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ABSTRACT. The paper analyzes the effects of the properties of firms‟ knowledge base on the 

survival likelihood of firms. Drawing upon the analysis of the patterns of co-occurrence of 

technological classes in patent applications, we derive the coherence, variety and cognitive 

distance indexes, accounting respectively for technological complementarity, differentiation 

and dissimilarity in the firms‟ patent portfolios. The results of our analysis are in line with the 

previous literature, showing that innovation enhances the survival likelihood of firms. In 

addition, we show that the search strategies at work in the development of firms‟ knowledge 

base matter in reducing the likelihood of a failure event. Knowledge coherence and variety 

appear to be positively related to firms‟ survival, while cognitive distance exerts a negative 

effect. We conclude that firms able to exploit the accumulated technological competences 

have more chances to be successful in competing durably in the market arena, and derive 

some policy implications concerning the role of public intervention in the orientation of 

search efforts in local contexts. 
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1 Introduction 

 

The mechanisms underlying the process of new firms‟ creation and their post-entry 

performances have been the focus of a wide body of theoretical and empirical literature. 

Indeed, the intrinsic heterogeneity of firms, as well as of the sectors and the regions in which 

they operate, generates quite differentiated post-entry dynamics (Santarelli and Vivarelli, 

2007).  

 

Most of the analyses carried out in industrial economics provides explanations of the survival 

patterns of firms based on firms‟ age and size. Some others also stress the influence of the 

economic environment, and hence of the geographical localization of firms. 

 

The role played by innovation has been addressed by Audretsch (1991) and Audretsch and 

Mahmood (1994), by showing that firms‟ survival rates change according to the belonging to 

innovative or non-innovative industries. More recently, a number of contributions based on 

the product lifecycle approach have investigated the effects of innovation on the patterns of 

firms survival (Cefis and Marsili, 2005 and 2006). The data used in these works are drawn 

from the Community Innovation Surveys (CIS) and concern (self-reported) innovation efforts 

of firms, distinguishing between the introduction of product and process innovations. While 

these studies provide important evidence, Helmers and Rogers (2010) raise some concerns on 

their utilization due to the possible biases generated by self-reported innovation measures. 

Instead they use measures related to intellectual property assets of the firms, like patents and 

trademarks, confirming that innovation enhances the likelihood of firms‟ survival. 

 

However, the existing literature on innovation and firm survival tends to treat new 

technologies as a sort of black boxes. When one tries to go beyond self-reported measures, the 
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proxies used in the analysis boil down to some dummies related to the observation of a patent 

or a trademark in the intangible assets of the firm.  

 

In this paper we aim at providing an empirical account of the role played by the knowledge 

creation process in the dynamics of firm survival. In particular we analyze the effects of 

different kinds of firms‟ search behaviors in the technological landscape by drawing upon a 

collective knowledge approach. In this perspective new knowledge is the outcome of a 

process in which different knowledge inputs dispersed in the economy are combined together. 

The degree of complementarity and similarity of the combined bits characterizes the structure 

of firms‟ knowledge base and provides useful information on their ability to move across the 

technology landscape (Krafft, Quatraro and Saviotti, 2009; Quatraro, 2012). 

 

The results of our empirical study on a sample of French manufacturing firms confirm that 

innovation increases the survival likelihood. Moreover, firms that have developed specific 

competences to move in areas of the technological landscape which are closer to their 

accumulated technological competences are more likely to survive than firms that search in 

areas far from their core competences and hence are subject to high degrees of technological 

uncertainty. 

 

The rest of the paper is organized as follows. Section 2 articulates the theoretical framework 

linking the survival patterns of firms with the structural properties of their knowledge bases. 

Section 3 presents the data, the variables and the methodology. We show the empirical results 

of the analysis in Section 4 and provide the conclusions and policy implications in Section 5. 

