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Abstract

We consider the problem of distributed dictionary
learning, where a set of nodes is required to collec-
tively learn a common dictionary from noisy measure-
ments. This approach may be useful in several con-
texts including sensor networks. Diffusion cooperation
schemes have been proposed to solve the distributed
linear regression problem. In this work we focus on a
diffusion-based adaptive dictionary learning strategy:
each node records observations and cooperates with its
neighbors by sharing its local dictionary. The resulting
algorithm corresponds to a distributed block coordi-
nate descent (alternate optimization). Beyond dictio-
nary learning, this strategy could be adapted to many
matrix factorization problems and generalized to var-
ious settings. This article presents our approach and
illustrates its efficiency on some numerical examples.

Keywords: dictionary learning, sparse coding, dis-
tributed estimation, diffusion, matrix factorization,
adaptive networks, block coordinate descent.

1 Introduction

In a variety of contexts, huge amounts of high dimen-
sional data are recorded from multiple sensors. When
sensor networks are considered, it is desirable that com-
putations be distributed over the network rather than
centralized in some fusion unit. Indeed, centralizing all
measurements lacks robustness - a failure of the cen-
tral node is fatal - and scalability due to the needed
energy and communication resources. In distributed
computing, every node communicates with its neigh-
bors only and processing is carried out by every node
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in the network. Another important remark is that rele-
vant information from the data usually lives in a space
of much reduced dimension compared to the physical
space. The extraction of this relevant information calls
for the identification of some adapted sparse represen-
tation of the data. Sparsity is an important property
which favors the identification of the main components
that are characteristic of the data. Each observation is
then described by a sparse subset of atoms taken from
a redundant dictionary. We study the problem of dic-
tionary learning distributed over a sensor network in a
setting where a set of nodes is required to collectively
learn an adaptive sparse representation of independent
observations.

Learning an adaptive representation of the data is
useful for many tasks such as storing, transmitting or
analyzing the data to understand its content. A ba-
sic dictionary can be obtained by using a Principal
Component Analysis (PCA) also known as Karhunen-
Loève decomposition in signal processing. However the
number of atoms of such a decomposition is limited
to the dimension of the data space. A more adapted
representation is obtained by using a redundant dic-
tionary where for instance no orthogonality property
is imposed. While the number of potential character-
istic sources is large, the number of effective sources
which contribute to the signal observed by a sensor at
a single moment is much smaller. Many recent works
have shown the interest of learning a redundant dictio-

nary allowing for a sparse representation of the data,
see [TF11] for an up-to-date review. Furthermore, the
problem of dictionary learning belongs to the more gen-
eral family of matrix factorization problems that ap-
pear in a host of applications.

In this paper, we consider the situation where a set
of connected nodes independently record data from ob-
servations of the same kind of physical system: each
observation is assumed to be described by a sparse rep-
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resentation using a common dictionary for all sensors.
For instance, a set of cameras observe the same kind of
scenes or a set of microphones records the same kind
of sound environment.

The dictionary learning and the matrix factorization
problems are connected to the linear regression prob-
lem. Let us consider that a set of observations of the
system is described by a data matrix S where each
column corresponds to one observation. Assume that
S = DX. If either the coefficients X (resp. the dic-
tionary D) are known, the estimation of the dictio-
nary (resp. the coefficients) knowing S is a linear re-
gression problem. It appears that several recent works
have proposed efficient solutions to the problem of least
mean square (LMS) distributed linear regression, see
[CS10] and references therein. The main idea is to
use a so-called diffusion strategy: each node n carries
out its own estimation Dn of the same underlying lin-
ear regression vector D but can communicate with its
neighbors as well. The information provided to some
node by its neighbors is taken into account according
to some weights interpreted as diffusion coefficients.
Under some mild conditions, the performance of such
an approach in terms of mean squared error is simi-
lar to that of a centralized approach [ZS12]. Denot-
ing by Dc the centralized estimate which uses all the
observations at once, it can be shown that the error
IE‖Dn−D‖2 of the distributed estimate is of the same
order as IE‖Dc − D‖2: diffusion networks match the
performance of the centralized solution.

