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Abstract

Thompson Sampling has been demonstrated in many complei bamdels, however the theoretical guaran-
tees available for the parametric multi-armed bandit atdistited to the Bernoulli case. Here we extend them
by proving asymptotic optimality of the algorithm using theffreys prior forl-dimensional exponential family
bandits. Our proof builds on previous work, but also makeeresive use of closed forms for Kullback-Leibler
divergence and Fisher information (and thus Jeffreys pawaailable in an exponential family. This allow us to
give a finite time exponential concentration inequalitygosterior distributions on exponential families that may
be of interest in its own right. Moreover our analysis cowsame distributions for which no optimistic algorithm
has yet been proposed, including heavy-tailed exponéatialies.

1 Introduction

K-armed bandit problems provide an elementary model foragafibn-exploitation tradeoffs found at the heart
of many online learning problems. In such problems, an aiggresented withik distributions (also called arms,

or actions){p, } X ,, from which she draws samples interpreted as rewards shis teamaximize. This objective
induces a trade-off between choosing to sample a distoibtitiat has already yielded high rewards, and choosing
to sample a relatively unexplored distribution at the riskomsing rewards in the short term. Here we make the
assumption that the distributions,, belong to a parametric family of distributios= {p(- | 6),6 € ©} where

© C R. The bandit model is described by a paraméger= (01, . ..,0x) such thaip, = p(- | 6,). We introduce

the mean functiom(6) = Ex ., ¢)[X], and the optimal ari* = 6, wherea* = argmax 1(0,).

An algorithm,¢, for a K-armed bandit problem is a (possibly randomised) methodHopsing which distri-
bution to sample from next, given a history of previous armicés and obtained reward$;_; := ((as, xs))i;ﬁz
each reward:, is drawn from the distributiop,,. We denote byp, the distribution ovef1, ..., K} induced by
the historyH;_,: at timet the agent using picks arma with probability ¢, (a). The agent’s goal is to design an
algorithm with low regret:

R(9,t) = R(¢, 1)(0) := tu(6") — Eq

This quantity measures the expected performance of ahgoit compared to the expected performance of an
optimal algorithm given knowledge of the reward distribut, i.e. sampling always from the distribution with the
highest expectation.

Since the early 2000s the “optimisim in the face of uncetydiheuristic has been a popular approach to this
problem, providing both simplicity of implementation andife-time upper bound on the regret (e.@al (14, 7]).
However in the last two years there has been renewed infaerdst Thompson Sampling heuristic (TS). While
this heuristic was first put forward to solve bandit problesiggty years ago iri [14], it was not until recently that
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theoretical analyses of its performance were achieved,[10212]. In this paper we take a major step towards
generalising these analyses to the same level of geneaiiligdy achieved for “optimistic” algorithms.

Thompson Sampling Unlike optimistic algorithm which are often based on corficeintervals, the Thompson
Sampling algorithmp”™ uses Bayesian tools and puts a prior distributiqn, = 7, on eachy,. A posterior
distribution, w, +, is then maintained according to the rewards observeH.in;. At each time a samplé, ;

ThereforezthS”TO (a) is the posterior probability that = a* given the historyH,_;.

Our Contributions TS has proved to have impressive empirical performanceg,clese to those of state of
the art algorithms such as DMED and KL-UCB [10,[9, 7]. Furthere recent works [10,! 2] have shown that
in the special case where eaghis a Bernoulli distribution3(6,), TS using a uniform prior over the arms is
asymptotically optimal in the sense that it achieves thengsgtic lower bound on the regret provided by Lai and
Robbins in[[11] (that holds for univariate parametric basidiln this paper, we show this optimality property also
holds for1-dimensional exponential families if the algorithm uses deffrey’s prior:

Theorem 1. Suppose that the rewards distributions belong tb-dimensional canonical exponential family and
thatr; is the Jeffrey’s prior. Then,

T K
R(¢T5™.T) _ 3 p0ar) — u*(9a) (1)

lim K(Go, ) ,

T—o0 InT
a=1

where K6, 8") := KL(py, p,) is the Kullback-Leibler divergence betweenandpy,.

This theorem follows directly from Theordrh 2. In the prooftuif result we provide in Theordh 4 a finite-time,
exponential concentration bound for posterior distritmgi of exponential family random variables, something
that to the best of our knowledge is new to the literature dridterest in its own right. Our proof also exploits
the explicit connection between the Jeffreys prior, Fishéormation and the Kullback-Leibler divergence in
exponential families.

Related Work  Another line of recent work has focused on distributioneipendent bounds for Thompson Sam-
pling. [2] establishes thaR (¢, T) = O(\/KT In(T)) for Thompson Sampling for bounded rewards (with
the classic uniform prior on the underlying Bernoulli parder). [13] go beyond the Bernoulli model, and give an
upper bound on the Bayes risk (i.e. the regret averaged begrior) independent of the prior distribution. For
the parametric multi-armed bandit witki arms described above, their result states that the regitarhpson
Sampling using a prior is not too big when averaged over this same prior:

By [R(6T5™, T)(6)] < 4+ K + 4/KTTog(T).