2 Firm survival and knowledge creation 
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A wide body of empirical literature in industrial organization shows that firms‟ population is 

characterized by endless turbulence. The dynamics of firms‟ demography is indeed marked by 

high rates of turnover, both across and within industries (Caves, 1998). The analysis of entry 

and exit dynamics have been originally closely intertwined. New firms are indeed exposed to 

high rates of mortality in the critical start-up period, and hence the characteristics of firms at 

the moment of their creation have been usually regarded as good predictors of post-entry 

performances, i.e. on the probability for firms to survive to market selection (Dunne et al., 

1988; Audrestch, 1995; Baldwin, 1995). 

 

Out of the factors influencing the failure likelihood, the existing literature identifies two key 

elements, i.e. size and age. On the one hand, the former is basically related to Gibrat‟s law of 

proportionate effects. In this perspective, new firms entering the market have more chances to 

attenuate post-entry mortality if they are set up on a large scale of production (Sutton, 1997; 

Mata and Portugal, 1994; Geroski, 1995). On the other hand, the latter is grounded on 

Jovanovic (1982) theory of „noisy selection‟ that explicitly centers the attention on the 

learning dynamics characterizing firms‟ behavior. In this framework, firms are not aware of 

their efficiency level as compared to the general efficiency level of the sector. They discover 

their efficiency over time, so that those that are relatively efficient survive and grow while 

those that are inefficient eventually leave the market. The probability of survival hence 

increases with firms‟ age. Some non-linear effects have been also observed, according to 

which the positive relationship is decreasing over time (Evans, 1987; Hall, 1987).  

 

Jovanovic‟s model has been further extended by Ericson and Pakes (1995), who include 

firms‟ investments in R&D so as to make learning the outcome of an intentional choice. By 

exploring the technological landscape, firms improve their efficiency and profitability and 
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hence their survival likelihood. Rather than the mere effect of time, in this model learning 

stems from deliberate strategies aimed at enriching their distinctive competences. In the same 

vein, Nelson and Winter (1982) posit that investments in innovative and imitative R&D on 

average lead to an improvement of firms productivity levels. The comparison of these latter 

with the general efficiency level of the sector shapes firms‟ decision as to whether stay in the 

market or exit. 

 

On a different and yet complementary ground, Agarwal and Audretsch (2001) show that 

while size and age are important, their effects on firms‟ survival change across different 

sectors according to the stage of the industry lifecycle and the technological regime (Klepper, 

1996 and 1997). Size is more likely to matter in the formative stage of an industry, when 

innovation activities are not yet routinized, than in the mature stages, when innovation 

activities are rather routinized and small firms can achieve successful strategic positions by 

filling some market niches that are left empty by incumbents (Caves and Porter, 1977). 

 

Innovation and technological change hence come to the fore in the discussion on firm 

survival. While the lifecycle approach indirectly addresses the issue by comparing survival 

patterns across different technological regimes, the theoretical model by Ericson and Pakes 

and the one by Nelson and Winter establish a direct link between technological efforts and 

post-entry performances. However, direct empirical assessments of such relationships are still 

underdeveloped and in any case rely on rather stylized representations of the innovation 

process. Some investigations (Hall, 1987; Perez et al., 2004) used R&D investments as 

proxies of innovation activities, by concluding that they are positively related to the survival 

likelihood of the firm. These are clearly input measures of the innovation process. On the 

output side, Christensen et al. (1998) analyzed the effects of architectural innovation, while 
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Banbury and Mitchell (1995) focused their study on the number of product innovations 

brought about by the firms in their dataset. 

 

More recently, Cefis and Marsili (2005 and 2006) provide an account of the differential effect 

of the introduction of product and process innovation on firm survival. By linking the results 

to the product lifecycle theory, according to which the introduction of product innovation 

characterizes the early stage of the cycle while process innovation becomes more important 

when the sector comes to maturity, they find that process innovation matters more than 

product innovation. Helmers and Rogers (2010) adopt an empirical strategy based on 

intellectual property activity of firms by focusing on a sample of British firms. Intellectual 

property is proxied in their analysis by patent applications and trademarks, showing that both 

influence negatively the failure rate of the sampled firms. 