Our work gives strong indication that the classi-
cal dictionary learning technique based on block co-
ordinate descent on the dictionary D and the coeffi-
cients X can be adapted to the distributed framework
by adapting the diffusion strategy mentionned above.
Our numerical experiments also strongly support this
idea. The theoretical analysis is the subject of ongoing
work. Note that solving this type of matrix factor-
ization problems is really at stake since it corresponds
to many inverse problems: denoising, adaptive com-
pression, recommendation systems... A distributed ap-
proach is highly desirable both for use in sensor net-
work and for parallelization of numerically expensive
learning algorithms.

The paper is organized as follows. Section 2 formu-
lates the problem we are considering. Section 3 recalls
about dictionary learning techniques based on block
coordinate descent approaches. Section 4 presents the
diffusion strategy for distributed dictionary learning.
Section 5 shows some numerical experiments and re-
sults. Section 6 points to main claims and prospects.

2 Problem formulation

Consider N nodes over some region. In the following,
boldfaced letters denote column vectors, and capital
letters denote matrices. The node n takes qn mea-
surements yn(i), 1 ≤ i ≤ qn from some physical sys-
tem. All the observations are assumed to originate
from independent realizations sn(i) of the same under-
lying stochastic source process s. Each measurement
is a noisy measurement

yn(i) = sn(i) + zn(i) (1)

where z denotes the usual i.i.d. Gaussian noise with
covariance matrix Σn = σ2

nI. Our purpose is to learn
a redundant dictionary D which carries the character-
istic properties of the data. This dictionary must yield
a sparse representation of s so that:

∀n, yn(i) = Dxn(i)
︸ ︷︷ ︸

sn(i)

+zn(i) (2)

where xn(i) features the coefficients xnk(i) associated
to the contribution of atom dk, the k-th column in the
dictionary matrix D, to sn(i). The sparsity of xn(i)
means that only few components of xn(i) are non zero.
We are considering the situation where a unique dic-

tionary D generates the observations at all nodes. On
the contrary, observations will not be shared between
nodes (this would be one potential generalization). Our
purpose is to learn (estimate) this dictionary in a dis-
tributed manner thanks to in-network computing only,
see section 4. As a consequence, each node will locally
estimate a local dictionary Dn thanks to i) its obser-
vations yn and ii) communication with its neighbors.
The neighborhood of node n will be denoted by Nn, in-
cluding node n itself. The number of nodes connected
to node n is the degree νn.

3 Dictionary learning strategies

3.1 Problem formulation

Various approaches to dictionary learning have been
proposed [TF11]. Usually, in the centralized setting,
the q observations are denoted by y(i) ∈ R

p and
grouped in a matrix Y = [y(1), ...,y(q)]. As a con-
sequence, Y ∈ R

p×q. The dictionary (associated to
some linear transform) is denoted by D ∈ R

p×K : each
column is one atom dk of the dictionary. We gather
the coefficients associated to observations in a single
matrix X = [x(1), ...,x(q)]. We will consider learning
methods based on block coordinate descent or alternate
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optimization on D and X with a sparsity constraint on
X [Tse01, TF11].
The data is represented as the sum of a linear com-

bination of atoms and a noise term Z ∈ R
p×q:

Y = DX+ Z (3)

Since dictionary learning is amatrix factorization prob-
lem, it is an ill-posed problem. The dictionary is po-
tentially redundant and not necessarily orthogonal so
that K ≫ p. Some modeling is necessary to constrain
the set of possible solutions. Various conditions can
be considered (non-negative matrix factorization, or-
thogonal decomposition, ...). In general, a dictionary
is considered as adapted to the data if each observation
y(i) can be described by a little number of coefficients
x(i). One usually searches for a sparse representation

and imposes the sparsity of X [TF11].

