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Abstract

Thompson Sampling has been demonstrated in many complex bandit models, however the theoretical guaran-
tees available for the parametric multi-armed bandit are still limited to the Bernoulli case. Here we extend them
by proving asymptotic optimality of the algorithm using theJeffreys prior for1-dimensional exponential family
bandits. Our proof builds on previous work, but also makes extensive use of closed forms for Kullback-Leibler
divergence and Fisher information (and thus Jeffreys prior) available in an exponential family. This allow us to
give a finite time exponential concentration inequality forposterior distributions on exponential families that may
be of interest in its own right. Moreover our analysis coverssome distributions for which no optimistic algorithm
has yet been proposed, including heavy-tailed exponentialfamilies.

1 Introduction

K-armed bandit problems provide an elementary model for exploration-exploitation tradeoffs found at the heart
of many online learning problems. In such problems, an agentis presented withK distributions (also called arms,
or actions){pa}Ka=1, from which she draws samples interpreted as rewards she wants to maximize. This objective
induces a trade-off between choosing to sample a distribution that has already yielded high rewards, and choosing
to sample a relatively unexplored distribution at the risk of loosing rewards in the short term. Here we make the
assumption that the distributions,pa, belong to a parametric family of distributionsP = {p(· | θ), θ ∈ Θ} where
Θ ⊂ R. The bandit model is described by a parameterθ0 = (θ1, . . . , θK) such thatpa = p(· | θa). We introduce
the mean functionµ(θ) = EX∼p(·|θ)[X ], and the optimal armθ∗ = θa∗ wherea∗ = argmaxa µ(θa).

An algorithm,φ, for aK-armed bandit problem is a (possibly randomised) method forchoosing which distri-
bution to sample from next, given a history of previous arm choices and obtained rewards,Ht−1 := ((as, xs))

t−1
s=1:

each rewardxs is drawn from the distributionpas . We denote byφt the distribution over{1, . . . ,K} induced by
the historyHt−1: at timet the agent usingφ picks arma with probabilityφt(a). The agent’s goal is to design an
algorithm with low regret:

R(φ, t) = R(φ, t)(θ) := tµ(θ∗)− Eφ

[
t∑

s=1

xs

]

.

This quantity measures the expected performance of algorithm φ compared to the expected performance of an
optimal algorithm given knowledge of the reward distributions, i.e. sampling always from the distribution with the
highest expectation.

Since the early 2000s the “optimisim in the face of uncertainty” heuristic has been a popular approach to this
problem, providing both simplicity of implementation and finite-time upper bound on the regret (e.g. [4, 7]).
However in the last two years there has been renewed interestin the Thompson Sampling heuristic (TS). While
this heuristic was first put forward to solve bandit problemseighty years ago in [14], it was not until recently that
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theoretical analyses of its performance were achieved [1, 2, 10, 12]. In this paper we take a major step towards
generalising these analyses to the same level of generalityalready achieved for “optimistic” algorithms.

Thompson Sampling Unlike optimistic algorithm which are often based on confidence intervals, the Thompson
Sampling algorithmφTS,π0 uses Bayesian tools and puts a prior distributionπa,0 = π0 on eachθa. A posterior
distribution,πa,t, is then maintained according to the rewards observed inHt−1. At each time a sampleθa,t
is drawn from each posteriorπa,t and then the algorithm chooses to sampleat = argmaxa∈{1,...,K}{µ(θa,t)}.

ThereforeφTS,π0

t (a) is the posterior probability thata = a∗ given the historyHt−1.

Our Contributions TS has proved to have impressive empirical performances, very close to those of state of
the art algorithms such as DMED and KL-UCB [10, 9, 7]. Furthermore recent works [10, 2] have shown that
in the special case where eachpa is a Bernoulli distributionB(θa), TS using a uniform prior over the arms is
asymptotically optimal in the sense that it achieves the asymptotic lower bound on the regret provided by Lai and
Robbins in [11] (that holds for univariate parametric bandits). In this paper, we show this optimality property also
holds for1-dimensional exponential families if the algorithm uses the Jeffrey’s prior:

Theorem 1. Suppose that the rewards distributions belong to a1-dimensional canonical exponential family and
thatπJ is the Jeffrey’s prior. Then,

lim
T→∞

R(φTS,πJ , T )

lnT
=

K∑

a=1

µ(θa∗)− µ(θa)

K(θa, θa∗)
, (1)

where K(θ, θ′) := KL(pθ, p′θ) is the Kullback-Leibler divergence betweenpθ andp′θ.

This theorem follows directly from Theorem 2. In the proof ofthis result we provide in Theorem 4 a finite-time,
exponential concentration bound for posterior distributions of exponential family random variables, something
that to the best of our knowledge is new to the literature and of interest in its own right. Our proof also exploits
the explicit connection between the Jeffreys prior, Fisherinformation and the Kullback-Leibler divergence in
exponential families.

Related Work Another line of recent work has focused on distribution-independent bounds for Thompson Sam-
pling. [2] establishes thatR(φTS,πU , T ) = O(

√

KT ln(T )) for Thompson Sampling for bounded rewards (with
the classic uniform prior on the underlying Bernoulli parameter). [13] go beyond the Bernoulli model, and give an
upper bound on the Bayes risk (i.e. the regret averaged over the prior) independent of the prior distribution. For
the parametric multi-armed bandit withK arms described above, their result states that the regret ofThompson
Sampling using a priorπ0 is not too big when averaged over this same prior:

Eθ∼π⊗K
0

[R(φTS,π0 , T )(θ)] ≤ 4 +K + 4
√

KT log(T ).

Building on the same ideas, [6] have improved this upper bound to 14
√
KT . In our paper, we rather see the

prior used by Thompson Sampling as a tool, and we want therefore to obtain garantees for any given problem
parametrized byθ.