 

While the link between innovation and firm survival seems to be now rather established, little 

has been said about the importance of search strategies pursued by firms to generate new 

technological knowledge. The grafting of the recent theories of knowledge creation onto the 

debate on survival can be far reaching in enhancing the understanding of the differential 

effects of exploration and exploitation strategies along different stages of the technology 

lifecycle (March, 1991)2.  

 

Traditional approaches to technological knowledge have mostly represented it as a 

homogeneous stock, as if it were the outcome of a quite uniform and fluid process of 

accumulation made possible by R&D investments, the same way as capital stock (Griliches, 

                                                           
2 A wide body of literature has recently focused on the issue of ambidexterity, i.e. the optimal balance between 
exploration and exploitation strategies. In this perspective successful firms are able to achieve an optimal 
balance between the two dimensions so as to cope both with radical and incremental changes in the technological 
environment. The appreciation of such issue goes however beyond the scope of this paper. 
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1979; Mansfield, 1980). Such kind of representation is hardly useful to qualify firms‟ search 

behaviors, as it only allows for evaluating it from a quantitative rather than a qualitative 

viewpoint. 

 

More recently, an increasingly share of scholars in the economics of innovation has 

elaborated theoretical approaches wherein the process of knowledge production is viewed as 

the outcome of a recombination process (Weitzmann, 1998; Kauffman, 1993).  The creation 

of new knowledge is represented as a search process across a set of alternative components 

that can be combined one another. A crucial role is played here by the cognitive mechanisms 

underlying the search process aimed at exploring the knowledge space so as to identify the 

pieces that might possibly be combined together. The set of potentially combinable pieces 

turns out to be a subset of the whole technological space. Search is supposed to be local rather 

than global, while the degree of localness appears to be the outcome of cognitive, social and 

technological influences (Saviotti, 2004 and 2007).  The ability to engage in a search process 

within spaces that are distant from the original starting point is likely to generate 

breakthroughs stemming from the combination of brand new components (Nightingale, 1998; 

Fleming, 2001). 

 

Based on these achievements, we can introduce the concept of knowledge structure. If 

knowledge stems from the combination of different technologies, knowledge structure can be 

represented as a web of connected elements. The nodes of this network stand for the elements 

of the knowledge space that may be combined with one another, while the links represent 

their actual combinations. The frequency with which two technologies are combined together 

provides useful information on how we can characterize the internal structure of the 

knowledge base. Basically, this characterization takes into account the average degree of 
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complementarity of the technologies which knowledge bases are made of, as well as to the 

variety of the observed pairs of technologies that lead us to derive three main properties of 

knowledge structure at a general level: 

 

 Variety is related to the technological differentiation within the knowledge base, in 

particular with respect to the diverse possible combinations of pieces of knowledge in 

firms‟ patent portfolios, from the creation of a radically new type of knowledge to the 

more incremental recombination of already existing types of knowledge. 

 Coherence can be defined as the extent to which the pieces of knowledge that agents 

combine to create new knowledge are complementary one another. 

 Similarity (or dissimilarity) refers to the extent to which the pieces of knowledge used 

are close one another in the technological space.  

 

The dynamics of technological knowledge can therefore be understood as the patterns of 

change in its own internal structure, i.e. in the patterns of recombination across the elements 

in the knowledge space. This approach captures both the cumulative character of knowledge 

creation, as well as the possible link to the relative stage of development of a technological 

trajectory (Dosi, 1982; Saviotti, 2004 and 2007; Krafft, Quatraro and Saviotti, 2009). 

 

In this perspective, the generation of new knowledge and the introduction of innovation are 

the results of cumulative patterns, learning dynamics and path dependence. At the onset of a 

technological trajectory firms are likely to move in an uncertain environment, so that their 

innovation efforts are grounded on the recombination of technologies which are characterized 

by low coherence degree and high cognitive distance. In this phase firms tend to rely more on 

exploration than exploitation strategies. On the contrary, as the trajectory gets more 
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established, firms have learned both from interactions and from their past activity to identify 

profitable directions for their search efforts. As time goes by therefore firms tend to privilege 

the exploitation of the variety of cumulated competences and are more likely to focus their 

search efforts in well defined areas of the technological landscape. Hence their technology 

portfolios appear to be featured by high coherence and low degrees of cognitive distance. 

