N
N

N

HAL

open science

Image thresholding framework based on 2D fractional
integration and Legendre moments’
A. Nakib, Y. Schulze, E. Petit

» To cite this version:

A. Nakib, Y. Schulze, E. Petit. Image thresholding framework based on 2D fractional integration and
Legendre moments’. IET Image Processing, 2012, 6 (6), pp.717-727. hal-00923845

HAL Id: hal-00923845
https://hal.science/hal-00923845

Submitted on 5 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00923845
https://hal.archives-ouvertes.fr

www.ietdl.org

{ET Journals

Published in IET Image Processing
Received on 11th October 2010
Revised on 28th November 2011
doi: 10.1049/iet-ipr.2010.0471

ISSN 1751-9659

Image thresholding framework based on
two-dimensional digital fractional integration
and Legendre moments’

A. Nakib Y. Schulze E. Petit

Laboratoire Images, Signaux et Systemes Intelligents (LISSI, E. A. 3956), Université Paris EST-Créteil, 61 avenue du
Général De Gaulle 94010, Créteil, France
E-mail: nakib@u-pec.fr

Abstract: In this study, the authors present a new image segmentation algorithm based on two-dimensional digital fractional
integration (2D-DFI) that was inspired from the properties of the fractional integration function. Although obtaining a good
segmentation result corresponds to finding the optimal 2D-DFI order, the authors propose a new alternative based on
Legendre moments. This framework, called two dimensional digital fractional integration and Legendre moments’ (2D-
DFILM), allows one to include contextual information such as the global object shape and exploits the properties of the 2D
fractional integration. The efficiency of 2D-DFILM is shown by the comparison to other six competing methods recently

published and it was tested on real-world problem.

1 Introduction

Image segmentation methods allow one to extract an object
from a background using some image features: grey level,
colour, texture and position. It is the important step in an
image processing system. Among the existing techniques,
thresholding is one of the most popular approaches because
of its simplicity, and multilevel thresholding plays an
important role in segmenting an image into multiple
meaningful regions and extracting their key features.

Many thresholding approaches have been developed over
the past years [1-7]. For example, Bazi et al. [1] presented
a parametric thresholding method. It finds the threshold
through parameter estimation under the assumption that the
object and background follow a generalised Gaussian
distribution. Otsu’s method [8] chooses the thresholds by
maximising the ratio of between-class variance to the total
variance. Kittler and Illingworth [3] determined the
threshold by minimising the misclassification error (ME)
probability. The method of Pun [5] achieves the threshold
by maximising the a posteriori entropy of the object and
background portions. Kapur ef al. [9] found some flaws in
Pun’s derivations and presented a revised version. Wang
et al. [7] determined the threshold by optimising a criterion
function deduced by image histogram and the Parzen
window technique.

Despite the multitude of image segmentation methods
proposed in the last three decades [10], the quest for more
effective methods continue. This is in part because of the
necessity to handle as broad a category of images as
possible and other part to meet the real-time demands in
practical applications such as biomedical imagery.
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The formalism of fractional order derivatives dates back to
correspondence between Leibniz and L Hospital in 1695 (see
[11]). A significant advantage of fractional differentiation
(derivative/integral) operators is that they can be applied to
functions that are not differentiable in the classical sense.
Unlike the integer order differentiation, the fractional order
differentiation at point x is not defined by an arbitrary small
neighbourhood of x. In other words, the fractional
differentiation is not a local property of a function. There
exist several well-known approaches to unification of
differentiation operators (integral and derivative), and their
extension to non-integer orders [12]. Recently, fractional
differentiation has found applications in various areas: in
control theory, it is used to determinate a robust command
control [13]; it is also used to solve the inverse heat
conduction problem [14]; other applications are reported for
instance in neuronal modelling [15], in image processing
[16—18] and in biomedical signal processing [19].

In this paper, we propose a method that addresses the major
drawbacks of classical thresholding methods: the lack of the
homogeneity of the solution, and the disregard of the spatial
distribution of pixels. Indeed, the proposed method makes
use of properties of the two-dimensional digital fractional
integration (2D-DFI). In this work, we show that using 2D-
DFI with an optimal order can provide better results than
previous approaches based on fractional derivation. Then, to
find the optimal the 2D-DFI order, we propose to use the
moments of Legendre. The whole proposed method is
called, two dimensional digital fractional integration and
Legendre moments’ (2D-DFILM).