3.2 Learning a redundant dictionary

for sparse representation

The properties of redundancy of the dictionary and
sparsity of the coefficients are complementary. The
extreme case would be the one where the dictionary
contains each one of the true data underlying the noisy
observation so that only one non zero coefficient in x(i)
would be sufficient to describe the observation y(i).
Then we would have K = q and X would be maximally
sparse (only 1 non zero coefficient per observation). Of
course this dictionary would not be very interesting
since its generalization power would be very limited.
A good dictionary must offer a compromise between
its fidelity to the learning data set and its ability to
generalize. The choice of the size of the dictionary is
often made a priori so that K > p to ensure some
redundancy and K < q to ensure it can capture some
general information shared by the data. For instance,
when working on image patches of size 8× 8 (the data
lives in dimension p = 64), it is typically proposed to
learn dictionaries of size 256 or 512 [AEB06, TF11].
In the classical setting, the noise is usually assumed

to be i.i.d. Gaussian noise so that the reconstruction
error is measured by the L2-norm. Sparsity of the co-
efficient matrix is imposed through a L0 relaxed to L1-
penalization in the mixed optimization problem:

(D,X) = argmin(D,X)

1

2
||Y −DX||22 + λ||X||1 (4)

Under some mild conditions, this problem is known to
provide a solution to L0-penalized problem (ideally we
would prefer to directly solve the L0-penalized prob-
lem) [SMF10].

3.3 Block coordinate descent

One way to solve problem (4) is to use block coordi-
nate descent [Tse01], that is alternate optimization on
X and D. There are several possibilities to do this, see
e.g. [AEB06]. For instance, after some initialization,
one may use gradient descents on X and D [OF96].
Such approaches are attractive since we know that lin-
ear regression by gradient descent can be translated in
the distributed framework [CS10].

One possible choice is the Basis Pursuit algorithm.
At each step, the forward-backward splitting (Basis
Pursuit Denoising with Iterated Soft Thresholding, see
[SMF10], p.161) iteratively estimates X by iterating
the following steps over s and t:

1. X(s,t+1/2) = X(s,t)+λµD(s,t)T
[
Y −D(s)X(s,t)

]

(gradient descent step, ∀n)

2. X(s,t+1) = SoftThresholdλµ(X
(s,t+1/2))

(soft thresholding step)

Then we update X(s+1) = X(s,T ) after T (typically 30
or 40) iterated soft thresholding. Note that one must

have µ ∈
(

0, 2
|||D|||2

)

where ||| · ||| denotes the spec-

tral norm. Then the dictionary D(s+1) can be updated
knowing X(s+1), using a simple gradient descent:

D̃(s+1) = D(s) + η
[

Y −D(s)X(s+1)
]

X(s+1)T (5)

which tends to minimize ||Y −DX||2F with respect to
D for 0 < η < 2/|||X|||2. The dictionary is then nor-
malized:

∀ ≤ k ≤ K,dk =
1

‖d̃k‖2
d̃k. (6)

One may also use Moore-Penrose pseudo-inverse fol-
lowing the MOD [EAHH99]:

D̃(s+1) = argmin
D

1

2
||Y −DX(s+1)||22

= YX(s+1)T ·
(

X(s+1)X(s+1)T
)−1

(7)

again followed by a normalization step. Other more so-
phisticated methods have also been proposed like FO-
CUSS [MKD01], K-SVD [AEB06] or the majorization
method [YBD09]. We do not discuss all these methods
here for sake of briefness. In the following, it appears
that methods rooted in the simple gradient descent up-
date is the easiest to adapt to the distributed diffusion
strategy. The comparison of performances of various
methods is under study.
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4 Distributed dictionary learn-

ing

4.1 Diffusion strategies for distributed

estimation

This section presents one particular effective diffusion
strategy to solve LMS distributed estimation problems,
see [CS10, ZS12] for a detailed presentation. Here we
focus on the Adapt-Then-Combine (ATC) strategy.
The Adapt-Then-Combine (ATC) strategy aims at

solving the problem of a scalar least mean squares lin-
ear regression over a sensor network. Observations
yn(i) are assumed to arrive sequentially at consecu-
tive instants i. In the usual setting [CS10], each sensor
records both a noisy scalar measurement yn(i) ∈ R and
a set of coefficients xn(i) under the assumption

yn(i) = wT
o xn,i + zn(i). (8)

The objective is to collectively estimate wo. The pur-
pose of ATC is that the sensors {n : 1...N} yield esti-
mates wn of the common underlying regression vector
wo from observations {yn(i);xn(i)} at time i. The cost
function under the assumption of Gaussian noise is:

J(x,w) =

N∑

n=1

IE|yn(i)−wTxn,i|
2

︸ ︷︷ ︸

Jloc(xn,i,w)

(9)

Let A, C ∈ (R+)N×N two matrices such that:

{
cℓ,n = aℓ,n = 0 if ℓ /∈ Nn,

1TC = 1T ,C1 = 1,1TA = 1T
(10)

where 1 is column vector of ones. The ATC algorithm
consists of 2 steps:

ψn,i = wn,i−1 + (Adapt) (11)

µw
n

∑

ℓ∈Nn

cwℓ,n xℓ,i−1[yℓ(i)−wT
n,i−1xℓ,i−1]

︸ ︷︷ ︸

∇wJloc(xℓ,i−1,wn,i−1)

wn,i =
∑

ℓ∈Nn

awℓ,nψℓ,i (Combine) (12)

The ATC algorithm can be seen as a distributed gradi-
ent descent where each sensor tries to estimate wo as
wn,i by exploiting its own measurement yn(i) as well as
information shared with its neighbors. Eq. (11) is the
Adapt or incremental step, eq. (12) is the Combine or
diffusion step which averages estimates from neighbors
of node n. As a consequence, a local (possibly aver-
aged if C 6= I) gradient with respect to w is computed

at each node. An intermediate updated version of the
local estimate of wo denoted by ψn,i is then obtained.
The final estimate at each node is a local average of
neighboring intermediate estimates.
In the sequel, we will focus on the case where obser-

vations are not shared between nodes so that matrix
C = (cℓ,n) is simply identity C = I. Various choices
can be considered for A. In the numerical experiments
below we typically work with either some a priori fixed
matrix A or with the relative degree variance:

aℓ,n =
νℓσ

2
ℓ∑

m∈Nn
νmσ2

m

(13)

The performance analysis of this ATC diffusion
strategies and some other variants can be found in
[ZS12]. The mean-square error of the ATC estimate of
wo is similar to that of the centralized version (which
would see all the observations at once). As a conclu-
sion, this diffusion strategy is very powerful to deal
with a distributed solution to a linear regression prob-
lem. Let us emphasize that in this setting each obser-
vation is made of a couple (yn,xn) where yn is a scalar.
In the dictionary learning problem, only the vector yn

will be observed and both the dictionary (therefore D
in place of wo) and the coefficient xn are to be jointly
estimated: this is a factorization problem.

4.2 Distributed alternate optimization

for dictionary learning

The ATC diffusion strategy for distributed estimation
described above originates the following approach to
distributed block-coordinate descent (alternate opti-
mization) for dictionary learning. We will mainly keep
the concept of diffusion to ensure communication be-
tween nodes: every node will share its dictionary es-
timate with its neighbors in Nn. Let us remark some
differences in our setting compared to setting of sec-
tion 4.1. Observations will be the vectors (not only
scalar) yn(i), i = 1...qn at node n. Observations are
taken simultaneously at each node, not sequentially, so
that a whole data matrix Yn is assumed to be avail-
able at node n. Here index i stands for iterations. The
case where data arrive sequentially at each node can
also be dealt with at the price of a natural adapta-
tion of the present approach. Note that the xn,i are
not known anymore: each node must estimate both
its local dictionary Dn and the coefficients Xn which
describe observations Yn = DnXn + Zn. At each it-
eration i, only the local dictionary estimates Dn,i are
assumed to be shared between neighbors, not observa-
tions, so that C = I in eq. (10). The algorithm goes
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Algorithm 1: ATC for sparse dictionary learning
Initialize Dn,0, ∀n (see in the text for various options).
Given a matrix A satisfying (10), i = 0,

Repeat until convergence of (Dn,i,Xn,i)n=1:N

For each node n repeat:

1) Optimization w.r.t. Xn,i (sparse rep.):
Given the dictionary, the coefficients are
iteratively updated through
For t = 1 :M (typically M = 30)

i) X
(t+1/2)
n,i = X

(t)
n,i+ λnµ

X
n DT

n,i(Yn −Dn,iXn,i)