 

The combination of the firm survival framework with the recombinant and collective 

approach allows us to articulate our working hypotheses concerning the relationship between 

search strategies and firm survival. 

 

The post-entry performances of firms are characterized by a high degree of turbulence. 

Besides the environmental factors related to the features of the regions and the sectors in 

which they operate, some firm-level factors play an important role in shaping the likelihood of 

survival. In this perspective, technological activities are likely to exert a strong influence on 

the patterns of exit. Technological knowledge, however, is far from being an undifferentiated 

bundled stock. On the contrary, it is the result of a combinatorial activity which rests upon the 

search efforts committed by firms. The collective approach to knowledge creation allow us to 

propose the concept of knowledge structure, which refers to the shape that features the 

patterns of recombination.  

 

The structure of knowledge is therefore represented by the elements that are combinable and 

by the actual observed combinations. Each knowledge bit can be assigned to a technological 

domain, so that we can characterize the structure of the knowledge base according to the fact 

that it is made by the combination of more or less similar and complementary elements.  
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Firms entering in new technological trajectories and exploring the technology landscape, are 

more likely to undergo failure events due to the high degree of uncertainty that characterizes 

these turbulent phases and the difficult, length and resource-intensive activity necessary to 

translate radical breakthroughs into profitable bits of knowledge. On the contrary, firms 

exploiting their accumulated knowledge, are more likely to be successful, and hence they 

should show relatively higher survival rates.  

3 Data, Variables and Methodology 

 

3.1 The Data 

 
In order to investigate the effects of the properties of knowledge structure on firm survival we 

gather firm-level data from the Bureau Van Dijk DIANE dataset, which provides detailed 

information on French firms, and from the PATSTAT database (April 2011), which contains 

detailed information on worldwide patent applications to the European Patent Office. This 

information is crucial to implement the properties of knowledge structure that will be 

described in what follows.  

 

The data obtained from the DIANE dataset refer to a sample of manufacturing firms covering 

a time span ranging from 2001 (first observed year) to 2011. We decided to focus on 

manufacturing firms as the use of patents as a proxy for knowledge creation activities clearly 

raises some concerns when service activities are at stake. We obtained a former dataset of 

851,070 firms spread over 36 2-digits NACE industrial sectors (rev2.1). The sectoral 

distribution of the sample is reported in Table 1, where it is compared to the distribution of 

firms across the same sectors at the national level.As it is clear from the figures, our sample 

provide a good approximation of the French sectoral distribution of firms, even though a few 

sectors seem to be over-represented in our sample.  
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>>> INSERT Table 1 ABOUT HERE <<< 

 

Since the dataset starts in 2001, we decided to drop from the dataset the firms that have been 

created after 2001, in order to avoid truncation problems.  

We used the harmonized matching tables described by Thoma et al. (2010) to combine the 

PATSTAT and the DIANE datasets on the basis of the Bureau Van Dijk firm identification 

code. The harmonization procedure drew on Named Entity Recognition (NER) methods from 

bioinformatics and applied two different approaches to data integration in the context of 

patent information. The dictionary-based approach relies on the collection of large datasets of 

names and their variants, while the rule-based approach articulates a set of rules to establish 

similarity links across different entity names. The methodology has been then applied by the 

authors to several data sources, including major patent databases and business directories such 

as Amadeus3. 

 

After the merge with the patent datasets and the data cleaning we ended up with 74,862 firms 

operating in the manufacturing sector. Figure 1 shows the distribution of patent applications 

across sampled innovating firms. As it is clear, within the subsample of innovative firms, 

about the 42% of firms hold only one patent, then the 32% hold between 2 and 5 papers, the 

10% hold between 6 and 12 papers, while the 12% hold more than 13 papers. 