The paper is organised as follows. In Section 2, the 2D-DFI
function is presented. In Section 3, we describe and analyse
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the proposed thresholding method based on 2D-DFI with an
arbitrary order. The optimisation of the 2D-DFI order using
Legendre moments’ is described in Section 4. The
performance of the proposed algorithm is discussed in
Section 5. Finally, we conclude in the last section.

2 Two-dimensional digital fractional
integration

In this section, we present the formalism of the 2D fractional
integration. Then, some of the properties of the 2D-DFI that
will be exploited are also presented and analysed.

The one-dimensional fractional integrals introduced by
Griinwald—Letnikov for a real continuous function f(t), is
expressed as follows [20, 21]

k

@) = tim hipz[j“]fu—jh) (1)
T

h=t—c Jj=0

where & € R™* is the fractional integral order, p € R*™* and

L‘?‘]=(a-(a+1)---(a+j—1)/j!), and ;! means the

factorial of j. ¢ and ¢ are real constants and correspond to
the upper and the lower limits of the differentiation.

For fixed k (the upper limit of the summation), the
fractional integral function, £A)(f), goes to 0, when & — 0.
To constrain f“)(t) to tend to non-zero limit, we have to
assume that k — oo when # — 0. Then, we denote the limit

of /(t) by

Jim f0) = DL (1) )
kh=t—c

In this paper, we consider the approximation of the discrete
fractional integration given by

k
Drn=3" [ ﬂf(t ) 3)

J=0

For simplicity, it is convenient to assume that ¢ = 0, and the
sampling step # = 1 and the number of nodes  is related by
t = kh. Definition (3) shows that the fractional integral of a
function at ¢ takes into account the past of the function f.

As an image can be considered as a 2D real bounded
function f(x, y), the approximation of the fractional
integrated image is then given by

[,‘:Mf]f(x—k,y—l) “

where M and N represent the number of past elements of f
considered to calculate the fractionally integrated image.
M x N represents the size of the ‘mask’, and |x| denotes
integer parts of x.

We define the values of the approximation of the
fractionally integrated pixels by

[M/2] LV/2]

~ o
D f(x,y) =
k=—|M/2] I=—|N/2]

L if D°f(x, ) > L
gy = 0. it D f(x,y) <0 (%)
D f(x,y) otherwise

where L is the total number of grey levels.

2
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2.1 Properties of the integrated image

In this section, we present a statistical interpretation of the
application of 2D-DFI to a 2D-function or an image. We
also propose to observe the average value of the integrated
image.

2.1.1 Homogeneity: To illustrate the application of the
2D-DFI to an image, we consider the image of a plane in
Fig. la. To analyse the transformation achieved on the
image features, the entropy of the integrated image for a
given 2D-DFI order («) is calculated.

The homogeneity of the image is increased by the
application of 2D-DFI to the original image. To measure
this homogeneity we used the entropy measure of the
image. It is known that the entropy decreases with the
increasing of the image homogeneity (non-uniformity of its
histogram). In Fig. 2, we can see this variation of image
homogeneity (image of Fig. 1a) for different values of 2D-
DFI order. It can be noted that entropy decreases in a
‘linear’ way with the decrease of 2D-DFI order from 0 to
—1; that behaviour corresponds also to an increase in a
linear way of the image homogeneity.

2.1.2 Average value: From expression (4), the function
g%(x, y) can be interpreted as the output image of a discrete
filter, where f(x, y) is the input image. The transfer
function, with discrete Fourier variables u and v which
correspond to the real variables x and y is

_ G%(u,v)
- F(u,v)
| M=iN-l

- MNhZa Z p(ka Z) exp_ha((u/N)k+(v/M)[)) (6)
k=0 I=

H%u, v)

From (6), we can easily show (by using the properties of the
2D Fourier transform) that the average value of the output
image, or the integrated 2D function, is defined by

3 1 M N
BE = py x H(0, 0) = py x W; ;p(k, ho (M

where u,and ,ug are the average values of the functions f'and
g for a given «, respectively, H is the 2D Fourier transform of
h(x, y). This assertion can also be interpreted from the
amplitude frequency responses in Fig. 3. From this analysis
we can explain the pixels’ grey-level decrease over all the
images.

