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determine is the species of each tree in the ground plot. The
ABSTRACT o S . 9 .
recognition of the species in a mixed planting is essential for
The aim of the work presented in this paper is to develop many purposes such as, for example, wood volume
method for the automatic identification of tree species usingstimation for each species. But, to the best of our
Terrestrial Light Detection and Ranging (T-LiDAR) data. knowledge not much has been done regarding single tree
The approach that we propose analyses depth images buspecies identification based on TLS data. In this paper we
from 3D point clouds corresponding &80 cm segment of present our work on single tree species identification using
the tree trunk in order to extract characteristic shape featuresly ground plot TLS data. The common criteria used to
used for classifying the different tree species using thélentify the species of a single tree are the shape of the
Random Forest classifier. We will present the method usel¢aves, the general shape of the crown and the variations in
to transform the 3D point cloud to a depth image and thgeometry across the surface of the bark known as the
region based segmentation method used to segment tgeometic texture of the bark. Since forest inventory data
depth images before shape features are computed on taee mostly acquired during winter in order to reduce
segmented images. Our approach has been evaluated usouglusions due to leaves, and mainly so as to do the
two datasets acquired in two different French forests wittmeasurement outside the growing period of the trees, it
different terrain characteristics. The results obtainegl arcannot be envisaged to recognize the species based on the
very encouraging and promising. shape of the leaves. Finally, the bark is probably the most
Index Terms— Forest inventory, single tree SIOeciesdiscriminati.ng feature of _the species even if i_t i_s _subject to
recognition, depth images from B:D point clouds, dept char!gesdurmg the tree’s life becaus_e of age, injuries, and
image segr’nentation ' hm_od|f|ed growth pattern due to enwronm_ental d|sturbar_1ces.
' Figure 1 shows the bark texture of the five most dominant
1. INTRODUCTION species in European forests. They are the hornbeam, the oak,

. . ._the spruce, the beech and the pine.
Airborne and ground remote sensing tools, based on Light P P

Detection and Ranging (LIDAR) technology, are today & £
widely used in the forestry community for forest inventory | '
and management issues. Airborne methods have th

advantages of supplying planting level attributes mapping¢ I
at a forested massif scale. But, they generally lack pogCiSi = nornbeam  ocak spruce | peech pine
for accurate local estimation, particularly in the case of
heterogeneous planting. Consequently, for more accurate
estimations of the dendro-metric attributes such as th@®ne can notice that each of the five species has a
density of stems, the fine structure of the planting or the sitdistinguishable bark feature: the beech has a relatively
quality, it is necessary to realize forest inventory field plotssmooth surface, the spruce is less smooth compared to the
using T-LIDAR Scanners (TLS) that can produce highbeech and it has circular scars, the pine and the oak are
resolution three-dimensional (3D) point clouds withrough with vertical strips but the growth pattern is different,
centimeter to sub-centimeter precision [1]. Recently, thend the hornbeam is smooth with an undulating texture. We
Office National of Forests ("Office National des Foréts thus propose a method that analyzes the geometric variation
ONF") has started to develop a software tool namedf patterns or geométr texture of the 3D surface of the
"Computree" for the automatic measurement of foresbark in order to determine the species.

inventory attributes using TLS data [2]. Among the  The first step of our method as depicted in section 2
important attributes that "Computree” should be able taonsists in generating 2D depth map from a 3D point

Figure 1: Example of 3D mesh of the fivetree species



cloud of a segment of the tree trunk known as a "patch” Euclidean manifolds ifR?. A quantization function is
Then,aregion-based depth image segmentation operation is thus necessary to map the results of IsomaRirto the
performed so as to extract texture features for the tree 2D coordinatesX, Y) € N? of the pixels of the depth
species classification step. Section 3 describes the image.
experimental setting and discusses about the results obtained

on two datasets, D1 and D2, composédespectively 16 ¢: R >N (4)
patches per species and 30 patches per species. o(x,y,2) = (X,Y)
2. METHODOLOGY In equation (1) the mean of the distanckss computed

Our method consists of four steps as represented in Figure nee there may be sever.al 3D pmq(sx, ¥,2) that map to
the same pixel at coordinateX ) in the depth image.