Building on the same ideas,|[6] have improved this upper daoni4v KT'. In our paper, we rather see the
prior used by Thompson Sampling as a tool, and we want theréfoobtain garantees for any given problem
parametrized by.

[13] also use Thompson Sampling in more general modelstHi&dénear bandit model. Their result is a bound
on the Bayes risk that does not depend on the prior, whereasvagjiand Goyal give ir 3] a first regret bound for
this model. Linear bandits consider a possibly infinite nemif arms whose mean rewards are linearly related
by a single, unknown coefficient vector. Once again, theyaialn [3] encounters the problem of describing the
concentration of posterior distributions. However by gsinconjugate normal prior, they can employ explicit the
concentration bounds available for Normal distributiomsamplete their argument.

Paper Structure In Section[2 we describe important features of the one-déieeal canonical exponential
families we consider, including closed-form expression K&-divergences and the Jeffrey’s prior. Sectldn 3
gives statements of the main results, and provides the pfaibie regret bound. Sectidh 4 proves the posterior
concentration result used in the proof of the regret bound.



2 Exponential Families and Jeffreys Priors

A distribution is said to belong to a one-dimensional canahéxponential family if it has a density with respect
to some reference measwef the form:

p(z | 0) = A(x) exp(T ()0 — F(0)), )

whered € © Cc R. T and A are some fixed functions that characterize the exponetialy and F'(§) =
log ([ A(z) exp [T'(z)0] dA(z)). © is called theparameter spaceT'(z) the sufficient statisticand F(¢) the
normalisation function We make the classic assumption tltats twice differentiable with a continuous second
derivative. It is well known([16] that:

Exo(T(X)) = F'(69) and  Var,[T(X)] = F"(9)

showing in particular thaf’ is strictly convex. The mean functignis differentiable and stricly increasing,
since we can show that
1/ (6) = Covy4(X, T(X)) > 0.

In particular, this shows that is one-to-one irg.

KL-divergence in Exponential Families In an exponential family, a direct computation show that€néback-
Leibler divergence can be expressed as a Bregman divergétieenormalisation function, F:

K(0,0") = DE(6',0) .= F(0') — [F(0) + F'(9)(0' —0)]. (3)

Jeffreys prior in Exponential Families In the Bayesian literature, a special “non-informativabprone which

is invariant under re-parametrisation of the parametecespia sometimes considered. It is called the Jeffrey’s
prior, and it can be shown to be proportional to the squaotabthe Fisher informatiod(6). In the special case
of the canonical exponential family, the Fisher informatiakes the forni(6) = F”'(9), hence the Jeffrey’s prior

for the modell(R) is
75(0) o< /| F"(6)].

Under the Jeffrey’s prior, the posterior @raftern observations is given by

p(0ly1, ... yn) x \/F"(0) exp (6’ Z T(y;) — nF(91)> (4)

=1

Whenf@ F"(0)df < o0, the prior is callegbroper. However, stasticians often use priors which are not proper

the prior is calledmproperif f@ VF"(8)df = +c0 and any observation makes the corresponding postétior (4)
integrable.

Some Intuition for choosing the Jeffreys Prior In the proof of our concentration result for posterior dimir
tions (Theorem4) it will be crucial to lower bound the prioppability of ane-sized KL-divergence ball around
each of the parametefg. Since the Fisher informatioR” (§) = limg. 9 K(0,60")/|6 — 6'|?, choosing a prior
proportional toF”’ (#) ensures that the prior measure of such ball<Hrge).

Examples and Pseudocode Algorithm[d presents pseudocode for Thompson Samplingtéleffreys prior for
distributions parametrized by their natural param@teBut as the Jeffreys prior is invariant under reparametriza
tion, if a distribution is parametrised by some paramater 6, the algorithm can use the Jeffrey’s priary/I(\)
on )\, drawing samples from the posterior anNote that the posterior sampling step (in bold) is alwagstable
using, for example, a Hastings-Metropolis algorithm.