>>> INSERT Figure 1 ABOUT HERE <<< 

The final dataset provides firm-level information about economic and innovation activities 

along the whole observed period. Hence we are able to derive the „starting conditions‟ for the 

                                                           
3 More details can be found in the paper by Thoma et al. (2010). 
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relevant variables at 20024. We are also able to trace the existence of the firm month by 

month up to December 2010. This is done by using the information on the juridical status of 

the firm. Following a large body of the literature on the subject, survival data refer here to 

firms that have failed or have been the object of merger and acquisitions5 (Agarwal and 

Audretsch, 2001; Cefis and Marsili, 2006). 

 

3.2 The Variables 

 

3.2.1 Dependent Variable 

 
In order to implement our empirical analysis on survival likelihood we adopted the survival 

time of a firm as key variable. The survival time is calculated for all the firms included in our 

dataset and extends to all firms of varying ages and sizes. As initial point for the calculation 

of the survival time we took January 2002. The survival time is therefore the time elapsed 

between January 2002 and the month in which the firm exited. The survival time is right-

censored on December 2011, as an exit event is not observed for continuing firms. 

 

3.2.2 The Key Covariates: Implementation of Knowledge Indicators 

 
The properties of the knowledge base are calculated by using the information contained in 

patent documents. Since we needed to derive the values of these properties at 2002, we 

implemented the yearly calculation of the variables described in what follows, and then used 

the average value on the period 1997-2002.  

 

                                                           
4
 Due to the need to calculate firm growth as an explanatory control variable. 

5 This can be a severe problem in some contexts, and can be hardly solved with the data we have. However for 
what concerns the present analysis one may assume that most of M&As involve fast growing innovating firms. 
This means that we are likely to overestimate failure events for innovative firms. Since our results show that 
survival rates are positively related to innovation, the assimilation of deaths and M&A leads to an 
underestimation of the importance of innovation for firms‟ survival. In other words, were it be possible to 
distinguish between death and M&A in our data, the results would be even stronger.  
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For what concerns the definition of the variables, let us start by the traditional firm‟s 

knowledge stock. This is computed by applying the permanent inventory method to patent 

applications. We calculated it as the cumulated stock of past patent applications using a rate 

of obsolescence of 15% per annum: 1,,, )1( 
  tititi EhE  , where tih ,


 is the flow of patent 

applications and δ is the rate of obsolescence6. 

 

The implementation of knowledge characteristics proxying for variety, coherence and 

similarity, rests on the recombinant knowledge approach. In order to provide an operational 

translation of such variables one needs to identify both a proxy for the bits of knowledge and 

a proxy for the elements that make their structure. For example one could take scientific 

publications as a proxy for knowledge, and look either at keywords or at scientific 

classification (like the JEL code for economists) as a proxy for the constituting elements of 

the knowledge structure. Alternatively, one may consider patents as a proxy for knowledge, 

and then look at technological classes to which patents are assigned as the constituting 

elements of its structure, i.e. the nodes of the network representation of recombinant 

knowledge.  In this paper we will follow this latter avenue7. Each technological class j is 

linked to another class m when the same patent is assigned to both of them8. The higher is the 

number of patents jointly assigned to classes j and m, the stronger is this link. Since 

technological classes attributed to patents are reported in the patent document, we will refer to 

                                                           
6
A similar approach is used by Soete et Patel (1985). 

7
The limits of patent statistics as indicators of technological activities are well known. The main drawbacks can be 

summarized in their sector-specificity, the existence of non-patentable innovations and the fact that they are not the only 

protecting tool. Moreover the propensity to patent tends to vary over time as a function of the cost of patenting, and it is 

more likely to feature large firms (Pavitt, 1985; Griliches, 1990). Nevertheless, previous studies highlighted the usefulness of 

patents as measures of production of new knowledge. Such studies show that patents represent very reliable proxies for 

knowledge and innovation, as compared to analyses drawing upon surveys directly investigating the dynamics of process 

and product innovation (Acs et al., 2002). Besides the debate about patents as an output rather than an input of innovation 

activities, empirical analyses showed that patents and R&D are dominated by a contemporaneous relationship, providing 

further support to the use of patents as a good proxy of technological activities (Hall et al., 1986).  
8 In the calculations 4-digits technological classes have been used. 
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the link between j and m as the co-occurrence of both of them within the same patent 

document9.  