3 Image thresholding with an arbitrary
2D-DFI order

In this section we present the proposed segmentation
algorithm with 2D-DFI with an arbitrary order («). Before
presenting the segmentation algorithm, we first analyse the
2D-DFI. Then, we show that the segmentation problem can
be solved using 2D-DFI. We end this section, with the
presentation of 2D-DFI algorithm.

In the previous works [18], the authors differentiate
fractionally the histogram of the original image in order to
separate the different classes. In [17], the authors
differentiate fractionally (derivate) the image and segment it
using its resulting histogram. Here, we fractionally integrate

IET Image Process., pp. 1-11
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Fig. 1 Modification of the dynamic of the image using 2D-DFI with different orders

a Original image

b Original dynamic of the image

¢ Integrated image with @ = —0.3

d Variation of the dynamic of the integrated image for « = —0.3
e Integrated image with « = —0.5

f Variation of the dynamic of the integrated image for « = —0.5
g Integrated image with o = —0.9

h Variation of the dynamic of the integrated image for « = —0.9

the original image and segment it without looking at its
histogram.

In [17] the properties of 2D-DF differentiation mask are
analysed. Indeed, in the one-dimensional case, authors in
[19] showed the correlation between the fractional
integration filters and band pass filters. The geometric
properties of the fractional are the opposite of those of the
fractional differentiation. In other words, the homogeneity
of the image increases in an exponential way when the 2D-
DFI order goes from 0 to —1. In Figs. 3a—d, we present
the frequency responses of the fractional integral masks for
different 2D-DFI order («): —0.1, —0.2, —0.4 and —0.6,

IET Image Process., pp. 1-11
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respectively. As one can remark, when the 2D-DFI order
increases, the contrast between the object and the
background is increased, and the noise reduction also
increases. This figure demonstrates the noise reduction
achieved by using these masks, this remark was also
claimed in [16, 17]. It explains also how the removal of
the background is achieved in Fig. 1, where only the
foreground appears. Indeed, these masks operate as a kind
of low-pass or band pass filters.

The algorithm consists of three steps: calculating the mask
with a given 2D-DFI order, filtering the input image and
thresholding the image. It is summarised in Algorithm 1.

3
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-0.1 -0.3 -0.5 -0.9
DFl order o

Fig. 2 Variation of the entropy of the original image in Fig. la for
different 2D-DFI order

Fig. 4 shows an example of the thresholding using different
DFT order. Fig. 4a is a moon image from Matlab Mathworks
database, Fig. 40 illustrates an optimal segmentation result
with DFI order equal to —0.1 and Fig. 4c¢ presents a
segmentation result with —0.35.

Looking at the different results in Figs. 1 and 4, one can
remark that the segmentation problem is transformed to

Magnitude

Magnitude

a a=—0.1
b a=-02
c a=-04
d a=-0.6
4
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b

Fig. 4 Illlustration of thresholding algorithm

a Original image

b Thresholded image with —0.1

¢ Thresholded image with —0.35

The segmentation threshold was fixed to L-2 for all images

another problem that consists of finding the optimal 2D-DFI
order that allows to have a good image segmentation results.
Algorithm 1: Segmentation algorithm 2D-DFI.

1. Calculate the 2D-DFI mask for a given 2D-DFI order («).
2. Filter the original image using the obtained mask using
expression (4).

3. Threshold the image using expression (5).

4. Print the segmentation result.

Magnitude

Magnitude
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4 Optimisation of the 2D-DFI order

In this work, we propose to use the notion of prior shape
based on the Legendre moments’ to find the optimal 2D-
DFI order. In the following sections, we present briefly the
principles of calculation of the moments and from a prior
shape.

4.1 Legendre moments’

We define contextual information as the global object shape.
We propose to use Legendre moments’ computed from the
geometric centred and normalised moments as shape
descriptor because they provide a parametric representation
that can be made intrinsically invariant to affine
transformations and from which a shape prior can be
naturally defined in terms of distance or probability.