[13] also use Thompson Sampling in more general models, likethe linear bandit model. Their result is a bound
on the Bayes risk that does not depend on the prior, whereas Agrawal and Goyal give in [3] a first regret bound for
this model. Linear bandits consider a possibly infinite number of arms whose mean rewards are linearly related
by a single, unknown coefficient vector. Once again, the analysis in [3] encounters the problem of describing the
concentration of posterior distributions. However by using a conjugate normal prior, they can employ explicit the
concentration bounds available for Normal distributions to complete their argument.

Paper Structure In Section 2 we describe important features of the one-dimensional canonical exponential
families we consider, including closed-form expression for KL-divergences and the Jeffrey’s prior. Section 3
gives statements of the main results, and provides the proofof the regret bound. Section 4 proves the posterior
concentration result used in the proof of the regret bound.
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2 Exponential Families and Jeffreys Priors

A distribution is said to belong to a one-dimensional canonical exponential family if it has a density with respect
to some reference measureν of the form:

p(x | θ) = A(x) exp(T (x)θ − F (θ)), (2)

whereθ ∈ Θ ⊂ R. T andA are some fixed functions that characterize the exponential family andF (θ) =
log
(∫

A(x) exp [T (x)θ] dλ(x)
)
. Θ is called theparameter space, T (x) the sufficient statistic, andF (θ) the

normalisation function. We make the classic assumption thatF is twice differentiable with a continuous second
derivative. It is well known [16] that:

EX|θ(T (X)) = F ′(θ) and VarX|θ[T (X)] = F ′′(θ)

showing in particular thatF is strictly convex. The mean functionµ is differentiable and stricly increasing,
since we can show that

µ′(θ) = CovX|θ(X,T (X)) > 0.

In particular, this shows thatµ is one-to-one inθ.

KL-divergence in Exponential Families In an exponential family, a direct computation show that theKullback-
Leibler divergence can be expressed as a Bregman divergenceof the normalisation function, F:

K(θ, θ′) = DB
F (θ

′, θ) := F (θ′)− [F (θ) + F ′(θ)(θ′ − θ)] . (3)

Jeffreys prior in Exponential Families In the Bayesian literature, a special “non-informative” prior, one which
is invariant under re-parametrisation of the parameter space, is sometimes considered. It is called the Jeffrey’s
prior, and it can be shown to be proportional to the square-root of the Fisher informationI(θ). In the special case
of the canonical exponential family, the Fisher information takes the formI(θ) = F ′′(θ), hence the Jeffrey’s prior
for the model (2) is

πJ (θ) ∝
√

|F ′′(θ)|.
Under the Jeffrey’s prior, the posterior onθ aftern observations is given by

p(θ|y1, . . . yn) ∝
√

F ′′(θ) exp

(

θ

n∑

i=1

T (yi)− nF (θi)

)

(4)

When
∫

Θ

√

F ′′(θ)dθ < +∞, the prior is calledproper. However, stasticians often use priors which are not proper:
the prior is calledimproper if

∫

Θ

√

F ′′(θ)dθ = +∞ and any observation makes the corresponding posterior (4)
integrable.

Some Intuition for choosing the Jeffreys Prior In the proof of our concentration result for posterior distribu-
tions (Theorem 4) it will be crucial to lower bound the prior probability of anǫ-sized KL-divergence ball around
each of the parametersθa. Since the Fisher informationF ′′(θ) = limθ′→θ K(θ, θ′)/|θ − θ′|2, choosing a prior
proportional toF ′′(θ) ensures that the prior measure of such balls areΩ(

√
ǫ).

Examples and Pseudocode Algorithm 1 presents pseudocode for Thompson Sampling withthe Jeffreys prior for
distributions parametrized by their natural parameterθ. But as the Jeffreys prior is invariant under reparametriza-
tion, if a distribution is parametrised by some parameterλ 6≡ θ, the algorithm can use the Jeffrey’s prior∝

√

I(λ)
onλ, drawing samples from the posterior onλ. Note that the posterior sampling step (in bold) is always tractable
using, for example, a Hastings-Metropolis algorithm.

Some examples of common exponential family models are givenin Figure 2, together with the posterior distri-
butions on the parameterλ that is used by TS with Jeffreys prior. In addition to examples already studied in [7] for
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Name Distribution θ Prior onλ Posterior onλ

B(λ) λx(1 − λ)1−xδ0,1 log
(

λ
1−λ

)

Beta
(
1
2 ,

1
2

)
Beta

(
1
2 + s, 1

2 + n− s
)

N (λ, σ2) 1√
2πσ2

e−
(x−λ)2

2σ2 λ
σ2 ∝ 1 N

(
s
n ,

σ2

n

)

Γ(k, λ) λk

Γ(k)x
k−1e−λx1[0,+∞[(x) −λ ∝ 1

λ Γ(kn, s)

P(λ) λxe−λ

x! δN log(λ) ∝ 1√
λ

Γ
(
1
2 + s, n

)

Pareto(xm, λ)
λxλ

m

xλ+1 1[xm,+∞[(x) −λ− 1 ∝ 1
λ Γ (n+ 1, s− n log xm)

Weibull(k, λ) kλ(xλ)k−1e−(λx)k1[0,+∞[ −λk ∝ 1
λk αλ(n−1)k exp(−λks)

Figure 1: The posterior distribution after observationsy1, . . . , yn depends onn ands =
∑n

i=1 T (yi)

Algorithm 1 Thompson Sampling for Exponential Families with Jeffrey’sprior
Require: F normalization function,T sufficient statistic,µ mean function

for t = 1 . . .K do
Sample armt and get rewardsxt

Nt = 1, St = T (xt).
end for
for t = K + 1 . . . n do

for a = 1 . . .K do
Sampleθa,t from πa,t ∝

√

F ′′(θ) exp (θSa −NaF (θ))
end for
Sample armAt = argmaxaµ(θa,t) and get rewardxt

SAt = SAt + T (xt) NAt = NAt + 1
end for

whichT (x) = x, we also give two examples of more general canonical exponential families, namely the Pareto
distribution with known min value and unknown tail indexλ, Pareto(xm, λ), for whichT (x) = log(x), and the
Weibul distribution with known shape and unknown rate parameter, Weibull(k, λ), for whichT (x) = xk. These
last two distributions are not covered even by the work in [8], and belong to the family of heavy-tailed distributions.