 

On this basis we calculated the following three key characteristics of firms‟ knowledge bases 

(see the appendix A for the methodological details): 

 

a) Knowledge variety (KV) measures the degree of technological diversification of the 

knowledge base. It is based on the informational entropy index.  

 

b) Knowledge coherence (COH) measures the degree of complementarity among 

technologies. 

 

c) Cognitive distance (CD) expresses the dissimilarities amongst different types of 

knowledge. 

 

3.2.2.1 Knowledge variety measured by the informational entropy index 

 

Knowledge variety (KV) is measured by using the informational entropy index. Entropy 

measures the degree of disorder or randomness of the system; systems characterized by high 

entropy are characterized by high degrees of uncertainty (Saviotti, 1988). Informational 

entropy has some interesting properties (Frenken and Nuvolari, 2004) including 

multidimensionality.  

Consider a pair of events (Xl, Yj), and the probability of their co-occurrence plj. A two 

dimensional variety measure can be expressed as follows (firm subscripts are omitted 

throughout the section for the sake of clarity): 

                                                           
9
It must be stressed that to compensate for intrinsic volatility of patenting behaviour, each patent application is made last 

five years in order to reduce the noise induced by changes in technological strategy. 
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log),( 2       (1) 

Let the events Xl and Yj be citation in a patent document of technological classes l and j 

respectively. Then plj is the probability that two technological classes l and j co-occur within 

the same patent. The measure of multidimensional entropy, therefore, focuses on the variety 

of co-occurrences or pairs of technological classes within patent applications10. 

3.2.2.2 The knowledge coherence index 

 

Firms need to combine or integrate many different pieces of knowledge to produce a 

marketable output. Competitiveness requires new knowledge and knowledge about how to 

combine old and new pieces of knowledge. We calculate the coherence of firms‟ knowledge 

bases, defined as the average relatedness or complementarity of a technology chosen 

randomly within the firm‟s patent portfolio with respect to any other technology (Nesta and 

Saviotti, 2005, 2006; Nesta, 2008)11.  

Obtaining the knowledge coherence index requires a number of steps. First of all, we need to 

calculate the weighted average relatedness WARl of technology l with respect to all other 

technologies in the firm patent portfolio. This measure builds on the measure of technological 

                                                           
10 It must be noted that by measuring the degree of technological differentiation, the calculation of information 
entropy is affected by the number of technological classes observed, but not necessarily by the number of 
technological classes in the classification itself. Indeed, the introduction of new technological classes that are not 
observed does not affect the calculations in that they would be events with zero probability. Entropy rises or falls 
according to the number of technological classes that are actually observed in the patent sample. It reaches the 
maximum if all events are equiprobable, i.e. if all technological classes show the same relative frequency. If 
probabilities are unevenly distributed, one can have very low values of information entropy even if a very large 
number of technologies is observed.  

 
11 The function used to measure coherence is completely different from the one used to measure informational 
entropy. The fact that in both cases the co-occurrence of technological classes enters the calculations does not 
mean that both functions must lead to the same result. The informational entropy function measures the variety 
of the set, corresponding to the number of distinguishable entities it contains. The coherence function was 
introduced by Teece et al (1994) to measure the coherence of a firm based on its products. Nesta and Saviotti 
(2005, 2006) have subsequently adapted it to measure the coherence of the knowledge base of a firm. The 
coherence function measures the extent to which the distinguishable entities in the set (in our case the types of 
knowledge corresponding to different technological classes) are used together irrespective of the number of 
entities contained in the set. The two functions are in principle independent since they use the same type of data 
to calculate different properties of the same system. The mathematical independence of the two functions does 
not imply that the evolution of the corresponding properties is independent. Thus, if new technological classes 
are introduced into the knowledge base of a sector (an increase in the number of distinguishable entities of the 
set) there is no reason to expect the capacity of firms to combine the new types of knowledge to be created 
instantly. We expect that as new types of knowledge are introduced into the knowledge base of a sector, the 
firms will slowly learn to combine them thus leading to a temporary fall in coherence. 
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relatedness τlj (Nesta and Saviotti, 2005, 2006). We start by calculating the relatedness 

matrix. The technological universe consists of k patent applications across all sampled firms. 