We consider that a shape can be represented by a function
f(x,y), where fis a binary function that associates 1 at all
points inside the object and 0 outside of this object. In the
following, we name ();, the set of pixels that defines
the region inside the object (including its edges) and .y
the set of pixels that belongs to the rest of the image
(see Fig. 5).

In the literature, most of approaches [22-24] use a
reference shapes. Usually, this reference consists of a binary
image and gives general information about the shape to find.

The basic idea is to encode the geometry of the segmented
object and that of the reference shape using a set of
parameters that are gathered in shape descriptors. Then, the
geometric constraint is defined as the distance between the
two descriptors. In our case, we consider the descriptor of
the reference image and that of the segmented image using
2D-DFI. These descriptors are defined by the projection of
the characteristic function of the image f(x, y) on an
identified basis.

Our goal is to build a basis using the orthogonal Legendre
polynomials calculated from the centred and normalised
geometric moments. This method allows to have the
property of scale and translation invariance that solves the
problem of the alignment of the two shapes (reference and
segmented one) and their sizes.

4.1.1 Geometric moments: The projection of the
characteristic function on polynomial basis {x” y?}, where
p + q is the order of the moment, allows to define the set of
the geometric moments {M, , (p, q) € N2} by

M,, = jL) Xy (x) dxdy = jjn Xy? dxdy ®)

The scale and translation invariance can be obtained by

Qex( @

Fig.5 [lllustration of the set ()

IET Image Process., pp. 1-11
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changing the basis, the new basis has the barycentre of the
object (¥, ) as origin. Then, we define the moments by

Mgﬂzjj (x = 3F (v — 7" dudy ©)

‘Qim

The scale invariance can be easily obtained by changing the
variables [23, 24]. Then, the geometric moments (centred
and normalised) are defined by

1 - _
Mpq = Q. |Prat2)2 j[ =Xy —=y'dedy  (10)
| 1nt| O,

int

where |Q;,| is the area of the object, and (x,
y) € [—1, 1] x [—1, 1] as in [24]. The coordinates (x, y) are
defined by
o1
x,=—-1+ <Z—E>Ax
1 an
y=-1+ (j—§>Ay
and
2
Ax, = —
M (12)
M x N is the size of the image, i=1, 2, ..., M and

j=12,...,N.

The basis used for computing the geometric moments is not
orthogonal. As some problems coming from the redundancy
of the information appear, we use the Legendre
polynomials basis.

However, other geometric moments can be used as: Zernik
moments’ and the angular radial transform used in MPEG-7
but geometric moments that are not invariant to rotation as
Hu moments’ cannot be used and require reformulation.

4.1.2 Normalised and centred moments of
Legendre: The polynomials of Legendre are denoted by
P,(x) and exist in the interval [—1, 1]. Generally, they are
defined by

x dnn o =1y (13)

1
Pyx) = X o

where n is the order of the polynomial. A recursive
formulation of these polynomials is given in [24]. Using
these polynomials we define the moments of Legendre with
QOC[-1,1] x[-1,1]

y @+ DHEg+D)
P 4

j I PP, () dxdy (14

int

In the following we denote C, , = ((2p + 1)(2q + 1)/4).
The polynomials of Legendre can be also described by the
following formula

&mzi%f (15)
i=0

5
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where the coefficients a,; are defined by [25] (see (16))
The use of this formulation of the polynomial shows the
relation between the geometric centred and normalised
moments (8) and the centred and normalised Legendre
moments’ (16). Then, we obtain the centred and normalised
Legendre moments:

A =G

P Ap,i%q i, j (17)

P4
i=0 j=0

4.1.3 Application of the geometrics shape
constraints to the segmentation problem: In this
paragraph, we introduce the notion of geometric shape
constraints. We first define energy of shape prior

Q) — A2 (18)

int

Jform(‘Qint) = ‘[j

Q

where A();,) are the normalised and centred Legendre
moments’ for the segmented image and A™" for the
reference image.

Our goal is to compare the Legendre moments’ of the
reference and the segmented shapes. Indeed the 2D-DFI
order is optimal when the difference is minimal, which
means that we want to find the order which minimises Jgy, -

We can finally describe the problem as following

0(* suchas Jf(:)rm (‘Qint) = aé\{lj?O] Jflérm(Qint) (19)

where " is the 2D-DFI optimal order and Jg,..(Q,,) the
energy of shape prior for an image segmented with .