For the Bernoulli model, one note futher that the use of the Jeffreys prior is not covered by the previous
analyses. These analyses make an extensive use of the uniform prior, through the fact that the coefficient of the
Beta posteriors they consider have to be integers.

3 Results and Proof of Regret Bound

An exponential familyK-armed banditis aK-armed bandit for which the reward distributionspa are known to be
elements of an exponential family of distributionsP(Θ). We denote bypθa the distribution of arma and its mean
by µa = µ(θa).

Theorem 2 (Regret Bound). Assume thatµ1 > µa for all a 6= 1, and thatπa,0 is taken to be the Jeffrey’s prior
overΘ. Then for everyǫ > 0 there exists a constantC(ǫ,P) depending onǫ and on the problemP such that the
regret of Thompson Sampling using the Jeffrey’s prior satisfies

R(φTS,πJ , T ) ≤ 1 + ǫ

1− ǫ

(
K∑

a=2

(µ1 − µa)

K(θa, θ1)

)

ln(T ) + C(ǫ,P).

Proof: We give here the main argument of the proof of the regret bound, which proceed by bounding the expected
number of draws of any suboptimal arm. Along the way we shall state concentration results whose proofs are
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postponed to later sections.

Step 0: Notation We denote byya,s the s-th observation of arma and byNa,t the number of times arma
is chosen up to timet. (ya,s)s≥1 is i.i.d. with distributionpθa . Let Y u

a := (ya,s)1≤s≤u be the vector of first

u observations from arma. Ya,t := Y
Na,t
a is therefore the vector of observations from arma available at the

beginning of roundt. Recall thatπa,t, respectivelyπa,0, is the posterior, respectively the prior, onθa at roundt of
the algorithm.

We letL(θ) := 1
2 min(supy p(y|θ), 1). For anyδa > 0, we introduce the event̃Ea,t = Ẽa,t(δa):

Ẽa,t =

(

∃1 ≤ s′ ≤ Na,t : p(ya,s′ |θa) ≥ L(θa),

∣
∣
∣
∣
∣

∑Na,t

s=1,s6=s′ T (ya,s)

Na,t − 1
− F ′(θa)

∣
∣
∣
∣
∣
≤ δa

)

. (5)

For alla 6= 1 and∆a such thatµa < µa +∆a < µ1, we introduce

Eθ
a,t = Eθ

a,t(∆a) :=
(
µ (θa,t) ≤ µa +∆a

)
.

On Ẽa,t, the empirical sufficient statistic of arma at roundt is well concentrated around its mean and a ’likely’
realization of arma has been observed. OnEθ

a,t, the mean of the distribution with parameterθa,t does not exceed
by much the true mean,µa. δa and∆a will be carefully chosen at the end of the proof.

Step 1: Concentration Results We state here the two concentration results that are necessary to evaluate the
probability of the above events.

Lemma 3. Let (ys) be an i.i.d sequence of distributionp(· | θ) andδ > 0. Then

P

(∣
∣
∣
∣
∣

1

u

u∑

s=1

[T (ys)− F ′(θ)]

∣
∣
∣
∣
∣
≥ δ

)

≤ 2e−uK̃(θ,δ),

whereK̃(θ, δ) = min(K(θ + g(δ), θ),K(θ − h(δ), θ)), with g(δ) > 0 defined byF ′(θ + g(δ)) = F ′(θ) + δ and
h(δ) > 0 defined byF ′(θ − h(δ)) = F ′(θ)− δ.

The two following inequalities that will be useful in the sequel can easily be deduced from Lemma 3. Their
proof is gathered in Appendix A with that of Lemma 3. For any arm a,

T∑

t=1

P(at = a, Ẽa,t(δa)
c) ≤

∞∑

t=1

P (p(ya,1|θa) ≤ L(θa))
t +

∞∑

t=1

2te−(t−1)K̃(θa,δa) (6)

T∑

t=1

P(Ẽa,t(δa)
c|Na,t > tb) ≤

∞∑

t=1

P (p(ya,1|θa) ≤ L(θa))
tb
+

∞∑

t=1

2t2e−(tb−1)K̃(θa,δa) (7)

The second result tells us that concentration of the empirical sufficient statistic around its mean implies concentra-
tion of the posterior distribution around the true parameter:

Theorem 4(Posterior Concentration). Letπa,0 be the Jeffreys’ prior. There exists constantsC1,a = C1(F, θa) >
0, C2,a = C2(F, θa,∆a) > 0, andN(θa, F ) s.t.,∀Na,t ≥ N(θa, F ),

1Ẽa,t
P
(
µ(θa,t) > µ(θa) + ∆a|Ya,t

)
≤ C1,ae

−(Na,t−1)(1−δaC2,a)K(θa,µ
−1(µa+∆a))+ln(Na,t)

wheneverδa < 1 and∆a are such that1− δaC2,a(∆a) > 0.
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Step 2: Lower Bound the Number of Optimal Arm Plays with High Probability The main difficulty adressed
in previous regret analyses for Thompson Sampling is the control of the number of draws of the optimal arm. We
provide this control in the form of Proposition 5 which is adapted from Proposition 1 in [10] whose proof, an
outline of which is given in Appendix D, explores in depth therandomised nature of Thompson Sampling. In
particular, we show that the proof in [10] can be significantly simplified, but at the expense of no longer being able
to describe the constantCb explicitly:

Proposition 5. For anyb ∈ (0, 1) there exists a constantCb(π, µ1, µ2,K) < ∞ such that
∞∑

t=1

P
(
N1,t ≤ tb

)
≤ Cb.