Let Plk = 1 if the patent k is assigned the technology l [l= 1, …, n], and 0 otherwise. The total 

number of patents assigned to technology l is  k lkl PO . Similarly, the total number of 

patents assigned to technology j is  k jkj PO . Since two technologies can occur within the 

same patent,  jl OO , and thus the observed the number of observed co-occurrences of 

technologies l and j is  k jklklj PPJ . Applying this relationship to all possible pairs yields a 

square matrix  (n  n) in which the generic cell is the observed number of co-occurrences:  
















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nnn

njljj
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JJJ

JJJ

JJJ







ln1

1

1111

       (5) 

We assume that the number xij of patents assigned to technologies i and j is a hypergeometric 

random variable of the mean and variance: 

K

OO
xXE ji

ljlj  )(         (6) 
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If the observed number of co-occurrences Jij is larger than the expected number of random co-

occurrences ij, then the two technologies are closely related: the fact that the two 

technologies occur together in the number of patents xij is not common or frequent. Hence, the 

measure of relatedness is given by the difference between the observed and the expected 

numbers of co-occurrences, weighted by their standard deviation: 

lj

ljlj
lj

J


            (8) 
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Note that this measure of relatedness has no lower or upper bounds:   ;lj . Moreover, 

the index shows a distribution similar to a t-test, so that if  96.1;96.1 lj , we can safely 

assume the null hypothesis of non-relatedness of the two technologies i and j. The 

technological relatedness matrix ‟ can be considered a weighting scheme to evaluate the 

technological portfolio of firms. 

 

Following Teece et al. (1994), WARl is defined as the degree to which technology l is related 

to all other technologies jl in the firm‟s patent portfolio, weighted by patent count Pjt: 

 


lj jt

lj jtlj

lt P

Pτ
WAR         (9) 

Finally the coherence of the firm‟s knowledge base at time t is defined as the weighted 

average of the WARlt measure: 

 
l l lt

lt
ltt P

P
WARCOH        (10) 

Note that this index implemented by analysing the co-occurrence of technological classes 

within patent applications, measures the degree to which the services rendered by the co-

occurring technologies are complementary, and is based on how frequently technological 

classes are combined in use. The relatedness measure τlj indicates that utilization of 

technology l implies use also of technology j in order to perform specific functions that are 

not reducible to their independent use. This makes the coherence index appropriate for the 

purposes of this study and marks a difference from entropy, which measures technological 

differentiation based on the probability distribution of pairs of technological classes across the 

patent sample12. 

                                                           
12 To make it clear, informational entropy is a diversity measure which allows to accounting for variety, i.e. the 
number of categories into which system elements are apportioned, and balance, i.e. the distribution of system 
elements across categories. (Stirling, 2007). In this sense entropy does not say anything about the relationships 
between technological classes, but provides a measure of the diversity of technological co-occurrences, 
suggesting whether in a sector most of the observed co-occurrences focus on a specific couple or on the contrary 
whether the observed co-occurrences relate to a large number couples. In this framework, related and unrelated 
variety provide a measure of the extent to which observed variety applies to couples of technologies that belong 
to the same macro domain or to different macro-domains. One would expect established technologies to be 
characterized by relatively low variety of co-occurrences, insofar as the recombination focus on a relatively 
small numbers of technological classes that have proved to be particularly fertile. On a different ground, the 
coherence index is based on a normalized measure of how much each observed technology is complementary to 
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If the coherence index is high, this means that the different pieces of knowledge have been 

well combined or integrated during the search process. Due to a learning dynamics, firms 

have increased capability to identify the bits of knowledge that are required jointly to obtain a 

given outcome. In a dynamic perspective, therefore, increasing values for knowledge 

coherence are likely to be associated with search behaviours mostly driven by organized 

search within well identified areas of the technological landscape. Conversely, decreasing 

values of knowledge coherence are likely to be related to search behaviours mostly driven by 

random screening across untried areas of the technological landscape in the quest for new and 

more profitable technological trajectories. 