4.2 Proposed algorithm

We propose an algorithm that consists of two main procedures:
the application of 2D-DFTI, then the LM, for finding the optimal
order. The drawback of classical thresholding methods is
that segmented objects are not homogenous (pixels of the
object are not totally connected or consists of two regions).
To avoid this problem, we use LM to test every connected
region and save only that minimises the criterion Jgm,
defined in (18). After testing all values of the 2D-DFTI order,
the segmented region that has the minimal value corresponds
to the segmentation result.

We can summarise the proposed algorithm on three main
steps. The first consists of the calculation of the geometric
moments of the reference image (Fig. 6).

5 Results and discussions

In this section, we present the obtained segmentation
results using the proposed method, called 2D-DFILM, we
performed a comparison to six other methods: Otsu method
[8], Kapur et al. method [9], thersholding using digital
fractional differentiation (TDFD) method [18], one method
based on valley emphasis (VE) method [26], expectation
maximization (EM)-based algorithm method (EM) [1] and
Sahoo and Arora [27] method based on 2D Tsallis entropy

1. Calculation of the Legendre moments’ of the reference image
2. For a from -1 to 0 (step size 0.05):
a. Application of the DFI with the o order
b. Thresholding of the Integrated image
c. For each connected component
i. Calculation of the Legendre moments’ for the
current component (all the other components are
eliminated)

ii. Calculation of J:

d. Search of the minimal J ;m and the o* corresponding

3. Display of the image segmented by DFI with the order a*

Fig. 6 2D-DFILM algorithm

(TE), using synthetic images. Then, we present results on
other testing images from free Berkely University images
database [28]. This section ends with the segmentation
results on real-world application.

The proposed method was coded in Matlab version 7 and
run on the Intel Xeon 6 (X5650) processor at 2.66 GHz,
under Sentos (Linux) Operating system.

5.1 Performance analysis based on synthetic images

In this experience, we used a synthetic image with different
degrees of noise (Fig. 7). The images in Figs. 7a—c
correspond to the image in Fig. 7(1) noised by different
degrees of a multiplicative noise. Figs. 7d—f correspond to
the image in Figs. 8a—c noised by an additive white
Gaussian noise, respectively.

1 2
a b c
d e f

Fig. 7 Original and noised synthetic images

1 Original image
2 Reference image
a—f Noised synthetic images

crrn L

(n+1)!

a,; = 2 (=) + /20

0,

6
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otherwise
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Fig. 8 Performance analysis on synthetic images

Segmented images by TDFD
Segmented images by Otsu
Segmented images by Kapur M
Segmented images by EM method
e Segmented images by VE

f Segmented images by TE

g Segmented images by 2D-DFILM
h Segmented images by 2D-DFD

QU O SQ

In order to compare the performance of the proposed
method the six other methods, mentioned above, we used a
synthetic image with different degrees of noise (Fig. 7). To
measure the performance of these methods, we used the
ME criterion [10]. ME is defined in terms of correlation of
the images with human observation. It corresponds to the
ratio of foreground pixels incorrectly assigned to the
background, and vice versa. Then, ME is defined by

1By N Byl + |Fo N Fyl
[Bol + |Fo

ME(%) = (1 ) x 100 (20)

where background and foreground are denoted by B and Fg
for the original image, and by Bt and Fr for the thresholded
image, respectively. In the best case of ideal thresholding, ME
is equal to 0% and, in the worst case, ME value is 100%.
The comparison of the results provided by our method and
the six other methods, based on the segmentation of synthetic

images, is presented in Fig. 8. Table 1 presents a quantitative
study of these results. As it can be seen, the proposed method
provides (Fig. 9a) better results than the other methods, only
TDFD method provides a similar performance (Table 1,
image A), in this a low multiplicative noise was applied to
the original image [Fig. 7(1)]. As it can be seen, with the
increase of the noise, the proposed algorithm outperforms all
other competing methods. In order to show the efficiency of
the use of LM (in our experiments we used LM with the
order 15), the reference image is presented in Fig. 7(2), where
the object is not in the same place as in Fig. 7(1).

5.2 Image thresholding examples

In this subsection we present some segmentation results to
illustrate the performance of the proposed method, and we
end this subsection by showing its limitations.