Step 3: Decomposition The idea in this step is to decompose the probability of playing a suboptimal arm into
principle and negligible components and control these components with the results from Steps 1 and 2:

T∑

t=1

P (at = a) =
T∑

t=1

P

(

at = a, Ẽa,t, E
θ
a,t

)

︸ ︷︷ ︸

(A)

+
T∑

t=1

P

(

at = a, Ẽa,t, (E
θ
a,t)

c
)

︸ ︷︷ ︸

(B)

+
T∑

t=1

P

(

at = a, Ẽc
a,t

)

︸ ︷︷ ︸

(C)

. (8)

The terms (B) and (C) are about concentration of the posterior on the suboptimal arm. An upper bound on term (C)
is given in (6), whereas a bound on term (B) follows from Lemma6 below. Although the proof of this lemma is
standard, and bears a strong similarity to Lemma 3 of [3], we provide it in Appendix C for the sake of completeness.

Lemma 6. For all actionsa and for all ǫ > 0, ∃Nǫ = Nǫ(δa,∆a, θa) > 0 such that

(B) ≤ [(1− ǫ)(1− δaC2,a)K(θa, µ
−1(µa +∆a))]

−1 ln(T ) + max{Nǫ, N(θa, F )}+ 1.

whereNǫ = Nǫ(δa,∆a, θa) is the smallest integer such that for alln ≥ Nǫ

(n− 1)−1 ln(C1,an) < ǫ(1− δaC2,a)K(θa, µ
−1(µa +∆a)),

andN(θa, F ) is the constant from Theorem 4.

When we have seen enough observations on the optimal arm, term (A) also becomes a result about the concen-
tration of the posterior, but this time for the optimal arm:

(A) ≤
T∑

t=1

P

(

at = a, Ẽa,t, E
θ
a,t | N1,t > tb

)

+ Cb ≤
T∑

t=1

P
(
µ(θ1,t) ≤ µ1 −∆′

a | N1,t > tb
)
+ Cb

≤
T∑

t=1

P

(

µ(θ1,t) ≤ µ1 −∆′
a, Ẽ1,t(δ1) | N1,t > tb

)

︸ ︷︷ ︸

B′

+

T∑

t=1

P

(

Ẽc
1,t(δ1) | N1,t > tb

)

︸ ︷︷ ︸

C′

+Cb (9)

where∆′
a = µ1−µa−∆a andδ1 > 0 remains to be chosen. The first inequality comes from Proposition 5, and the

second inequality comes from the following fact: if arm 1 is not chosen and arma is such thatµ(θa,t) ≤ µa +∆a,
thenµ(θ1,t) ≤ µa + ∆a. A bound on term (C’) is given in (7) fora = 1 andδ1. In Theorem 4, we bound the
conditional probability thatµ(θa,t) exceed the true mean. Following the same lines, we can also show that, on
Ẽ1,t(δ1),

P (µ(θ1,t) ≤ µ1 −∆′
a|Y1,t) ≤ C1,1e

−(N1,t−1)(1−δ1C2,1)K(θ1,µ
−1(µ1−∆′

a))+ln(N1,t).

For any∆′
a > 0, one can chooseδ1 such that1− δ1C1,1 > 0. Then, withN = N(P) such that the function

u 7→ e−(u−1)(1−δ1C2,1)K(θ1,µ
−1(µ1−∆′

a))+lnu

is decreasing foru ≥ N , (B′) is bounded by

N1/b +

∞∑

t=N1/b+1

C1,1e
−(tb−1)(1−δ1C2,1)K(θ1,µ

−1(µ1−∆′
a))+ln(tb) < ∞.
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Step 4: Choosing the Valuesδa and ǫa So far, we have shown that for anyǫ > 0 and for any choice ofδa > 0
and0 < ∆a < µ1 − µa such that1− δaC2,a > 0, there exists a constantC(δa,∆a, ǫ,P) such that

E[Na,T ] ≤
ln(T )

(1− δaC2,a)K(θa, µ−1(µa +∆a))(1 − ǫ)
+ C(δa,∆a, ǫ,P)

The constant is of course increasing (dramatically) whenδa goes to zero,∆a to µ1 − µa, or ǫ to zero. But one can
choose∆a close enough toµ1 − µa andδa small enough, such that

(1 − C2,a(∆a)δa)K(θa, µ
−1(µa +∆a)) ≥

K(θa, θ1)

(1 + ǫ)
,

and this choice leads to

E[Na,T ] ≤
1 + ǫ

1− ǫ

ln(T )

K(θa, θ1)
+ C(δa,∆a, ǫ,P).

Using thatR(φ, T ) =
∑K

a=2(µ1 − µa)E[Na,T ] concludes the proof.

4 Posterior Concentration: Proof of Theorem 4

For ease of notation, we drop the subscripta and let(ys) be an i.i.d. sequence of distributionpθ, with mean
µ = µ(θ). Furthermore, by conditioning on the value ofNs, it is enough to bound1Ẽu

P (µ(θu) ≥ µ+∆|Y u)
whereY u = (ys)1≤s≤u and

Ẽu =

(

∃1 ≤ s′ ≤ u : p(ys′ |θ) ≥ L(θ),

∣
∣
∣
∣
∣

∑u
s=1,s6=s′ T (ys)

u− 1
− F ′(θ)

∣
∣
∣
∣
∣
≤ δ

)

.

Step 1: Extracting a Kullback-Leibler Rate The argument rests on the following Lemma, whose proof can be
found in Appendix B

Lemma 7. Let Ẽu be the event defined by(5), and introduceΘθ,∆ := {θ′ ∈ Θ : µ(θ′) ≥ µ(θ) + ∆}. The
following inequality holds:

1Ẽu
P (µ(θu) ≥ µ+∆|Y u) ≤

∫

θ′∈Θθ,∆
e−(u−1)(K[θ,θ′]−δ|θ−θ′|)π(θ′|ys′)dθ′

∫

θ′∈Θ e−(u−1)(K[θ,θ′]+δ|θ−θ′|)π(θ′|ys′)dθ′
, (10)

with s′ = inf{s ∈ N : p(ys|θ) ≥ L}.