Some examples of common exponential family models are givEigure 2, together with the posterior distri-
butions on the parametarthat is used by TS with Jeffreys prior. In addition to exars@eady studied in [7] for



Name Distribution 0 Prior on\ Posterior om
B(\) X1 -0, [log () | Beta(3,3) | Beta( +5,5 +n—s)
(=272
N(A %) 2;0267 7 2% ox 1 N(%,%)
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PN ATe N log()\) o o= I (%+s,n)
Paretdz,,, \) :f—i’gl[mm7+oo£(x) -A-1 x 1 F'(n+1,s—nlogzy)
Weibull(k, A) | kA(@A\)*~te= o) 1y —\F o aA (DR exp(—\Fs)

Figure 1: The posterior distribution after observatigns . ., y, depends om ands = >""" | T'(y;)

Algorithm 1 Thompson Sampling for Exponential Families with Jeffrgyeor
Require: F' normalization function?" sufficient statisticy, mean function
fort=1...K do
Sample arnt and get rewards,
Nt = 1, St = T(.I't)
end for
for t=K+1...ndo
for a=1... K do
Sampled, ;. from m, ; < \/F"(0) exp (S, — No F(0))
end for
Sample arm4; = argmax 11(6,,) and get reward;,
SAt = SAt —i—T(xt) NA, = NAt +1
end for

whichT'(z) = z, we also give two examples of more general canonical expg@idéamilies, namely the Pareto
distribution with known min value and unknown tail indax Paretdz,,, \), for whichT'(x) = log(z), and the
Weibul distribution with known shape and unknown rate parm Weibul{k, \), for whichT'(z) = z*. These
last two distributions are not covered even by the workling8p belong to the family of heavy-tailed distributions.

For the Bernoulli model, one note futher that the use of tH&ejes prior is not covered by the previous
analyses. These analyses make an extensive use of thenumpifimr, through the fact that the coefficient of the
Beta posteriors they consider have to be integers.

3 Results and Proof of Regret Bound

An exponential familys -armed bandits a K -armed bandit for which the reward distributignsare known to be
elements of an exponential family of distributioR$©). We denote byy, the distribution of arnu and its mean

by p1a = p(ba).
Theorem 2 (Regret Bound). Assume thaf; > p, for all a # 1, and thatr, ¢ is taken to be the Jeffrey’s prior

over©. Then for every > 0 there exists a constadte, P) depending or and on the problerf® such that the
regret of Thompson Sampling using the Jeffrey’s prior fiats

R(#75™0 ) < 1€ <ZK: i _““)> n(T) + C(e, P)
T 1= e \ & K(0a, 01) "

Proof: We give here the main argument of the proof of the regret bpihith proceed by bounding the expected
number of draws of any suboptimal arm. Along the way we shatiesconcentration results whose proofs are



postponed to later sections.

Step O: Notation We denote byy, s the s-th observation of arma and by N, ; the number of times arm
is chosen up to time. (y,,s)s>1 IS i.i.d. with distributionpg,. LetY" := (ya.s)1<s<u b€ the vector of first

u observations from arm. Y, ; := YaN“’t is therefore the vector of observations from agmavailable at the
beginning of round. Recall thatr, ., respectivelyr, o, is the posterior, respectively the prior, 6nat roundt of
the algorithm. }

We letL(6) := 5 min(sup, p(y|f), 1). For anys, > 0, we introduce the everft, ; = F, ;(8,):

N,
~ j,t /T a,s
Ea,t = <E|1 S SI S Na,t :p(ya,s’|9a) 2 L(@a), ZS_R;#S 1(y ’ ) — F’(@a)
a,t —

< 5a> . (5)

Foralla # 1 andA, such thafu, < pe + Ag < p1, we introduce
E?, = Ef (Ad) = (1 (0a,t) < pa + D).

On Ea +, the empirical sufficient statistic of armat roundt is well concentrated around its mean and a 'likely’
realization of arnuw has been observed. (Eﬁ .» the mean of the distribution with paramefer;, does not exceed
by much the true meamp,,. 6, andA, will be Carefully chosen at the end of the proof.

Step 1: Concentration Results We state here the two concentration results that are negessavaluate the
probability of the above events.

Lemma 3. Let(y;) be ani.i.d sequence of distributigi- | §) andd > 0. Then

g

whereK (6, 6) = min(K (8 + g(6), 6), K (6 — h(5),6)), with g(6) > 0 defined by (6 + g(8)) = F'(6) + § and
h(8) > 0 defined byF” (6 — h(6)) = F'(6) — .

LS ) - )
s=1

> 5) < 267u1~((9,(5)’

The two following inequalities that will be useful in the s can easily be deduced from Lemida 3. Their
proof is gathered in Appendix]A with that of Lemifnla 3. For anmar;

P (p(ya,1l6a) < L(8a))" + D 2te~ (=D 0ad) (6)

]
=
el
s
"
M8

~
Il
-

2
~
Il
-

b e =
P(p(ya,lwa) < L(Qa))t +22t28_(tb—1)K(0a76a) (7)
t=1

NE

> P(Eat(6a)[Nayt > 1) <

t=1

o~
Il
=

The second result tells us that concentration of the engbisiafficient statistic around its mean implies concentra-
tion of the posterior distribution around the true paramete

Theorem 4(Posterior Concentration). Letr, o be the Jeffreys’ prior. There exists constafits, = C4 (F, 0,) >
0,C2,4 = Co(F,0,,A,) >0,andN (0,, F) s.t.,V Ny > N(0,, F),

IE ]P’(u(@a t) > /L(oa) + Aa|}/a.25) < Ol_a€7(Na’t71)(175‘102#1)“9&7#71(#aJFAa))Jrln(Na,t)

a,

whenevep, < 1 andA, are such thal — §,C2,4(A,) > 0.