(gradient descent step)

ii) X
(t+1)
n,i = SoftThresholdλnµX

n
(X

(t+1/2)
n,i )

EndFor (t)

2) Optimization w.r.t. Dn,i (dictionary):{
ψn,i+1 = Dn,i + µD

n (Yn −Dn,iXn,i)X
T
n,i

Dn,i+1 =
∑

ℓ∈Nk
aDℓ,nψℓ,i (diffusion)

EndFor (n)

i← i+ 1
EndRepeat

as follows. First the local dictionaries Dn,0 are initial-
ized to a random set of K observations (columns) from
Yn at node n. Then we iteratively solve the sparse
representation problem (4) at each node, for instance
using the forward-backward splitting method over a
large number M of iterations, see section 3.3. The
penalty parameter λn may be adjusted for each node
according to the local noise level σ2

n. Note that positive
learning rates µX

n (resp. µD
n ) must obey the condition

µX
n < 2

|||Dn,i|||2
(resp. µD

n < 2
|||Xn,i|||2

).

In summary, each node updates its dictionary as a
function of its local observations Yn (Adapt step) and
its neighbors’ dictionaries (Combine step). Sparse rep-
resentations are computed locally. Based on known
results for the ATC strategy in its usual setting, we
expect the present Algorithm 1 above converges to an
accurate estimate of the common underlying dictionary
D. Next section supports this intuition thanks to nu-
merical experiments on images.

5 Numerical experiments & re-

sults

We present some numerical experiments to illustrate
the relevance and efficiency of our approach. In the
spirit of the seminal work by Olshausen & Field [OF96]

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Examples of patches, (b) true dictionary
used for synthesis, (c) & (e) local dictionaries for 2 dif-
ferent nodes, (d) dictionary learnt from the usual cen-
tralized learning, (f) dictionary averaged over nodes’
estimates. Atoms have been reordered to make com-
parisons easier.

our algorithm was tested on datasets containing con-
trolled forms of sparse structure. We consider a set of
r × r image patches composed of sparse pixels. Each
pixel was activated independently according to an ex-
ponential distribution, P (x) ∝ e−|x|.
We consider the simple situation of a set of 4 nodes

in a symmetrically connected network. Thus we used
a symmetric matrix A such that:

A =







0.6 0.2 0 0.2
0.2 0.6 0.2 0
0 0.2 0.6 0.2
0.2 0 0.2 0.6







(14)

Note that nodes are not even directly connected one to
all the others.
Fig. 1 shows that all the nodes have consistently

learnt the same dictionary. Let us emphasize that these
dictionaries are consistent, in the sense that no local
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reordering was necessary at any step. All the nodal
dictionaries Dn are close to the same common dictio-
nary D. It appears that the mean-square error over all
estimates is similar to that obtained from the central-
ized dictionary learning procedure of section 3. There-
fore even though each nodeslocally solves a matrix fac-
torization problem from a particular disjoint subset of
observations, the same common dictionary is (approx-
imately) identified. This is made possible by the diffu-
sion principle which relies on a simple communication
between neighbors only.

6 Conclusion & Prospects

As a conclusion, we have presented an original algo-
rithm which solves the problem of distributed dictio-
nary learning over a sensor network. This is made pos-
sible thanks to a diffusion strategy which permits some
local communication between neighbors. Connected
nodes can exchange their local dictionaries which are
estimated from disjoint subsets of data. This algo-
rithm is the adaptation of usual dictionary learning
techniques for sparse representation to the context of
in-network computing. Some numerical experiments
illustrate the relevance of our approach. The theoret-
ical study of the algorithm is the subject of ongoing
work. Several improvements and generalizations can
also be considered. Many methods are available for
sparse coding. This choice is crucial to get better dic-
tionary estimates. We will study which method is most
adapted to this distributed setting. The optimization
of communication coefficients may be of some help as
well.
We believe that this approach to the general prob-

lem of distributed matrix factorization opens the way
towards many prospects and applications. Moreover,
as far as computational complexity is concerned, dis-
tributed parallel implementations are a potentially
interesting alternative to online learning techniques
[MBPS10].
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