The first step is a denoising step for removing ghost pomtilso it is possible that no 3D point(x,y,z) maps to a
using the commercially available RapidFé&Mmsoftware pixel, of coordinates X,Y). In that 'Célse a bicubic

(http://www.rapidform.com/). It will not be discussed here. interpolation is done in order to estimate a value for the

| Depth Image | | Depth Image ‘ plxel' .
| Computation |-={ Segmentation }- = The reference surface must be a sufficiently smoothed mesh
Point cloud | | Section 21 }_—ise'ﬂiﬂn 22 sl A0 where the main structure of the trunk is preserved and all the
dﬁzr;f:f,'o”rfn and geometric details have been filtered out. This is achieved
software g'e‘*fu?éﬁn“;“;” using Taubin'sl/x smoothing algorithnj5] which consists

in basically performing the Laplacian smoothing two
consecutive times with different scaling factors noteahd

w. Afirst step withA > 0 (shrinking step) and a second step
2.1 Depth image from areference surface with a negative scaling factqr<-i<0 (unshrinking step).
The values ofl andu are respectively equal to 0.6307 and

This step extracts and transforms the geometric dat&als ; . .
depth image. Geometric details are defined as the variatiorTs?‘6732 (values suggested by Taubin). Laplacian smoothing

of the geometric distances between the original mdsh consists in iteratively moving each of the vertices of the
and a smoothed versidv, as illustrated in Figure 3 mesh to a new position that corresponds to the weighted
' average position of the neighboring vertices. The new

Figure 2: Flow diagram of our method

" ' I j ﬂ,( ,. positionv'; of a vertex is givenby:
f 3 .
® ,' 3 Vimv+ 28y ©)
15 ® ( E (3
| I | )N’ﬁ‘ i \ ‘ wherey; is the current positiord, is a scalar that controls the
Object = Shape  + Details diffusion speed andv; the Laplacian operator, a weighted

sum of the difference between the current vexeand its
neighborsy;, given by the following equation:

Consequentlya depth image of the geometric details can be

Figure 3: 3D geometric texture model

modeled as Av; = z wij (v — vi) (6)
jetr
f: N2 >R o .
wherei is the set of all the neighbors of the vertgxw;;
fX.Y) _ (1) are the weights that are chosen to be equal for all the
= { Mean(d;) if 3d;: ¢(xiyi,21) = (X, ¥) neighbors and such thgyw; ; = 1.
bicubic interpolation if Ad; : ¢(x;,y;,2;) = (X,Y) ’

q ——beech

—=— pine
spruce

—=—oak
hornbeam

where

e d is the details for a point(x;,v;,z;) € M. d; is the
Euclidean distance betweefy;, y;, z;) andv (x',y’, z")
the nearest neighbor of(x;, y;, z;) in the original mesh
M. 7 (x',y',z") is determined using the efficient
Aligned Axis Bounding Box (AABB) tree structufa].

N
g

[
o

Median of the maximum curvature
o

o

20 40 60 80
Number of iterations

o

di=dw,0) =0 =2V + @i —y2+@-2)7 (2 _ _ _
Figure 4: The median of the maximum curvatures
7 = arg mingen,lIp; — vl A3) against the number of iterationsfor each of thefivetree
o species

e ¢(.) is the Isomap dimensionality reduction algarith . . . . . . .
proposed by Tenenbaum et al [4] followed by a raubin’s algorithm is run iteratively until a smooth surface is

quantization step. The latter step is necessary Sin&ptgined. The .smoothness of a surfac_e is quantified by the
Isomap transforms nonlinear manifolds iR® to minimum, maximum, mean and Gaussian curvatures of each



of the points of the mesh. A study of the median of thesén Figure 6, an example of a segmented depth image for
curvatures values as a function of the number of iterationsach of the five species is shown.

of Taubin's algorithm for several samples of the five specieg
to identify show that there is no significant difference in the

curvature against number of iterations curve for the fou

types of curvature values. We have thus decided to consid

only the median of the maximum curvatures curve, a
shown in Figure 4, to determine the smoothing stoppin ' L
criterion. We stop the smoothing process when the slope C hombeam - oak spruce . beech  pine

the tangent to the curve is less than or equal to -0.01. For . _ i
this value of the slope we have noticed that the mesh is  Figure6: Example of segmented depth images
sufficiently smoothed while preserving the main structure® 3 Feature extraction and classification

of the trunk. Figure 5 shows some examples of depth ] ) .
images. After segmenting the depth imagesarson the trunk will

I be represented by independent regidts assign them a set

| N of finite values representing quantitative attributes called

| features that describes the geometry and the directionality of
the regions. We used the regionprops() function of Matlab to
calculate the properties of the pre-segmented image regions

“hornbeam  oak | Spruce T pine including area, axis length (minor and major), orientation
Figure 5: Example of depth image of the five tree species and so on. . .

9 P P g ® The pre-segmented regions present hollow regions but
2.2 Region based segmentation even salient regions can be very discriminative in some

ases (strips size in pines is more important than in the oak).