Step 2: Lower Bound the Number of Optimal Arm Plays with High Probability The main difficulty adressed
in previous regret analyses for Thompson Sampling is thé&rabof the number of draws of the optimal arm. We
provide this control in the form of Propositidh 5 which is gtd from Proposition 1 i [10] whose proof, an
outline of which is given in AppendixD, explores in depth teexdomised nature of Thompson Sampling. In
particular, we show that the proof in [10] can be significastmplified, but at the expense of no longer being able
to describe the constay, explicitly:

Proposition 5. For anyb € (0, 1) there exists a constalt, (r, u1, 12, K) < oo such that

> PNy <t?) < G

t=1

Step 3: Decomposition The idea in this step is to decompose the probability of pigyd suboptimal arm into
principle and negligible components and control these eaapts with the results from Steps 1 and 2:

Z]P’ (a; = a) ZP(at—a Eat,Eat)—l—ZP(at—a Eat,(Egyt)c)—l—iP(at:a,Eg_’t). (8)
t—

t=1

(4) (B) ©)
The terms (B) and (C) are about concentration of the postenithe suboptimal arm. An upper bound on term (C)
is given in [6), whereas a bound on term (B) follows from Lenfitzelow. Although the proof of this lemma is
standard, and bears a strong similarity to Lemma Blof [3], meide it in Appendix T for the sake of completeness.

Lemma 6. For all actionsa and for alle > 0,3 N, = N(0q4, Aq, 0,) > 0 such that
(B) < [(1 = )(1 = 8aC2,0)K(0a; ™ (pta + Aa))] ™' In(T) + max{N,, N (0a, F)} + 1.
whereN, = N (0., Aq, 0,) is the smallest integer such that for all> N,
(n—1)"'In(Cr.an) < €(1 = 3,0%.0)K(0a, ™ (1ta + Ad)),
andN (0, F) is the constant from Theordm 4.

When we have seen enough observations on the optimal aim(Agralso becomes a result about the concen-
tration of the posterior, but this time for the optimal arm:

M=

T
(A)SZ]P’(at_aEat,E t|N1t>t)+C’b§ P (p(014) < iy — A | Nyy > t2) + Gy

t

Il
-

t=1

B

T
< P (u(eu) < - A;,Elﬂg(él) | Nl,t >t ) Z (Elt 61 | Nl > ) +Cy (9)

~
Il
-

B cr
whereA!, = 1 —u, — A, andd; > 0 remains to be chosen. The first inequality comes from Prtipa, and the
second inequality comes from the following fact: if arm 1 & ohosen and armis such thaj (6, ;) < p + Aq,
thenp(61,) < pa + Aqs. A bound on term (C') is given ir{7) for = 1 andd;. In Theoreni ¥4, we bound the
conditional probability thaj:(6, ) exceed the true mean. Following the same lines, we can atse #fat, on
Eq4(01),

P (u(01,) < iy — AL V1) < Cp o™ N DA=01C2 K@ (11 =A0) +In(N1e)
For anyA! > 0, one can choos§ such thatl — 6;C4 1 > 0. Then, withV = N(P) such that the function

w s e~ (W1 (1=81C2 1)K (01,17 (11 —A}))+Inw

is decreasing for > N, (B’) is bounded by

Nl/b+ Z CLIe—(tb—l)(l—(slcz,l)K(el,;fl(M—A;))Hn(tb) < .
t=N1/b41



Step 4: Choosing the Value$, ande, So far, we have shown that for any> 0 and for any choice of, > 0
and0 < A, < p1 — pg such thatl — §,C5 , > 0, there exists a constafitd,, A, €, P) such that

In(T)
(1 =64C2,a)K (0, p= (pta + Aa))(1 =€)

The constant is of course increasing (dramatically) whegoes to zero\, to pi1 — 4, OF € to zero. But one can
chooseA, close enough tp; — i, @andé, small enough, such that

+ 6(50.7 Aav 63 P)

IE[]Va.,T] S

_ K(ea 91)
1_CaAa6aK9aa ! a Aa >7’7
( 2,a(8a)0a)K(Oas " (pta + ))_(1+€)
and this choice leads to ) In(T)
+e€ In
E[Ny 7] < —— ot as D, €, P).
[ ’T]_l—eK(ea,91)+C(6 €, P)
Using thatR (¢, T) = Zfzg(ﬂl — pa)E[N, 7] concludes the proof. O

4 Posterior Concentration: Proof of Theorem 4

For ease of notation, we drop the subscripand let(y,) be an i.i.d. sequence of distributign, with mean
p = p(0). Furthermore, by conditioning on the value B, it is enough to bound ; P (14(6.) > pu + A[Y™)
whereY™" = (ys)1<s<. @and

< 5> .