In Fig. 8 with the original plane image is given in Fig. la. In
this example, the goal is to extract the plane from the

Table 1 Performance evaluation of the proposed method compared to competing methods
Image Segmentation methods
Otsu [8] Kapur et al. [9] TDFD [18] EM [1] VE [26] TE [27] 2D-DFILM 2D-DFD [17]
ME, % ME, % @ ME, % ME, % ME, % ME, % e ME, % e ME, %
A 0.45 5.61 0.60 0.17 8.68 0.34 0.64 -0.35 0.20 0.13 0.17
B 0.82 4.50 0.10 0.39 12.50 0.63 1.12 -0.35 0.27 0.13 0.40
C 12.21 4.97 0.40 3.30 28.87 11.59 12.90 -0.4 2.87 0.09 3.39
D 11.80 5.77 -0.83 5.71 5.74 5.90 5.90 -0.34 1.06 0.47 5.61
E 14.93 6.74 -0.82 6.51 6.60 13.22 6.58 -0.35 1.51 0.45 6.82
F 36.80 17.66 —-0.58 15.78 15.86 35.56 29.98 -0.4 6.43 0.26 15.89

IET Image Process., pp. 1-11
doi: 10.1049/iet-ipr.2010.0471
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background. The used reference image is presented in Fig. 9a,
one can see that the reference image is a simple picture of a
plane. The segmentation result using 2D-DFILM is presented
in Fig. 9b, where one can see the efficiency of the proposed
method. In order to evaluate the quality of the segmentation
result with different prior shapes that we present in Figs. 94, c,
e, g, i and k, and their corresponding segmentation results are
presented in Figs. 9b, d, f, h, j and I, respectively. One can
remark that in most of the cases obtained results are very
good. However, in the case of the prior shape of Fig. 9g the
proposed fails, this result can be explained by the geometry of
the prior shape. As we can see, this shape presents only the
profile view of a plane, consequently, the 2D-FILM converges

LR AR A G {

k

Fig. 9 [lllustration of the performance of DFLIM method with LM
order equal to 5 via the Segmentation of the original image
presented in Fig. 2a with different reference image

b 2D-DFILM segmentation result with & = —0.5 using reference image in a
d 2D-DFILM segmentation result with « = —0.5 using reference image in b
f 2D-DFILM segmentation result with « = —0.5 using reference image in e

h 2D-DFILM segmentation result with a = —0.75 using reference image in g
Jj 2D-DFILM segmentation result with & = —0.55 using reference image in 7
[ 2D-DFILM segmentation result with & = —0.5 using reference image in &

8
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0.25 0.15

e f

Fig. 10 [llustration of the performance of DFILM method

a Original image
b Reference image

¢ Segmentation result with « = —0.45
d Segmentation result with « = —0.35
e Segmentation result with & = —0.25
f Segmentation result with & = —0.15

For all experiments LM order is 5. The optimal segmentation result selected
by 2D-FILM is that presented in e

Table 2 2D-DFILM execution time analysis. In this example, we
segmented the original image an image of Fig. 1a

LM order LM time, s 2D-DFILM time, s
5 0.21 2.1

10 0.60 5.4

15 1.29 10.8

25 3.34 25.26

50 12.52 76.93

IET Image Process., pp. 1-11
doi: 10.1049/iet-ipr.2010.0471



to a shape that looks like a profile, and the segmentation
procedure fails.

A second example is presented in Fig. 10. In this case, the
goal is to extract the mushroom from the background. The
original image is in Fig. 10a, the reference image is in
Fig. 10b that represents an approximate shape of a
mushroom. The different segmentation results with different

www.ietdl.org

2D-DFI order, —0.45, —0.35, —0.25 and —0.15 are
presented in Figs. 10c—f, respectively. The optimal
segmentation result [that minimises the Jg,, criterion (17)]
is that presented in Fig. 10e. One can see that the
mushroom is well extracted from the background. Then, the
optimal value of the 2D-DFI order that allows this result is
a = —0.25, the order of the Legendre moments’ is 5.

