shows that the algorithm proposed in section |§| converges
in the sense of Gold’s definition .

8 Learning product free Lambek grammars
from natural deduction frames

The reader may well find that the structure of the positive examples that
we learn from, sorts of proofnets are too sophisticated structures to learn
from. He could think that our learning process is a drastic simplification
of the similar algorithms that use functor argument structures, i.e. name
free natural deductions.

Let us first see that normal natural deductions are quite a sensible struc-
ture to learn Lambek grammars from. Tiede [46] observed that natural
deductions in the Lambek calculus (be they normal or not) are plain
trees, defined by two unary operators (\ and / introduction rules) and
two binary operators (\ and / elimination rules), from formulae as leaves
(hypotheses, cancelled or free). As opposed to the intuitionistic case,
there is no need to specify which hypothesis is cancelled by the intro-
duction rules, as they may be inferred inductively: a \ (respectively /)
introduction rule cancels the left-most (respectively right-most) free hy-
pothesis. He also observed that normal natural deductions should be



considered as the proper parse structures, since otherwise any possible
syntactic structure (a binary tree) is possible. Therefore is is natural to
learn Lambek grammars from normal natural deduction frames — natu-
ral deductions from which category names have been erased but the final
s. Indeed, s natural deduction frames are to Lambek categorial grammars
what the functor-argument (FA) structures are to AB categorial gram-
mars — these FA structures are the standard structures used for learning
AB grammars by Buskowski, Penn and Kanazawa [13126].

The purpose of this section is to exhibit a one to one correspondence
between cut-free proof nets of the product free Lambek calculus and
normal natural deductions, thus justifying the use of proof frames for
learning Lambek grammars. When there is no product, proof frames
are the same as natural deduction frames that we initially used in [I1].
They generalise the standard FA structures, and when the product is
used, natural deduction become quite tricky [4I2] and there are the only
structures one can think about.

The correspondence between on one hand natural deduction or the iso-
morphic A\-terms and on the other hand, proof nets, can be traced back
o [40] (for second order lambda calculus) but the the closest result is
the one for linear A-calculus [15].

8.1 Proofnets and natural deduction: climbing principal
branches

As said in section [3] the formulae of product free Lambek calculus are
defined by:

Cz=s|BJ|c\c|c/c

Hence their linear counterpart are a strict subset of the polarised linear
formulae of subsection .1}

Ly =
{L;l i
Let us call these formulae the heterogeneous polarised formulae, which
are either positive or negative formulae. In these heterogeneous formulae
the connectives p and ® may only apply to a pair formulae with opposite
polarity. The translation from Lambek categories to linear formulae and
vice versa from subsection [{:1] apply to them as well.
One may think that a proof net corresponds to a sequent calculus proof
which itself corresponds to a natural deduction: as shown in our book
[30], this is correct, as far as one does not care about cuts — which are
problematic in non commutative calculi, see e.g.[28]. As it is well known
in the case of intuitionnistic logic, cut-free and normal are different no-
tions [47], and proof net are closer to sequent calculus in some respects.
If one translate inductively, rule by rule, a natural deduction into a se-
quent calculus or into a proof net, the elimination rule from A and A\ B
yields a cut on the A\ B formula, written A*p B in linear logic. We shall
see how this can be avoided.

P
PL

(Lhols) | (Lhelh)
(Lrely) | (Liely)




this rule requires at least two free hyp.

A leftmost free hyp. l r
AT ... : .
: A A\B
B B
—— \; binding A
A\ B
this rule requires at least two free hyp.
A rightmost free hyp. I A
...... [A]... . :
: B/A A
B €

B
—— /; binding A
B/ A

Fig. 5. Natural deduction rule for product free Lambek calculus

From normal natural deductions to cut-free proof nets Let
us briefly recall some basic facts on natural deduction for the product
free Lambek calculus, from our book [30] section 2.6 pages 33-39]. In
particular we shall need the following notation. Given a formula C, and
a sequence of length p of pairs consisting of a letter ¢; (where g; € {l,7})
and a formula G; we denote by