Step 2: Upper bounding the numerator of (10) We first note that onΘθ,∆ the leading term in the exponential
isK(θ, θ′). Indeed, from (3) we know that

K(θ, θ′)/|θ − θ′| = |F ′(θ)− (F (θ) − F (θ′))/(θ − θ′)|
which, by strict convexity ofF , is strictly increasing in|θ − θ′| for any fixedθ. Now sinceµ is one-to-one and
continuous,Θc

θ,∆ is an interval whose interior containsθ, and hence, onΘθ,∆,

K(θ, θ′)

|θ − θ′| ≥ F (µ−1(µ+∆)) − F (θ)

µ−1(µ+∆)− θ
− F ′(θ) := (C2(F, θ,∆))−1 > 0.

So forδ such that1− δC2 > 0 we can bound the numerator of (10) by:
∫

θ′∈Θθ,∆

e−(u−1)(K(θ,θ′)−δ|θ−θ′|)π(θ′|ys′)dθ′ ≤
∫

θ′∈Θθ,∆

e−(u−1)K(θ,θ′)(1−δC2)π(θ′|ys′)dθ′

≤ e−(u−1)(1−δC2)K(θ,µ−1(µ+∆))

∫

Θθ,∆

π(θ′|ys′)dθ′ ≤ e−(u−1)(1−δC2)K(θ,µ−1(µ+∆)) (11)

where we have used thatπ(·|ys′ ) is a probability distribution, and that, sinceµ is increasing, K(θ, µ−1(µ+∆)) =
infθ′∈Θθ,∆

K(θ, θ′).
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Step 3: Lower bounding the denominator of (10) To lower bound the denominator, we reduce the integral on
the whole spaceΘ to a KL-ball, and use the structure of the prior to lower boundthe measure of that KL-ball under
the posterior obtained with the well-chosen observationys′ . We introduce the following notation for KL balls: for
anyx ∈ Θ, ǫ > 0, we define

Bǫ(x) := {θ′ ∈ Θ : K(x, θ′) ≤ ǫ} .
We haveK(θ,θ′)

(θ−θ′)2 → F ′′(θ) 6= 0 (sinceF is strictly convex). Therefore, there existsN1(θ, F ) such that for
u ≥ N1(θ, F ), onB 1

u2
(θ),

|θ − θ′| ≤
√

2K(θ, θ′)/F ′′(θ).

Using this inequality we can then bound the denominator of (10) wheneveru ≥ N1(θ, F ) andδ < 1:
∫

θ′∈Θ

e−(u−1)(K(θ,θ′)+δ|θ−θ′|)π(θ′|ys′)dθ′ ≥
∫

θ′∈B1/u2(θ)

e−(u−1)(K(θ,θ′)+δ|θ−θ′|)π(θ′|ys′)dθ′

≥
∫

θ′∈B1/u2(θ)

e
−(u−1)

(

K(θ,θ′)+δ

√

2K(θ,θ′)

F ′′(θ)

)

π(θ′|ys′)dθ′ ≥ π
(
B1/u2(θ)|ys′

)
e
−
(

1+
√

2
F ′′(θ)

)

. (12)

Finally we turn our attention to the quantity

π
(
B1/u2(θ)|ys′

)
=

∫

B1/u2(θ)
p(y′s|θ′)π0(θ

′)dθ′

∫

Θ
p(y′s|θ′)π0(θ′)dθ′

=

∫

B1/u2 (θ)
p(y′s|θ′)

√

F ′′(θ′)dθ′

∫

Θ p(y′s|θ′)
√

F ′′(θ′)dθ′
. (13)

Now since the KL divergence is convex in the second argument,we can writeB1/u(θ) = (a, b). So, from the
convexity ofF we deduce that

1

u2
= K(θ, b) = F (b)− [F (θ) + (b− θ)F ′(θ)] = (b − θ)

[
F (b)− F (θ)

(b− θ)
− F ′(θ)

]

≤ (b− θ) [F ′(b)− F ′(θ)] ≤ (b− a) [F ′(b)− F ′(θ)] ≤ (b− a) [F ′(b)− F ′(a)] .

As p(y | θ) → 0 as y → ±∞, the setC(θ) = {y : p(y | θ) ≥ L(θ)} is compact. The mapy 7→
∫

Θ p(y|θ′)
√

F ′′(θ′)dθ′ < ∞ is continuous on the compactC(θ). Thus, it follows that

L′(θ) = L′(θ, F ) := sup
y:p(y|θ)>L(θ)

{∫

Θ

p(y|θ′)
√

F ′′(θ′)dθ′
}

< ∞

is an upper bound on the denominator of (13).
Now by the continuity ofF ′′, and the continuity of(y, θ) 7→ p(y|θ) in both coordinates, there exists an

N2(θ, F ) such that for allu ≥ N2(θ, F )

F ′′(θ) ≥ 1

2

F ′(b)− F ′(a)

b− a
and

(

p(y|θ′)
√

F ′′(θ′) ≥ L(θ)

2

√

F ′′(θ), ∀θ′ ∈ B1/u2(θ), y ∈ C(θ)
)

.

Finally, foru ≥ N2(θ, F ), we have a lower bound on the numerator of (13):
∫

B1/u2(θ)

p(y′s|θ′)
√

F ′′(θ′)dθ′ ≥ L(θ)

2

√

F ′′(θ)

∫ b

a

dθ′ =
L(θ)

2

√

(F ′(b)− F ′(a)) (b − a) ≥ L(θ)

2u

Puting everything together, we get that there exist constantsC2 = C2(F, θ,∆) andN(θ, F ) = max{N1, N2}
such that for everyδ < 1 satisfying1− δC2 > 0, and for everyu ≥ N , one has

1Ẽu
P(µ(θu) ≥ µ(θ) + ∆|Yu) ≤

2e
1+

√

2
F ′′(θ)L′(θ)u

L(θ)
e−(u−1)(1−δC2)K(θ,µ−1(µ+∆)).

