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ABSTRACT 

The aim of the work presented in this paper is to develop a 
method for the automatic identification of tree species using 
Terrestrial Light Detection and Ranging (T-LiDAR) data. 
The approach that we propose analyses depth images built 
from 3D point clouds corresponding to a 30 cm segment of 
the tree trunk in order to extract characteristic shape features 
used for classifying the different tree species using the 
Random Forest classifier. We will present the method used 
to transform the 3D point cloud to a depth image and the 
region based segmentation method used to segment the 
depth images before shape features are computed on the 
segmented images. Our approach has been evaluated using 
two datasets acquired in two different French forests with 
different terrain characteristics. The results obtained are 
very encouraging and promising. 

Index Terms— Forest inventory, single tree species 
recognition, depth images from 3D point clouds, depth 
image segmentation. 

1. INTRODUCTION 

Airborne and ground remote sensing tools, based on Light 
Detection and Ranging (LiDAR) technology, are today 
widely used in the forestry community for forest inventory 
and management issues. Airborne methods have the 
advantages of supplying planting level attributes mappings 
at a forested massif scale. But, they generally lack precision 
for accurate local estimation, particularly in the case of 
heterogeneous planting. Consequently, for more accurate 
estimations of the dendro-metric attributes such as the 
density of stems, the fine structure of the planting or the site 
quality, it is necessary to realize forest inventory field plots 
using T-LiDAR Scanners (TLS) that can produce high 
resolution three-dimensional (3D) point clouds with 
centimeter to sub-centimeter precision [1]. Recently, the 
Office National of Forests ("Office National des Forêts –
 ONF") has started to develop a software tool named 
"Computree" for the automatic measurement of forest 
inventory attributes using TLS data [2]. Among the 
important attributes that "Computree" should be able to 

determine is the species of each tree in the ground plot. The 
recognition of the species in a mixed planting is essential for 
many purposes such as, for example, wood volume 
estimation for each species. But, to the best of our 
knowledge not much has been done regarding single tree 
species identification based on TLS data. In this paper we 
present our work on single tree species identification using 
only ground plot TLS data. The common criteria used to 
identify the species of a single tree are the shape of the 
leaves, the general shape of the crown and the variations in 
geometry across the surface of the bark known as the 
geometric texture of the bark. Since forest inventory data 
are mostly acquired during winter in order to reduce 
occlusions due to leaves, and mainly so as to do the 
measurement outside the growing period of the trees, it 
cannot be envisaged to recognize the species based on the 
shape of the leaves. Finally, the bark is probably the most 
discriminating feature of the species even if it is subject to 
changes during the tree’s life because of age, injuries, and 
modified growth pattern due to environmental disturbances. 
Figure 1 shows the bark texture of the five most dominant 
species in European forests. They are the hornbeam, the oak, 
the spruce, the beech and the pine. 

 

Figure 1: Example of 3D mesh of the five tree species 

One can notice that each of the five species has a 
distinguishable bark feature: the beech has a relatively 
smooth surface, the spruce is less smooth compared to the 
beech and it has circular scars, the pine and the oak are 
rough with vertical strips but the growth pattern is different, 
and the hornbeam is smooth with an undulating texture. We 
thus propose a method that analyzes the geometric variation 
of patterns or geometric texture of the 3D surface of the 
bark in order to determine the species. 

The first step of our method as depicted in section 2 
consists in generating a 2D depth map from a 3D point 



cloud of a segment of the tree trunk known as a "patch". 
Then, a region-based depth image segmentation operation is 
performed so as to extract texture features for the tree 
species classification step. Section 3 describes the 
experimental setting and discusses about the results obtained 
on two datasets, D1 and D2, composed of respectively 16 
patches per species and 30 patches per species. 

2. METHODOLOGY 

Our method consists of four steps as represented in Figure 2. 
The first step is a denoising step for removing ghost points 
using the commercially available RapidForm software 
(http://www.rapidform.com/). It will not be discussed here. 

 

Figure 2: Flow diagram of our method 

2.1 Depth image from a reference surface 

This step extracts and transforms the geometric details into a 
depth image. Geometric details are defined as the variations 
of the geometric distances between the original mesh Mo 
and a smoothed version Ms as illustrated in Figure 3. 

 

Figure 3 : 3D geometric texture model 

Consequently, a depth image of the geometric details can be 
modeled as                                                                                                          (1) 

where  di is the details for a point                . di is the 
Euclidean distance between             and               
the nearest neighbor of             in the original mesh 
Mo.               is determined using the efficient 
Aligned Axis Bounding Box (AABB) tree structure [3].                                        (2)                      (3) 

      is the Isomap dimensionality reduction algorithm 
proposed by Tenenbaum et al [4] followed by a 
quantization step. The latter step is necessary since 
Isomap transforms nonlinear manifolds in    to 

Euclidean manifolds in   . A quantization function is 
thus necessary to map the results of Isomap in     to the 
2D coordinates (X, Y)     of the pixels of the depth 
image.           