Step 1: Extracting a Kullback-Leibler Rate The argument rests on the following Lemma, whose proof can be
found in AppendixB

Lemma 7. Let E, be the event defined ), and introduce®y A := {#' € © : u(#) > u() + A}. The
following inequality holds:

Zgzl,s;és’ T(ys)

u—1

Eu - <31 <5 <u :p(ys|0) > L(0), - Fl(e)

f0/€®9 A ei(u*l)(K[eye/]75‘979/|)7T(9/|ys’)del

e~ D (ROOTH10—0 (0[50, )dO (10)

15, P(p(0u) = p+ AlY™) <
Joeo

with s’ = inf{s € N : p(ys|6) > L}.
Step 2: Upper bounding the numerator of [I0) We first note that o®y A the leading term in the exponential
is K(6,0"). Indeed, from[(B) we know that
K(0,60")/10 — 0’| = |F'(0) — (F(0) — F(0'))/(0 — 6")|

which, by strict convexity off’, is strictly increasing i — ¢’| for any fixedd. Now sincey is one-to-one and
continuous@g,A is an interval whose interior contaifisand hence, 0®g A,

K(©6,0) _ F(p—'(p+4)) - F(0)

00 =  ptpt+A) -0

So ford such thatl — §C> > 0 we can bound the numerator 6f110) by:

/ 87(U71)(K(0’e,)76|070,‘)71'(0/|ysl)d0/ S / 87(U71)K(0’0,)(17502)7T(0/|y5/)d0/
GIGGQYA 9l€@9,A

— F'(0) := (Co(F,0,A))"' > 0.

< e—(u—l)(l—éCg)K(@,u71(;H—A))/ 7(9/|y3/)d9/ < e—(u—l)(l—(?Cg)K(@,u*l(;H—A)) (11)

[STWN

where we have used thaf-|y. ) is a probability distribution, and that, singsis increasing, K, = (u+ A)) =
infgleee)A K(O, 6‘/).



Step 3: Lower bounding the denominator of [I0) To lower bound the denominator, we reduce the integral on
the whole spac® to a KL-ball, and use the structure of the prior to lower botir@imeasure of that KL-ball under
the posterior obtained with the well-chosen observagionWe introduce the following notation for KL balls: for
anyz € ©, € > 0, we define
Be(z) :={0"€©: K(z,0") <¢}.
K(0,0")

We havez—mz — F"(0) # 0 (sinceF is strictly convex). Therefore, there exist§ (6, F') such that for
u > Ny (0, F), onB__(6),

|0 —0'| < /2K (0,0")/F"(0).
Using this inequality we can then bound the denominatdr@y Wthenevew > N, (4, F) andd < 1:

/ e—<u—1><K<0,0’>+5\9—9">w(9’Iys/)de’Z/ e DU D (@) e
0co 0'€B, ,,2(0)

“(u=1)( K(0,6")+8, ] 2K0.0") - 2
>/ O RO D) 1t > 7 (B @) e VD). (12)
0/€B, ,,2(6)

Finally we turn our attention to the quantity
Sy, o0 POAIONTOO)AE [y p p(0116) /PO
Jop(Wil0)mo(0)d0" [ p(y|0)/FT@)d

Now since the KL divergence is convex in the second argunvesaitcan writeB, ,,,(6) = (a,b). So, from the
convexity of F" we deduce that

L K0,5) = F®) — [F(0) + (b— 0)F'(0)] = (b — 0) [w _ F’(G)]

u?

™ (Bl/u2 (6‘)|ys/) = (13)

< b=0)[F(b) = F'(0)] < (b—a) [F'(b) = F'(0)] < (b—a) [F'(b) — F'(a)].

Asp(y | ) - 0asy — =oo, the setC(f) = {y : p(y | §) > L(6)} is compact. The mag —
Jop(y|0')\/F"(0")d8" < o is continuous on the compatts). Thus, it follows that

vo -ror= s Vo) <o
y:p(y|0)>L(0) LJO

is an upper bound on the denominator{ofi (13).
Now by the continuity ofF”’, and the continuity ofy,8) — p(y|@) in both coordinates, there exists an
Ny(6, F) such that for ali, > Ny (6, F)

(9) > 5 PO g (p<y|9’>wF"<ef> > YO @), w0 € By @)y € C<9>) .