Remark 8. Note that when the prior is proper we do not need to introduce the observationys′ , which significantly
simplifies the argument. Indeed in this case, in (11) we can useπ0 in place ofπ(·|ys′ ) which is already a probability
distribution. In particular, the quantity(13) is replaced byπ0

(
B1/u2(θ)

)
, and so the constantsL andL′ are not

needed.
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5 Conclusions

We have shown that choosing to use the Jeffrey’s prior in Thompson Sampling leads to an asymptotically optimal
algorithm for bandit models whose rewards belong to a1-dimensional canonical exponential family. The corner-
stone of our proof is a finite time concentration bound for posterior distributions in exponential families, which,
to the best of our knowledge, is new to the literature. With this result we built on previous analyses and avoided
Bernoulli-specific arguments. Thompson Sampling with Jeffreys prior is now a provably competitive alternative to
KL-UCB for exponential family bandits. Moreover our proof holds for slightly more general problems than those
for which KL-UCB is provably optimal, including some heavy-tailed exponential family bandits.

Our arguments are potentially generalisable. Notably generalising ton-dimensional exponential family bandits
requires only generalising Lemma 3 and Step 3 in the proof of Theorem 4. Our result is asymptotic, but the only
stage where the constants are not explicitly derivable fromknowledge ofF , T , andθ0 is in Lemma 9. Future
work will investigate these open problems. Another possible future direction lies the optimal choice of prior
distribution. Our theoretical guarantees only hold for Jeffreys prior, but a careful examination of our proof shows
that the important property is to have, for everyθa,

− ln

(
∫

(θ′:K(θa,θ′)≤n−2)

π0(θ
′)dθ′

)

= o (n) ,

which could hold for prior distributions other than the Jeffreys prior.
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A Concentration of the Sufficient Statistics: Proof of Lemma3, and In-
equalities (6) and (7)

Proof of Lemma 3.The proof of Lemma 3 follows from the classical Cramér-Chenoff technique (see [5]). For any
λ > 0.

A :=P

(

1

u

u∑

i=1

[T (yi)− F ′(θ)] ≥ δ

)

= P

(

eλ(
∑u

i=1[T (yi)−F ′(θ)]) ≥ eλuδ
)

≤e−λuδ
E

[

eλ(
∑u

i=1[T (yi)−F ′(θ)])
]

= e−u(δλ−φa(λ))

where we have used the Markov inequality, and where

φa(λ) := lnEX|θ
[

eλ(T (X)−F ′(θ))
]

= F (θ + λ)− F (θ)− λF ′(θ).

Now we optimize inλ by choosingλ > 0 that maximizes

δλ− φa(λ) = λ(δ + F ′(θ))− F (θ + λ) + F (θ) := f(λ).

f(λ) is differentiable inλ and its minimum,λ∗, satisfiesf ′(λ∗) = 0 i.e.

F ′(θ + λ∗) = δ + F ′(θ).

(Note thatλ∗ > 0 sinceF ′ is increasing). Finally, we get

A ≤ e−u((δ+F ′(θ))λ∗−F (θ+λ∗)+F (θ)) =e−u(F ′(θ+λ∗)λ∗−F (θ+λ∗)+F (θ)) = e−uK(θ+λ∗,θ).

The same reasoning leads to the upper bound

P

(

1

u

u∑

s=1

[T (ys)− F ′(θ)] ≤ −δ

)

≤ e−uK(θ−ν∗,θ),

whereν∗ is such thatF ′(θ − ν∗) = F ′(θ)− δ.

For the proof of inequalities (6) and (7), we intoduce the notationY u
a,s′ = Y s

a \{ya,s} (the firstu observations

of armsa exept observationya,s′). First note that we havẽEc
a,t ⊆ Ba,Na,t

⋃
Da,Na,t , with

Ba,s = (∀s′ ∈ [1, s], p(ya,s′ |θa) ≤ L(θa))

Da,s =



∃s′ ∈ {1, . . . s} :

∣
∣
∣
∣
∣
∣

1

s− 1

s∑

k=1,k 6=s′

(T (ya,k)− F ′(θa))

∣
∣
∣
∣
∣
∣

≥ δa





One then has

T∑

t=1

P(at = a, Ẽc
a,t(δ)) ≤ E

[
T∑

t=1

t∑

s=1

1(at=a,Na,t=s)(1Ba,s + 1Da,s)

]

≤ E

[
T∑

s=1

1Ba,s

]

+ E

[
T∑

s=1

1Da,s

]

≤
T∑

s=1

P (p(ya,s′ |θa) ≤ L(θa))
s
+

T∑

s=1

s∑

s′=1

P(EY s
a,s′

(δa)
c)

≤
∞∑

s=1

P (p(ya,s′ |θa) ≤ L(θa))
s
+

∞∑

s=1

se−(s−1)K̃(θa,δa),
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which gives inequality (6). To proof (7), we write:

T∑

t=1

P(Ẽa,t(δa)
c|Na,t > tb) ≤ E

[
T∑

t=1

t∑

s=tb

1Na,t=s(1Ba,s + 1Da,s)

]

≤
T∑

t=1

t∑

s=tb

P(p(ya,s′ |θa) ≤ L(θa))
s +

T∑

t=1

t∑

s=tb

s∑

s′=1

P(EY s
a,s′

(δa)
c)

≤
T∑

t=1

tP(p(ya,s′ |θa) ≤ L(θa))
tb +

T∑

t=1

t2 exp(−tbK̃(θa, δ)).

B Extracting the KL-divergence: Proof of Lemma 7

If we assume that the event̃Eu holds,s′ ≤ u. So, on this event we have

P (µ(θu) ≥ µ+∆|Y u) =

∫

θ′∈Θθ,∆

u∏

s=1,s6=s′
p(ys | θ′)p(ys′ |θ′)π(θ′)dθ′

∫

θ′∈Θ

u∏

s=1,s6=s′
p(ys | θ′)p(ys′ |θ′)π(θ′)dθ′

=

∫

θ′∈Θθ,∆

u∏

s=1,s6=s′

p(ys|θ′)
p(ys|θ) p(ys′ |θ

′)π(θ′)dθ′

∫

θ′∈Θ

u∏

s=1,s6=s′

p(ys|θ′)
p(ys|θ) p(ys′ |θ′)π(θ′)dθ′

=

∫

θ′∈Θθ,∆
e−(u−1)K[Y ′u,θ,θ′]π(θ′|ys′)dθ′

∫

θ′∈Θ
e−(u−1)K[Y ′u,θ,θ′]π(θ′|ys′)dθ′

whereπ(θ|ys′) denotes the posterior distribution onθ after observationys′ and

K[Y u
s′ , θ, θ

′] :=
1

u− 1

u∑

s=1,s6=s′

ln
p(ys | θ)
p(ys | θ′)

denotes the empirical KL-divergence obtained from the observationsY u
s′ = Y u \ {ys′}. Introducing

r(Y u
s′ , θ

′) = K[Y u
s′ , θ, θ

′]− EX|θ

(

ln
p(X | θ)
p(X | θ′)