                (4) 

In equation (1) the mean of the distances di is computed 
since there may be several 3D points          that map to 
the same pixel at coordinates (X, Y) in the depth image. 
Also, it is possible that no 3D point          maps to a 
pixel of coordinates (X, Y). In that case a bicubic 
interpolation is done in order to estimate a value for the 
pixel. 
The reference surface must be a sufficiently smoothed mesh 
where the main structure of the trunk is preserved and all the 
geometric details have been filtered out. This is achieved 
using Taubin's Ȝ/ȝ smoothing algorithm [5] which consists 
in basically performing the Laplacian smoothing two 
consecutive times with different scaling factors noted Ȝ and 
ȝ. A first step with Ȝ > 0 (shrinking step) and a second step 
with a negative scaling factor ȝ<-Ȝ<0 (unshrinking step). 
The values of Ȝ and ȝ are respectively equal to 0.6307 and 
−0.6732 (values suggested by Taubin). Laplacian smoothing 
consists in iteratively moving each of the vertices of the 
mesh to a new position that corresponds to the weighted 
average position of the neighboring vertices. The new 
position v'i of a vertex i is given by:               (5) 

where vi is the current position, Ȝ is a scalar that controls the 
diffusion speed and     the Laplacian operator, a weighted 
sum of the difference between the current vertex vi and its 
neighbors vj, given by the following equation:                          (6) 

where i* is the set of all the neighbors of the vertex vi. wi,j 
are the weights that are chosen to be equal for all the 
neighbors and such that         . 

 

Figure 4: The median of the maximum curvatures 
against the number of iterations for each of the five tree 

species 

Taubin's algorithm is run iteratively until a smooth surface is 
obtained. The smoothness of a surface is quantified by the 
minimum, maximum, mean and Gaussian curvatures of each 
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of the points of the mesh. A study of the median of these 
curvatures values as a function of the number of iterations 
of Taubin's algorithm for several samples of the five species 
to identify show that there is no significant difference in the 
curvature against number of iterations curve for the four 
types of curvature values. We have thus decided to consider 
only the median of the maximum curvatures curve, as 
shown in Figure 4, to determine the smoothing stopping 
criterion. We stop the smoothing process when the slope of 
the tangent to the curve is less than or equal to -0.01. For 
this value of the slope we have noticed that the mesh is 
sufficiently smoothed while preserving the main structures 
of the trunk. Figure 5 shows some examples of depth 
images. 

 

Figure 5: Example of depth image of the five tree species 

2.2 Region based segmentation 

Tree trunk texture has several discriminating criteria that 
can be categorized through their degree of roughness which 
is already present in the depth information: shape (for 
example, spruce has circular scars) or directionality of the 
textures (for example, the orientation of the strips is 
different between hornbeam and pine). Our tree trunk depth 
images segmentation method should thus highlight the 
shapes and their directionalities. For that, we propose a 
region-based segmentation of the depth images which can 
be described as follows: 

Step1: we apply a median filter using a 30×30 window to 
reduce noise and a contrast stretching to improve the 
visibility and the contrast of the features. The size of the 
windows depends on the minimum size of the scars. 
Step2: we propose a new filter L5Ed5 adapted to our 
textures for highlighting the features. We were inspired by 
the laws filter masks [6]. The measures are derived from 
three simple vectors. L3 = [1 2 1] that represents averaging 
and Ed3 = [-1 0 1] that calculates first difference (edges). 
After convolution of these vectors with themselves, two 
vectors result: Level L5 = [1, 4, 6, 4, 1] and Edge Ed5 = [1, 
0, -2, 0, 1]. Multiplying these vectors by considering L5 as a 
column vector and Ed5 as a row vector yields a 5 × 5 
Matrix. The resulting filter represents a differentiator kernel 
of second order on rows, and a smoothing kernel on the 
columns. It is an image denoising and contrast enhancement 
filter. We convolve the depth images with the L5Ed5 mask, 
followed by a moving-window absolute average operation 
and a normalization by the local mean. 
Step3: we repeat step 1 to reduce some blur effect using 
15×15 windows for the median filter. 
Step 4: segmentation by Otsu thresholding [7]. 

In Figure 6, an example of a segmented depth image for 
each of the five species is shown. 

 

Figure 6: Example of segmented depth images 

2.3. Feature extraction and classification 

After segmenting the depth images, scars on the trunk will 
be represented by independent regions. We assign them a set 
of finite values representing quantitative attributes called 
features that describes the geometry and the directionality of 
the regions. We used the regionprops() function of Matlab to 
calculate the properties of the pre-segmented image regions 
including area, axis length (minor and major), orientation, 
and so on. 

The pre-segmented regions present hollow regions but 
even salient regions can be very discriminative in some 
cases (strips size in pines is more important than in the oak). 
So, we deduce the complement of the segmented image and 
we compute the shape features of the regions. 