Finally, foru > N, (6, F'), we have a lower bound on the numeratoi[of (13):

/ p(yel0') v/ F"(60)do" > @\/F"(e) / " dor %9)\/(1?'(1)) N PEA G
Bl/u2(0) a

2u

Puting everything together, we get that there exist constant, = C»(F, 6, A) andN (6, F') = max{Ny, Na}
such that for every < 1 satisfyingl — §C2 > 0, and for every, > N, one has

1+ /7775
15 P(u(0) > u(6) + AlY,) < 2e L(z; L'0)u _(u—1)(1-6Ca)K (0.0 (u+D))
Remark 8. Note that when the prior is proper we do not need to introdhesabservation,., which significantly
simplifies the argument. Indeed in this caselid (11) we camy place ofr(-|y, ) which is already a probability
distribution. In particular, the quantitf@3)is replaced by (Bl/uz (9)), and so the constants and L’ are not
needed.




5 Conclusions

We have shown that choosing to use the Jeffrey’s prior in Tismm Sampling leads to an asymptotically optimal
algorithm for bandit models whose rewards belong tedimensional canonical exponential family. The corner-
stone of our proof is a finite time concentration bound fortpaer distributions in exponential families, which,
to the best of our knowledge, is new to the literature. Witk tesult we built on previous analyses and avoided
Bernoulli-specific arguments. Thompson Sampling withrég prior is now a provably competitive alternative to
KL-UCB for exponential family bandits. Moreover our proddltis for slightly more general problems than those
for which KL-UCB is provably optimal, including some heatgiled exponential family bandits.

Our arguments are potentially generalisable. Notably ggiseng ton-dimensional exponential family bandits
requires only generalising Lemrh 3 and Step 3 in the proothafofeni 4. Our result is asymptotic, but the only
stage where the constants are not explicitly derivable fkomwledge ofF, T, andf, is in Lemmd®. Future
work will investigate these open problems. Another possfoture direction lies the optimal choice of prior
distribution. Our theoretical guarantees only hold fofrésgf prior, but a careful examination of our proof shows
that the important property is to have, for evéry

—In (/ 7r0(9’)d9’> =o(n),
(07:K(0,,0")<n—2)

which could hold for prior distributions other than the de§fs prior.
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A Concentration of the Sufficient Statistics: Proof of Lemma3, and In-
equalities (6) and [7)

Proof of Lemma&l3.The proof of Lemma&]3 follows from the classical Cramér-Gifetechnique (se€¢ [5]). For any
A>0.

A:=P <% i[T(yi) — F'(0)] > 5) =P (e“EZv‘zl[T(yi)—F/(@)l) > eM(s)

i=1

<~ MuOR [ex(zrzl[ﬂyi)w'(e)])} — e ulBA—¢a (V)
where we have used the Markov inequality, and where

Ga(N) i=InExjg [>TV O] = F(9+ 1) = F(6) = AF'(6).
Now we optimize in\ by choosing\ > 0 that maximizes

N — pa(N) = M0+ F'(0)) — F(O+ \) + F(6) := f(\).
f(X) is differentiable in\ and its minimum\*, satisfiesf’(A*) = 0 i.e.
F'(0+X\) =486+ F'(0).
(Note that\* > 0 sinceF” is increasing). Finally, we get
A< e—u((zH—F/(@)))\*—F(0+)\*)+F(0)) :e—u(F/(O-l-)\*))\*—F(9+)\*)+F(0)) — o uK(O+21",0)

The same reasoning leads to the upper bound

P (l i[T(ys) — F/(G)] < _5> < e—uK(é)—V*ﬁ)7

u
s=1

wherev* is such thatt”’ (6 — v*) = F'(6) — ¢. O

For the proof of inequalitie$ {6) andl (7), we intoduce theation V!, = Y;*\{y.,s} (the firstu observations
of armsa exept observatiop, /). First note that we havEg_’t C Ban,.,UDa,n,,, with

Be,s = (VS/ € [175]ap(ya78’|9a) < L(0.))
. 5a)

T t
Zzlat a,Ng,t= s 1Ba +1Das)‘|

t=1 s=

Y (Tlar) — F(6)

k=1,k#s’

D, s = (33/ e{l,...s}:

One then has

N
pac)
£
|
IS
&
=
A
<

—

< E +E ZID“
s=1
< ZJP (17162 +ZZP - (82))
s=1s'=1
< ZP (Ya,s10a) (a))s-|—i5(3_(3_1)f<(“)'1"511)7
s=1
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which gives inequality[(6). To proof{7), we write:

T T t
ZP(Ea;t((SUI)CLZVa;t > tb) S E Z Z 1Na,t:5(1Ba,s + 1Da,s)
t=1 t=1 s=¢b
T t T t s
< Z Z P(p(ya,s’Wa) < L(ea))s + Z Z Z ]P)(EY;’S/ (6a)c)
t=1 g=tb t=1 g=tb s’'=1
T . T ~
< Zﬂp(p(ya,s’Wa) < L(ea))t + Zt2 eXp(—tbK(Q(“(S)).
t=1 t=1