)

,

we can rewrite

P (µ(θu) ≥ µ+∆|Y u) =

∫

θ′∈Θθ,∆
e−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′|ys′)dθ′

∫

θ′∈Θ
e−(u−1)(K[θ,θ′]+r(Y ′u,θ′))π(θ′|ys′)dθ′

.

Now, a direct computation show that

|r(Y ′u, θ′)| ≤ |θ − θ′|

∣
∣
∣
∣
∣
∣

1

u− 1

u∑

s=1,s6=s′

[T (ys)− F ′(θ)]

∣
∣
∣
∣
∣
∣

. (14)

Indeed, for that for anyθ, θ′ ∈ Θ

ln
p(y | θ)
p(y | θ′) = T (x)(θ − θ′)− [F (θ) − F (θ′)],
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and one also recalls that
K(θ, θ′) = F ′(θ)(θ − θ′)− [F (θ)− F (θ′)]. (15)

Hence

|r(Y u
s′ , θ, θ

′)| =

∣
∣
∣
∣
∣
∣

1

u− 1

u∑

s=1,s6=s′

[

ln
p(ys | θ)
p(ys | θ′)

−K(θ, θ′)

]
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

u− 1

u∑

s=1,s6=s′

[(T (x)− F ′(θ))(θ − θ′)]

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

1

u− 1

u∑

s=1,s6=s′

[T (ys)−∇F (θ)]

∣
∣
∣
∣
∣
∣

|θ′ − θ|.

The inequality (14) leads to the result, using that onẼu,
∣
∣
∣
∣
∣
∣

1

u− 1

u∑

s=1,s6=s′

[T (ys)− F ′(θ)]

∣
∣
∣
∣
∣
∣

≤ δ

C Proof of Lemma 6

From Theorem 4 we know that, forNa,t ≥ N(θa, F ),

1Ẽa,t
P((Eθ

a,t)
c | Ft) = 1Ẽa,t

P((Eθ
a,t)

c | Ya,t)

≤ C1,ae
−(Na,t−1)(1−δaC2,a)K(θa,µ

−1(µa+∆a))+lnNa,t

≤ e−(Na,t−1)((1−δaC2,a)K(θa,µ
−1(µa+∆a))−ln(C1,aNa,t)/(Na,t−1))

LetNǫ = Nǫ(δa,∆a, θa) be the smallest integer such that for alln ≥ Nǫ

ln(C1,an)

n− 1
< ǫ(1− δaC2,a)K(θa, µ

−1(µa +∆a)).

Defining

LT :=
ln T

(1 − ǫ)(1− δaC2,a)K(θa, µ−1(µa +∆a))

we have that for allt andT such thatNa,t − 1 ≥ max(LT , Nǫ, N(θa, F )),

1Ẽa,t
P(µ(θa(t) > µ(θa) + ∆a | Ft) ≤

1

T
.

Let τ = inf{t ∈ N | Na,t ≥ max(LT , Nǫ, N(θa, F )) + 1}. τ is a stopping time with respect toFt. Then,

T∑

t=1

P

(

at = a, (Eθ
a,t)

c, Ẽa,t

)

≤ E

[
τ∑

t=1

1(at=a)

]

+ E

[
T∑

t=τ+1

1(at=a)1Ẽa,t
1(Eθ

a,t)
c

]

= E[Na,τ ] + E

[
T∑

t=τ+1

1(at=a)1Ẽa,t
P
(
(Eθ

a,t)
c | Ft

)

]

= E[Na,τ ] + E

[
T∑

t=τ+1

1(at=a)1Ẽa,t
P (µ(θa(t) > µ(θa) + ∆a | Ya,t)

]

≤ LT + 1 +max(Nǫ, N(θa, F )) + E

[
T∑

t=τ+1

1

T

]

≤ LT +max(Nǫ, N(θa, F )) + 2.
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D Controling the Number of Optimal Plays: Outline Proof of Proposition
5

The proof of this proposition is quite detailed, and essentially the same as the proof given for Proposition 1 in [10],
which we will sometimes refer to. However, in generalising to the case of exponential family bandits we show how
to avoid the need to explicity calculate posterior probabilities that lead to Lemma 4 in [10]. While simplifying the
proof we loose the ability to specify the constants explicitly, and so the analysis becomes asymptotic, but holds for
everyb ∈]0, 1[.

Sketch of the proof and key results Let τj be the occurrence of thejth play of the optimal arm (withτ0 := 0).
Let ξj := (τj+1 − 1) − τj : this random variable measures the number of time steps between thejth and the

(j + 1)th play of the optimal arm, and so
∑K

a=2 Na,t =
∑N1,t

j=0 ξj . We then upper boundP(N1,t ≤ tb) as in [10]:

P(N1,t ≤ tb) ≤ P
(
∃j ∈

{
0, .., tb⌋

}
: ξj ≥ t1−b − 1

)
≤

⌊tb⌋
∑

j=0

P(ξj ≥ t1−b − 1
︸ ︷︷ ︸

:=Ej

) (16)

We introduce the intervalIj = {τj , τj + ⌈t1−b − 1⌉}: on the eventEj , Ij is included in{τj , τj+1} and no draw of
arm 1 occurs onI. We also introduce for each arma 6= 1 da := µ1−µa

2 .