Severe injuries may occur during the life of the tree 
causing considerable damages to the tree bark that change 
its discriminating criteria. Also, variations of the size of the 
scars that depend strongly on the age of the tree and the 
distance to the scanner will lead to a dispersion of the 
feature values. To evaluate the inter-class variability, we 
consider the mean, the standard deviation and the median of 
each feature of all the regions. Classification is done using 
the Random Forest (RF) classifier proposed by Breiman [8] 
in order to classify the textures and thus the tree species. 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

We used two different datasets D1 and D2 to validate our 
approach experimentally. The test site of D1 is a state mixed 
forest in Montiers-sur-Saulx, France. The second test site of 
D2 is a mixed forest stands of grove and coppice-under-
grove forests in Lorraine, France. 

The T-LiDAR data were collected using a Faro Photon 
120 scanner. They are segmented according to the method 
described in [2] and 3D patches are extracted to constitute 
the datasets. Both datasets contain the five different species 
of trees represented in Figure 1: 16 patches per species in 
D1 and 30 patches per species in D2. Four tests are done 
and in each test we train a separate RF classifier built with 
1000 decisions trees. For tests 1 and 2, the datasets D1 and 
D2 are respectively split into 10 equal size subsets and a 10-
fold cross-validation process is performed. In tests 3 and 4, 
D1 is used as the training dataset for testing D2, and vice 
versa. Confusion tables for the 4 tests are reported in Tables 



1, 2, 3 and 4. Table 5 summarizes the min, max and average 
accuracy of the 4 tests as well as the standard deviation. 

 
 1 2 3 4 5 Acc. 

1 11.75 1.916 0.25 0.166 1.916 73.4% 
2 0 14.083 1.25 0.25 0.416 88% 
3 0 0.083 14.833 1.083 0 92.7% 
4 0 0 0.25 15.583 0.166 97.4% 
5 0.5 0.833 0.5 0.0833 14.083 88% 

Table 1: Confusion matrix for D1 cross validation 
(1: hornbeam, 2: oak, 3: spruce, 4: beech, 5: pine) 

 1 2 3 4 5 Acc. 
1 25.666 1.25 0 0.666 2.416 85.6% 
2 1.333 28 0 0 0.666 93.3% 
3 0 0.083 28.083 1.5 0.333 93.6% 
4 1.666 0.416 1.916 25.666 0.333 85.6% 
5 1.25 0.416 0 0.583 27.75 92.5% 

Table 2: Confusion matrix for D2 cross validation 

 1 2 3 4 5 Acc. 
1 19 3 0 2 6 63.3% 
2 4 26 0 0 0 86.7% 
3 0 0 27 3 0 90% 
4 3 0 4 23 0 76.7% 
5 3 0 0 1 26 86.7% 

Table 3: Confusion matrix for training on D1 and testing 
on D2 

 1 2 3 4 5 Acc. 
1 10 2 0 0 4 62.5% 
2 0 12 3 0 1 75% 
3 0 0 14 2 0 87.5% 
4 0 0 1 15 0 93.8% 
5 0 3 1 0 12 75% 

Table 4: Confusion matrix for training on D2 and testing 
on D1 

 Min Average Max  
Test 1 73.4% 87.9% 97.4% 8.0% 

Test 2 85.6% 90.1% 93.6% 3.7% 

Test 3 63.3% 80.7% 90% 9.8% 

Test 4 62.5% 78.8% 93.8% 10.9% 

Table 5: Accuracy rates 

We can note that training and testing with dataset D2 (test 2 
in Table 5) gives overall better accuracy rate than the other 
three tests. This may be due to the fact that D2 dataset 
contains more samples that are better distributed. The 
standard deviation of the accuracy is also smaller for test 2 
meaning that there is less dispersion in the recognition 
accuracy with respect to the species. Training with one 

dataset and testing with the other dataset (tests 3 and 4 in 
Table 5) gives less good results than training and testing 
with the same dataset (tests 1 and 2 in Table 5). 
Nevertheless, the result is relatively good enough and we 
can consider that the classifier performs reasonably well 
since the two datasets D1 and D2 are composed of patches 
from two totally different sites. From the 4 confusion 
matrices of Tables 1, 2, 3 and 4, one can note that the 
hornbeam is the species that has the least accuracy rate: an 
average accuracy of 71.2% over the 4 tests compared to 
85% to 91% for the other species. 

4. CONCLUSION 

In this paper, a new method for tree species recognition with 
T-LiDAR data has been proposed. The various experiments 
on two different data sets show that our method has good 
results (average accuracy over 78.8% with a standard 
deviation of 10.9% in the worst case and 3.7% in the best 
case). Future work will focus on finding more efficient 
features that will better discriminate the species and on the 
quantification of the performance of our method on other 
datasets. 
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