B Extracting the KL-divergence: Proof of Lemmal/

If we assume that the evet, holds,s’ < . So, on this event we have

ficons ST s |0)ptual)r(0)a0
P (u(0) > p+ AJYY) = -
Jyeo 11 pye | 0)p(ysl8)(@)ds"

s=1,s#s’

U o
fg/eee’A —11_[75 / 1;_((7;“9))]?(%/|9/)7r(9')d9/

u 16"
Jreo 11 et l0)x(@)ar

fe/eee R e—(u—l)K[Y’u)0,9’]ﬂ_(9/|ys,)del
= fe,ege,(ufl)K[Y/u,e,el]W(9/|y5/)d9/

wherer(6|ys ) denotes the posterior distribution érafter observation,. and

1 < p(ys | 6)
K[YY,0,0'] = i PWs 1)
V00T 2 )

denotes the empirical KL-divergence obtained from the plag®nsYy = Y* \ {ys }. Introducing
X19)
Y 8) = K[V, 0,0 — Exp (10 2510
T‘(s, ) [577 ] XG(np(X|9,) )
we can rewrite
o, . e DRI (g1, g
Jyeo & ORI I a(g/]y,)do"

P(u(0u) = p+AY") =

Now, a direct computation show that
1 u
—t > [T(ys) - F'(0)]|.

s=1,s#s’

[r(Y"™,0)] < 16— ¢']

Indeed, for that for ang, 0’ € ©

(14)



and one also recalls that
K(0,0") =F'(0)(0 - 0") — [F(0) — F(0")]. (15)
Hence

Ir(YY,0,0")| = ! > [m%_me,e')}

u u

1 1
—l— 3 T@-FeNe-0)|<|— > [T) - VFE)| e -6l
s=1,s#s’ s=1,s#s’
The inequality[[(I}) leads to the result, using thatgp
1 u
—— > [ -FO)| <6
s=1,s#s’

C Proof of Lemmal@

From Theorerilld we know that, fé¥, ; > N(6,, F),
1, PU(EL) | Fo) =15, P((E],) | Yau)
< aef(Na,tf1)(176a02,a)K(9a,,u71(,uaJrAa))Jrln Na,t

S e_(Na,t_1)((1_51102«1)}((9@7“71(Na+Aa))_1n(Cl,aNa,t)/(Na,t_l))

Let N. = N (64, Aq, 0,) be the smallest integer such that forall> N,

n(Chq _
% < (1= 5aCo0)K (O 11 (10 + Ad)).
Defining
Lp— InT

(1 - 6)(1 - 6a02,a)K(9au ,Uf_l(Ma + Aa))
we have that for alt andT" such thatV, ; — 1 > max(Lp, N., N(0,, F)),

P(u0a(t) > pl6a) + Aa | F) < .

Letr =inf{t € N| Ny > max(Lp, N, N(0,, F)) + 1}. 7 is a stopping time with respect {6,. Then,

. T
Y la=a > 1<at—a>1E“a,t1<E2,t>C1

t=1 t=7+1

1z

a,t

T
ZP (at =a (Eg,t)cu Ea,t) S E —+ E
t=1

T
=E[N,.]+E Z La=a)lp, P ((Eg)t)c | ]—"t)]
t=7+1
T
=B[Nt +E| Y Li=a)lp, P ((0a(t) > p(0a) + A | Yarr)
t=7+1
T
< Ly + 1+ max(N, N(0,,F)) + E tz;l T]

< Lt + max(N¢, N(0,, F)) + 2.
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D Controling the Number of Optimal Plays: Outline Proof of Proposition
5

The proof of this proposition is quite detailed, and essdlgtthe same as the proof given for Proposition 1in [10],
which we will sometimes refer to. However, in generalisiogite case of exponential family bandits we show how
to avoid the need to explicity calculate posterior prokified that lead to Lemma 4 in [10]. While simplifying the
proof we loose the ability to specify the constants explicéind so the analysis becomes asymptotic, but holds for
everyb €]0,1].

Sketch of the proof and key results Let 7; be the occurrence of thé" play of the optimal arm (withr, := 0).
Let¢; := (rj41 — 1) — 7;: this random variable measures the number of time stepseletthe;’” and the

(7 + 1)t play of the optimal arm, and sEfZQ Ngt = zj&g &;. We then upper bourBi(N; ; < t*) as in [10]:

1]
PNy <) <P(FFe{0,., 1)} : 270 —1) <D PG >t 70— 1) (16)
——————

3=0 =&

We introduce the intervedl; = {7;,7; + [t'~® — 1]}: on the eveng;, Z; is included in{7;, 7;:1 } and no draw of
arm 1 occurs off. We also introduce for each arm 1 d, := #55=,

The idea of the rest of the analysis is based on the followengark. If on a subinterval C [7;, 7,41 of size
f(t) arm 1is not drawn and all the samples of the suboptimal arthsebow 5 + do < 1, then for alls € Z,
u(01,s) < p2 + dz2. OnZ, the sequenc@, ) is i.i.d. with distributionr, -, and hence,

P(Vs € T, ul6r.5) < pz +6) < (P (u(6,r;) < pia +62))""

At this point, an asymptotic result, telling that the poteon §; concentrates to a Dirac th (the Bernstein-Von-
Mises theorem, se2 [115]) , leads to

P(u(01,7;) < po+d2) — 0.
j*)OO

Assuming that/j, P(u(61,-,) < p2 + d2) # 1, we have shown the following Lemma, which plays the role of an
asymptotic couterpart for Lemma 3 (n [10].