The idea of the rest of the analysis is based on the following remark. If on a subintervalI ⊆ [τj , τj+1[ of size
f(t) arm 1 is not drawn and all the samples of the suboptimal arms fall below µ2 + d2 < µ1, then for alls ∈ I,
µ(θ1,s) ≤ µ2 + d2. OnI, the sequence(θ1,s) is i.i.d. with distributionπ1,τj , and hence,

P(∀s ∈ I, µ(θ1,s) ≤ µ2 + δ) ≤
(
P
(
µ(θ1,τj) ≤ µ2 + δ2

))f(t)

At this point, an asymptotic result, telling that the posterior onθ1 concentrates to a Dirac inθ1 (the Bernstein-Von-
Mises theorem, see [15]) , leads to

P(µ(θ1,τj ) ≤ µ2 + δ2) →
j→∞

0.

Assuming that∀j, P(µ(θ1,τj) ≤ µ2 + δ2) 6= 1, we have shown the following Lemma, which plays the role of an
asymptotic couterpart for Lemma 3 in [10].

Lemma 9. There exists a constantC = C(π0) < 1, such that for every (random) intervalI included inIj and
for every positive functionf , one has

P (∀s ∈ I, µ(θ1,s) ≤ µ2 + δ2, |I| ≥ f(t)) ≤ Cf(t).

Another key lemma is the following which generalizes Lemma 4in [10]. The proof of this lemma is standard:
it proceeds by conditioning on the eventẼa,t

1 and applying Theorem 4, and Lemma 3.

Lemma 10. For everya ∈ A, δ > 0, there exist constantsCa = Ca(µa, δ, F ) andN such that fort ≥ N ,

P (∃s ≤ t, ∃a 6= 1 : µ(θa,s) > µa + da, Na,s > Ca ln(t)) ≤
2(K − 1)

t2
.

The rest of the proof proceeds by finding a subinterval ofIj on which all the samples of all the suboptimal
arms indeed fall below the corresponding thresholdsµa + da. This is done exactly as in [10] and we recall the
main steps of the proof below. Before that, we need to introduce the notion ofsaturated, suboptimal action.

Definition 11. Let t be fixed. For anya 6= 1, an actiona is said to besaturatedat times if it has been chosen at
leastCa ln(t) times, i.e.Na,t ≥ Ca ln(t). We shall say that it isunsaturatedotherwise. Furthermore at any time
we call a choice of an unsaturated, suboptimal action aninterruption.

1UsingẼa,t in place ofEa,t from [10] only changes slightly the constantCa.
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Step 1: Decomposition ofIj We want to study the process of saturation on the eventEj = {ξj ≥ t1−b − 1}.
We start by decomposing the intervalIj = {τj , τj + ⌈t1−b − 1⌉} intoK subintervals:

Ij,l :=
{

τj +

⌈
(l − 1)(t1−b − 1)

K

⌉

, τj +

⌈
l(t1−b − 1)

K

⌉}

, l = 1, . . . ,K.

Now for each intervalIj,l, we introduce:

• Fj,l: the event that by the end of the intervalIj,l at leastl suboptimal actions are saturated;

• nj,l: the number of interruptions during this interval.

We use the following decomposition to bound the probabilityof the eventEj:
P(Ej) = P(Ej ∩ Fj,K−1) + P(Ej ∩ Fc

j,K−1) (17)

Note that the quantitiesEj , Ij,l, Fj,l andnj,l all depend ont, however we suppress this dependency for notational
convenience. However, we keep in mind that we bound the different probabilities fort ≥ N , so that Lemma 10
applies.

Step 2: BoundingP(Ej ∩Fj,K−1) On the eventEj ∩ Fj,K−1, only saturated suboptimal arms are drawn on the
intervalIj,K . Using Lemma 10, we get

P(Ej ∩ Fj,K−1) ≤P({∃s ∈ Ij,K , a 6= 1 : µ(θa,s) > µa + da} ∩ Ej ∩ Fj,K−1)

+ P({∀s ∈ Ij,K , a 6= 1 : µ(θa,s) ≤ µa + da} ∩ Ej ∩ Fj,K−1)

≤P(∃s ≤ t, a 6= 1 : µ(θa,s) > µa + da, Na,t > Ca ln(t))

+ P({∀s ∈ Ij,K , a 6= 1 : µ(θa,s) > µa + da} ∩ Ej ∩ Fj,K−1)

≤2(K − 1)

t2
+ P({∀s ∈ Ij,K : µ(θ1,s) ≤ µ2 + d2} ∩ Ej)

≤2(K − 1)

t2
+ C

t1−b−1
K .

for 0 < C < 1 as in Lemma 9. The second last inequality comes from the fact that if arm 1 is not drawn, the
sampleθ1,s must be smaller than some sampleθa,s and therefore smaller thanµ2 + d2.

Step 3: BoundingP(Ej ∩ Fc
j,K−1) A similar argument to that employed in Step 2 can be used in an induction

to show that for all2 ≤ l ≤ K, if t is larger than some deterministic constantNµ1,µ2,b specified in the base case,

P(Ej ∩ Fc
j,l−1) ≤ (l − 2)

(
2(K − 1)

t2
+ C

t1−b−1

CK2 ln(t)

)

We refer the reader to [10] for a precise description of the induction. Forl = K we then get

P(Ej ∩ Fc
j,K−1) ≤ (K − 2)

(
2(K − 1)

t2
+ C

t1−b−1

CK2 ln(t)

)

. (18)

Step 4: Conclusion Putting Steps 2 and 3 together we obtain that fort ≥ N0 := max(N,Nµ1,µ2,b),

P(Ej(t)) ≤
2(K − 1)2

t2
+ C

t1−b−1
K + (K − 2)KC ln(t)C

t1−b−1

CK2 ln(t) ,

P(N1,t ≤ tb) ≤ 2(K − 1)2

t2−b
+ tbC

t1−b−1
K + (K − 2)KCtb ln(t)C

t1−b−1

CK2 ln(t) ,

where we use 16. It then follows that
∞∑

t=1

P(N1,t ≤ tb) ≤ N0 +

∞∑

t=N0+1

P(Ej) = Cb = Cb(π0, µ1, µ2,K) < ∞.
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