C(e1,G1),- -, (ep, Gp)]

the formula defined as follows:
ifp=0 C[]=C
if Ep = l C[(81,G1), ey (Ep_l,Gp_l), (&‘p,Gp)] =

GP \ C[(Elv Gl)v RN (517—17 GP—l)]
if Ep =T C[(E1,G1), ceey (€p71,Gp71), (6p, Gp)] =

C[(Ela G1)7 sy (EP*17 prl)] / GP
An important property of normal natural deductions is that whenever
the last rule is an elimination rule, there is a principal branch leading
from the conclusion to a free hypothesis [30, proposition 2.10 page 35]
When a rule \¢ (resp. /c) is applied between a right premise A\ X (resp.
a left premise X / A) and a formula A as its left (resp. right) premise,
the premise A\ X (resp. a left premise X / A) is said to be the principal
premise. In a proof ending with an elimination rule, a principal branch
is a path from the root C = Xy to a leaf C[(e1,G1),...,(gp,Gp)] =
X, such that one has X; = C[(e1,G1),...,(gi,Gi)] and also X1 =
Cl(e1,G1),...,(gi+1,Gi+1)] and X; is the conclusion of an elimination
rule, \c if £;41 =1 and /. if ;41 =, with principal premise X;.1 and Gis1
as the other premise.



Let d be a normal natural deduction with conclusion C' and hypotheses
Hi,...,H,. The deduction d is inductively turned into a cut-free proof
net with conclusions H,—,...,H1—,C+ as follows (we only consider \
because / is symmetrical).

— If d is just an hypothesis A which is at the same time its conclusion
the corresponding proof net is the axiom A, A*.

— If d ends with a \ intro, from A, Hi,...,H, + B to Hi,...,H, +
A\ B, by induction hypothesis we have a proof net with conclusions
(Hn)-,...,(H1)-,A—, B+. The heterogeneous g rule applies since
B+ is heterogeneous positive and A- heterogeneous negative. A p
rule yields a proof net with conclusions (Hy,)-,...,(H1)—, A—pB+,
and A - pB+ is precisely (A\ B)+

— The only interesting case is when d ends with an elimination rule,
say \e. In this case there is a principal branch, say with hypothesis
C[(e1,G1),...,(ep,Gp)] which is applied to G;’s. Let us call I; =
HY, ..., H;“ the hypotheses of G;, and let d; be the proof of G; from
I;. By induction hypothesis we have a proof net m; with conclusions
(I)-, (Gi)+. Let us define the proof net 7% of conclusion C*- =
Cl[(e1,G1),...,(ek,Gk)]-, I for i < k and C+ by:

e if k =0 then it is an axiom C*, C (consistent with the translation
of an axiom)

e otherwise 7"*! is obtained by a times rule between the con-
clusions C*— of ©* and Gry1+ of mgy1 When ; = r then the
conclusion chose the conclusion of this link to Ggi1 + ®CF—
that is C* - |Gt = C**'— and when &; = [ the conclusion
is OF - ® Gii1+ that is Gra1 + \C’k— =k hence, in any case
the conclusions of 7" are C**'+ C'+ and the I} for i <k + 1.

The translation of d is simply 7?, which has the proper conclusions.
As the translation does not introduce any cut-rule, the result is a cut-free
proof net.

From cut-free proof nets to normal natural deductions
There is an algorithm that performs the reverse translation, presented
for multiplicative linear logic and linear lambda terms in [I5]. It strongly
relies on the correctness criterion, which makes sure that everything hap-
pens as indicated during the algorithm and that it terminates. This al-
gorithm always points at a formula in the proof net, and draws paths
in the proof net. Going up means going to an immediate sub formula,
and going down means considering the immediate super formula. The
algorithms label the proof net nodes with Lambek lambda terms that
are natural deductions written as terms, and the natural deduction that
translates the proof net is the Lambek lambda term labelling the output
of the proof net.