Fig. 11 Segmentation of pathologic medical images

a Original MRI image
b and ¢ Original CT-scan images

d—f Segmentation results of images in a—c using 2D-DFILM (aqp = —0.15, —0.40 and —0.55, respectively)

g—i Superposition of the original image and the segmentation results
J Reference image

IET Image Process., pp. 1-11
doi: 10.1049/iet-ipr.2010.0471
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The limitations of the proposed method are mainly related
to the use of Legendre moments’. Indeed, 2D-FILM
computes Legendre moments as zero-order approximation,
in comparison with the theoretical definition. This means
that the computation of the moments is not accurate instead
some approximation errors are generated. These errors
affect not only the reconstruction performance of the
corresponding moments but also their discriminative ability.
Hosny [24] presented promising results, which calculate the
exact previous moment values.

Another limitation was observed: in the case of strongly
textured images, the contrast enhancement achieved by the
2D-DFI is not enough to allow different parts of an object
to be extracted at the same time. Then, objects cannot be
extracted even if we use high-order moments. For every
2D-DFTI order, we will extract only a part of the object. So,
in this case deformable-based methods are more suitable.

5.3 Computation complexity analysis

In this subsection, we present the computation complexity of
the proposed

e The computational complexity of the 2D-DFI is given
by: O(S) for a given 2D-DFI order «, where S is the
total number of pixels in the image and O(.) is Landau’s
function.

e The Legendre moments’ requires O(g X p° +p x q°)
operations, where p + ¢ is the order of the moments.

Therefore the total computational complexity of the proposed
method is O(g x p* +p x ¢°)+ O(S) for a given 2D-DFI
order a.

One can remark that the complexity of the 2D-DFT is lower
than the other competing methods because it consists of
applying the approximated fractional filter but the
optimisation of the order increases its complexity.

It is clear that the proposed 2D-DFILM method is more
complex than the other methods from the Iliterature.
However, the proposed can be parallelised easily and its
execution can decrease drastically.

In Table 2, we present the different execution time, in this
case our programme was not parallelised. The execution time
does not vary a lot from an image to another because the
complexity does not depend on the image size.

5.4 Real-world application

To illustrate the results of our segmentation algorithm on real-
world medical images, examples of brain magnetic resonance
images (MRI) and CT-scan images are presented in Fig. 11.
In this example, the presented pathology is the hydrocephalus,
also known as ‘water on the brain’ and is a medical condition
in which there is an abnormal accumulation of cerebrospinal
fluid in the ventricles, or cavities, of the brain. The goal is to
evaluate the size of the ventricles in order to evaluate the
pathology. The original MR images are presented in
Figs. 1la—c, CT-scan images and their segmentations are
presented in Figs. 11d—f, and the superposition of the
segmentation result on the original image is in Figs. 11g—i,
respectively. Then, the reference image is in Fig. 11;.

One can see that the segmentation results are good in most
of the cases independently of the modality of the acquisition
(MRI or CT-scan). The segmentation result of the image in
Fig. 11c, that is a CT-scan image, present some halls inside
the segmented region. This example shows the limitation of
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the proposed method. Indeed, the proposed method can fail
in the case of strongly textured images. To solve this
problem, one can perform a morphological closing to
achieve a fully homogeneous segmentation result.

6 Conclusions

In this paper, a new segmentation method based on 2D-DFILM
was presented. This method uses fractional differentiation with
negative order that corresponds to a fractional integration. The
different frequency characteristics of the filter were also
presented. The proposed method allows segmenting any
image with any 2D-DFI order. To find the best segmentation
or the optimal 2D-DFI order, the Legendre moments’ were
used. The proposed method, need an approximate reference
image for performing segmentation, it does not need a very
detailed description of the shape that the user wants to
extract. In the introduction, we presented the problem of
thresholding methods: regions in the same class are not
always connected. This problem was solved, by the use of
LM to find the optimal connected component that is similar
to the reference image. If the reference image is not
available, the Legendre moments’ cannot be used. In this
case, one can use the 2D-DFT algorithm to segment an image
but the optimal order has to be fixed.

We demonstrated, through some examples, that the
proposed thresholding method outperforms the classical
entropic thresholding method of Kapur et al. [9], Otsu’s
thresholding method [8] and other methods recently
published [1, 18, 26, 27].

In work in progress, we hybrid the proposed method with
level set based methods and graph cut methods. We also
work on the relation between the wavelet transform and the
fractional differentiation.
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