Tree trunk texture has several discriminating criteria tha .
g 0, we deduce the complement of the segmented image and

can be categorized through ithdegree of roughness which ;
is already present in the depth information: shape (fo\‘ve compute.tr_]e ;hape features ofthe regions.

example, spruce has circular scars) or directionality of the Severe injuries may occur during the life of the tree
textures (for example, the orientation of the strips iscaus.mg_cqnsplerab.le (_iamages to.th.e tree bark _that change
different between hornbeam and pir@yir tree trunk depth its discriminating criteria. Also, variations of the size of the
images segmentation method should thus highlight th cars that depend strongly on the age of the tree and the

shapes and theidirectionalities. For that, we propose a istance to the scanner will lead to a dispersbrthe

region-based segmentation of the depth images which Céﬂature values. To evaluate the inter-class variability, we
be described as follows: consider the mean, the standard deviation and the median of

each feature of all the regions. Classification is done using
Stepl: we apply a median filter using 30x30 window to  the Random Forest (RF) classifier proposed by Breiman [8]
reduce noise and a contrast stretching to improve thi order to classify the textures and thus the tree species.
visibility and the contrast of the features. The size of the
windows depends on the minimum size of the scars. 3. EXPERIMENTAL RESULTSAND DISCUSSION
Step2: we propose a new filtet5EdS adapted to our We used two different datasets D1 and D2 to validate our
textures for highlighting the featuredl/e were inspired by approach experimentallyhEtest site of D1 is state mixed
the laws filter masks [6]. The measures are derived frornforest in Montiers-sur-Saulx, FrancEhe second test site of
three simple vectors. L3[& 2 1] that represents averaging D2 is a mixed forest stands of grove and coppice-under-
and Ed3 =[-10 1] that calcukst first difference (edges) grove forests in Lorraine, France.
After convolution of these vectors with themselves, two  The T-LiDAR data were collected usirsgFaro Photon
vectors result: Level L5 = [1, 4, 6, 4, 1] and Edge Ed5 = [1120™ scanner. They are segmented according to the method
0, -2, 0, 1] Multiplying these vectorby considering L5 as a described in [2] and 3D patches are extracted to constitute
column vector and Ed5 aa row vector yields a 58  the datasetBoth datasets contain the five different species
Matrix. The resulting filterepresents a differentiator kernel of trees represented in Figure 16 patches per species in
of second order on rows, and a smoothing kernel on the1 and 30 patches per species in D2. Four tests are done
columns. It is an image denoising and contrast enhancemedyid in each test we train a separate RF classifier built with
filter. We convolve the depth images with the LSEd5 mask 1000 decisions trees. For tests 1 and 2, the datasets D1 and
followed by a moving-window absolute average operatiorD2 are respectively split into 10 equal size subsets dfd a

and a normalization by the local mean. _ fold cross-validation process is performed. In tests 3 and 4,
Step3: we repeat step 1 to reduce some blur effect using1 is used as the training dataset for testing D2, and vice
15x15windows for the median filter. versa. Confusion tables for the 4 tests are reported in Tables

Step 4: segmentation by Otsu thresholding [7].



1, 2, 3 and 4. Table 5 summarizes the min, max and averadataset and testing with the other dataset (tests 3 and 4 in
accuracy of the 4 tests as well as the standard deviation. Table 5) gives less good results than training and testing
with the same dataset (tests 1 and 2 in Table 5).

1 2 3 4 5 Acc. Nevertheless, the result is relatively good enough and we
1] 11.75 | 1916 | 025 | 0.166 | 1.916 | 734% can consider that the classifier performs reasonably well
2 0 14.083| 125 | 025 | 0416 | 88% since the two datasets D1 and D2 are composed of patches
3 0 0083 | 14833| 1.083 0 92.7% from. two totally different sites. From the 4 confusion
2 0 0 025 | 15583 0.166 . matrices of Tables 1, 2, 3 and 4, one can note that the
: : - 974% hornbeam is the species that has the least accuracy rate: an
5/ 05 | 083] 05 |00833] 14.083] 88% average accuracy of 71.2% over the 4 tests compared to
Table 1: Confusion matrix for D1 cross validation 85% to 91% for the other species.
(1: hornbeam, 2: oak, 3: spruce, 4. beech, 5: pine) 4. CONCLUSION
1 2 3 4 5 Acc. In this paper, a new method for tree species recognition with
1| 25666 | 1.25 0 0.666 | 2.416 | 85.6% T-LiDAR data has been proposed. The various experiments
2| 1.333 28 0 0 0.666 | 93.3% on two different data sets show that our method has good
3 0 0.083 | 28.083| 1.5 0.333 | 936% results (average accuracy over 78.8% with a standard
4| 1666 | 0416 | 1.916 | 25666 | 0.333 | 856% devia)tio'r:1 (t)f 10.9%kin t_lr;efworst cfz_‘;ls(;a' and 3.7% ;;? t.hetbest
case). Future work will focusnofinding more efficien
5 125 0.416 0 0.583 | 27.75 59 . Lo .
92.5% features that will better discriminate the sps@ad on the
Table 2: Confusion matrix for D2 cross validation quantification of the performance of our method on other
datasets.
1 2 3 4 5 Acc.
1 19 3 0 2 6 63.3% 5.ACKNOWLEDGEMENT
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3 0 0 27 3 0 90% de Bourgogne" under contract
4 3 0 4 23 0 76.7% N° 20109201AA0048506469 and
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