1. Enter the proof net by its unique output conclusion.

2. Go up until you reach an axiom. Because of the polarities, during
this upwards path, you only meet g-links, which correspond to the
introduction rules Arx?i or Alx?i, the T;s being the input formulae
(the hypotheses that are cancelled). Such formulae are labelled with
distinct variables z;.



3. Use the axiom link and go down with the input polarity. Hence you
only meet ® links (*) until you reach a conclusion or a g link. In
both cases, this formula is the type of the head-variable of the normal
Lambek A-term. If it is the premise of a g-link, then it is necessarily
a p link on the path of step [2| (because of the correctness crite-
rion). In this case, the head variable (the hypothesis of the principal
branch) is bound by the corresponding A, or A; of the previous step
Bl Otherwise it the head variable is free.

4. The output formulae that were left unlabelled when going down are
the output premises of the ® links (*) that we met at step To label
them, one goes up from theses output formulae, applying again step

The A-term that labels the output conclusion is normal: only variables
are applied to some arguments during the translation. It is easily read
as a normal natural deduction.

8.2 Learning product free Lambek grammars from
natural deduction

We have defined a bijective correspondence between cut free product free
proof nets and normal product free natural deduction. Therefore we also
have a correspondence between s proof frames and name free natural
deduction whose conclusion is s.

Hence, if one wishes to, it is possible to learn product free Lambek gram-
mars from natural deduction without names but the final s, as we did in
[I1]. Such structures are simply the generalisation to Lambek calculus of
the FA structures that are commonly used for basic categorial grammars
by [1326].

9 Conclusion and possible extensions

A criticism that can be addressed to our learning algorithm is that the
rigidity condition on Lambek grammars is too restrictive. One can say,
as in [26] that k-valued grammars can be learned by doing all the pos-
sible unifications that lead to less than k categories. Every successful
unifications yielding a grammar with less than k categories should be
kept, because in a later step it is quite possible that one works while
the others do not: hence this approach is computationally intractable.
An alternative is to use a precise part-of-speech tagger and to consider
one word with different categories as several distinct words. This looks
more accurate and has been carried out effectively, with the help of some
statistical techniques. [43129]

The principal weakness of identification in the limit is that too much
structure is required on the input examples. Ideally, one would like to
learn directly from strings, but in the case of Lambek grammars it has
been shown to be impossible in [16]. One may think that it could be
possible to try every possible structure on sentences as strings of words
as done in [26] for basic categorial grammars. Unfortunately, in the case



of Lambek grammars, with or without product, this cannot be done.
Indeed, there can be infinitely many structures corresponding to a sen-
tence, because a cancelled hypothesis does not have to be anchored in
one the finitely many words of the sentence. Hence we ought to learn
from structured sentences, as we did.

From the point of view of first language acquisition we know that some
structure is available, but it is unlikely that the structured sentences are
the proof frames of the present article. The real structure available to the
learner includes prosodic and semantic informations, and no one knows
how to formalise these structures in order to simulate the natural data
used during the actual language learning process. From a computational
linguistic perspective, our result is not as restrictive as it may seem. In-
deed, there exist tools that annotate corpora, and one may implement
other tools that turn standard annotations into the annotations we need.
These shallow and efficient processes may lead to structures from which
one can infer the proper structure for an algorithm like the one we pre-
sented in this paper. In the case of proof nets or frames, as observed
long ago, axioms express the consumption of the valencies. This is the
reason why, apart from the structure of the formulae, the structure of
the proof frames is not so different from dependency annotations and
such annotations can be used to infer categorial structures as done by
Moot and Sandillon-Rezer [43J29]. However, the automatic acquisition
of wide-coverage grammars for natural language processing applications,
certainly requires a combination of machine learning techniques and of
identification in the limit a la Gold, although up to now there are not so
many such works.

Grammatical formalisms that can be represented in Lambek grammars
can also be learnt like we did in this paper. For instance, a categorial
version of Stabler’s minimalist grammars [44] can be learnt that way as
the attempts by Fulop or by us show [I7UT1] This should be even better
with the so-called Categorial Minimalist grammars of Lecomte, Amblard
and us [2/3]
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