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Figure 3. Lossless transmission line meshed in three cells (D` = 1
3 `). The

passive transmission line is modeled with l and c being the per-unit-length
inductance and capacity, respectively.
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Figure 4. Simplified Kirchhoff branch. The difference of potential v across
the branch and the current i through the branch are defined such, that when
iv is positive, net power is dissipated in the branch (passive sign convention).

A. Basic Approach

Generally, solving a problem in Kron’s formalism consists
of eight steps: stating the problem, drawing the associated
graph, define the topological base, entering the sources, trans-
forming, solving in mesh space, deducing the differences of
potentials and deducing other required quantities [10].

Let us draw the graph corresponding to the problem of
Figure 3. In this graph, we identify meshes (or loops) and
nodes (or junctions). Meshes consist of branches (or vertices)
that each connect two nodes. We will here use simplified
Kirchhoff branches, which generally consist of an impedance
Z and a voltage source e as defined in Figure 4. The resulting
graph is depicted in Figure 5.

Let i, v and e be column vectors in the branch space,
that is: containing currents and voltages for every branch.
The (arbitrary) branch numbers of Figure 5 define which
vector component represents which voltage and current: we
just defined the topological base. Ohm’s and Kirchoff’s laws
then hold as in v+ e = Zi. In our case, the impedance matrix
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Figure 5. Graph representation of a three-cell transmission line model. Please
verify that there are 4 meshes (dashed loops, numbered), 8 branches (with
arrows, numbered) and 5 nodes (dots, not numbered).

Z only has entries on its main diagonal:
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To incorporate the current sources in the simplified Kirch-
hoff branch, we need to use their Thévenin equivalents Eth.
The source vector e stemming from the illumination electro-
magnetic field thus becomes:

e =

2
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To solve for the mesh currents, we need to transform our
equations to another topological base: that of the mesh space.
At the same time, we will connect the branches together. This
is done by means of the connectivity matrix L, which links the
branches (rows) with the meshes (columns). In our example,

L =

2

66666666664

1 0 0 0
1 0 0 0
1 �1 0 0
0 1 0 0
0 1 �1 0
0 0 1 0
0 0 1 �1
0 0 0 1

3
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. (5)

Note that a minus signs signifies a branch going against the
mesh direction. We will denote tensors in mesh space with a
hat, e.g.:

ê = L�1e i = Lı̂ v̂ = L�1v ⌘ 0,

where the last vector (voltage around every mesh) is zero by
Kirchhoff’s mesh rule. The inverse of L can be found by its
transpose, because L always is a Hadamard matrix. We can
transform Kirchoff’s laws to mesh space as follows:

���L�1v+ L�1e = L�1Zi = L�1ZL ı̂ (6)
ê = Ẑ ı̂. (7)

Notice that by transforming to the lower-dimensional mesh
space, we connected the branches together.

To solve the system, we use the pseudoinverse (denoted +):

ı̂= Ẑ+ê, (8)

because only the sources e are given.
We are interested in the near-end and far-end voltages,

which can now be found by means of the terminal impedances:

Vne = �ı̂1Rne (9)
Vfe = ı̂8Rfe. (10)
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ê = Ẑ ı̂. (7)

Notice that by transforming to the lower-dimensional mesh
space, we connected the branches together.

To solve the system, we use the pseudoinverse (denoted +):
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