Lemma 9. There exists a constait = C(my) < 1, such that for every (random) intervalincluded inZ; and
for every positive functioff, one has

P(Vs €T, p(brs) < p2+ 62, |Z| > f(t)) < CTD,

Another key lemma is the following which generalizes Lemma fL0]. The proof of this lemma is standard:
it proceeds by conditioning on the eve!m_ﬂ and applying Theoref 4, and Lemfra 3.

Lemma 10. For everya € A, § > 0, there exist constants, = C, (14,0, F') and N such that for > N,

2K — 1)
t2

P(3s <t,3a#1:pu(la,s) > tha + da; Nas > CoIn(t)) <

The rest of the proof proceeds by finding a subinterval 0bn which all the samples of all the suboptimal
arms indeed fall below the corresponding thresheigls- d,. This is done exactly as in_[10] and we recall the
main steps of the proof below. Before that, we need to inttedhe notion oaturated suboptimal action.

Definition 11. Lett be fixed. For any: # 1, an actiona is said to besaturatedat times if it has been chosen at
leastC, In(t) times, i.e.N,; > C,In(t). We shall say that it isnsaturate@therwise. Furthermore at any time
we call a choice of an unsaturated, suboptimal actionrgarruption

1Using Ea,t in place ofE, ; from [10] only changes slightly the constagit, .
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Step 1: Decomposition ofZ; We want to study the process of saturation on the efignt {¢; > t1=b — 1},
We start by decomposing the intendgl = {7;, 7; + [t!~® — 1]} into K subintervals:

(1=t —1) (b —1)
Ij,l:—{Tj‘i"V# ,Tj+ T ,lzl,...,K.
Now for each interval; ;, we introduce:

e F;: the event that by the end of the interig); at least suboptimal actions are saturated;

e n;;: the number of interruptions during this interval.

We use the following decomposition to bound the probabilitthe event;:
P(&) =P(ENFjr—1) +P(ENFj k1) (7)

Note that the quantitieS;, Z;;, F;,; andn;; all depend ort, however we suppress this dependency for notational
convenience. However, we keep in mind that we bound therdiftgorobabilities fot > N, so that Lemma10
applies.

Step 2: BoundingP(§; N Fj k—1) Onthe evenE; N F; k1, only saturated suboptimal arms are drawn on the
intervalZ; . Using Lemma 10, we get
PENFix-1) <P{3Is €Lk, a#1:pu(las) > tta +da} NE NFjr—1)
+P{VseTjk,a#1:pullas) <pa+de} NENFjk-1)
<P(3s <t,a#1:p(0a,s) > pta + day Not > CqIn(t))
+P({VseZjk,a#1:pu(bas) > pa+da} NENFjr—1)

2(K —1
a3 ( 72 D +P({Vs € Zj i : p(b1,5) < po2 +d2} NE;)

2(K— 1) t1—b_q
T +O K .

for0 < C < 1 asin Lemma&b. The second last inequality comes from the ffettit arm 1 is not drawn, the
sampled; s must be smaller than some samgle, and therefore smaller than, + ds.

<

Step 3: BoundingPP(€; N ]:g(':,Kfl) A similar argument to that employed in Step 2 can be used imémnction
to show that for alk <! < K, if ¢ is larger than some deterministic constany, ., » specified in the base case,

C 2(K —_ 1) 1=t
P& NF; 1) <(-2) (T + TR
We refer the reader tb [10] for a precise description of tlieiation. Forl = K we then get

_ t1-b_4
2(Kt721) + Cm) . (18)

PSS N Faea) < (K - 2)
Step 4: Conclusion Putting Steps 2 and 3 together we obtain thatfer Ny := max(N, Ny, 10.5)

20K — 1 2 t1—=b_ tt=b g
% +(C—FK - + (K — Q)KCIH(t)CCKz In(t) |

2(K —1)?
t2_b

P(&;(t) <

t1-b_y

+ (K = 2)KCt In(t)Cer7mm |

+1=b

P(Ny, <t) < +ttC

where we usg_16. It then follows that

ZP(Nl,t <tY) < N+ Z P(&;) = Cy = Cy(mo, i1, pi2, K) < 00.
t=1 t=No+1
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