3.2.2.3 The cognitive distance index 

 

We need a measure of cognitive distance (Nooteboom, 2000) to describe the dissimilarities 

among different types of knowledge. A useful index of distance can be derived from 

technological proximity proposed by Jaffe (1986, 1989), who investigated the proximity of 

firms‟ technological portfolios. Breschi et al. (2003) adapted this index to measure the 

proximity between two technologies13.  

Let us recall that Plk = 1 if the patent k is assigned the technology l [l= 1, …, n], and 0 

otherwise. The total number of patents assigned to technology l is  k lkl PO . Similarly, the 

total number of patents assigned to technology j is  k jkj PO . We can, thus, indicate the 

                                                                                                                                                                                     
all other technologies in the analyzed patents. In this sense it cannot be understood as a measure of diversity. The 
relatedness index indeed provides a measure of the degree to which two technologies are actually jointly used as 
compared to the expected joint utilization. The index allows to establishing a relationship of complementarity 
between the technologies in the analyzed patents. Based on the relatedness measure (tau), the coherence index 
provides an aggregate description of the degree to which the observed technologies in a given sector are 
complementary to one another. 
13 Cognitive distance is the inverse of similarity or the equivalent of dissimilarity. The measure of similarity has 
been introduced by biologists and ecologists to measure the similarity of biological species and to understand to 
what extent they could contribute to biodiversity. The same measure has been applied by Jaffe (1986) to the 
similarity of technologies. It is not the only possible measure of similarity but it is the most frequently used one. 
The rational for its use is starts from the assumption that when two technologies, i and j, can be combined with a 
third technology k, they are similar. We call this measure cognitive distance both because  the two terms are used 
as synonyms in the biological literature and, even more so, because cognitive distance is a concept used by Bart 
Nooteboom (2000) which has a number of very  interesting implications for firm behavior and performance. In 
particular, the cognitive distance between different firms is expected to affect the probability that they form 
technological alliances. Intuitively, the need for a firm to learn a completely new technology (discontinuity) will 
lead to the incorporation into the firm's knowledge base of new  patent classes, which would make the  
knowledge base recognizably different from what it was at previous times. The dissimilarity of the knowledge 
base can be expected to keep rising with respect to the pre-discontinuity knowledge base until the technology 
lifecycle has achieved maturity, at which stage the knowledge base of the firm will have stabilized, thus leading 
to a fall in cognitive distance. 
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number of patents that are classified in both technological fields l and j as: �݈ ݆ =  �݈݇ �݆݇݇ . By 

applying this count of joint occurrences to all possible pairs of classification codes, we obtain 

a square symmetrical matrix of co-occurrences whose generic cell Vlj reports the number of 

patent documents classified in both technological fields l and j. 

Technologiocal proximity is proxied by the cosine index, which is calculated for a pair of 

technologies l and j as the angular separation or uncentred correlation of the vectors Vlm and 

Vjm. The similarity of technologies l and j can then be defined as follows: 







n

1

2
j

n

1

2
l

n

1 jl
lj

VV

VV
S

m mm m

m mm        (11) 

The idea behind the calculation of this index is that two technologies j and l are similar to the 

extent that they co-occur with a third technology m. Such measure is symmetric with respect 

to the direction linking technological classes, and it does not depend on the absolute size of 

technological field. The cosine index provides a measure of the similarity between two 

technological fields in terms of their mutual relationships with all the other fields. Slj is 

the greater the more two technologies l and j co-occur with the same technologies. It is equal 

to one for pairs of technological fields with identical distribution of co-occurrences with all 

the other technological fields, while it goes to zero if vectors Vlm and Vjm are orthogonal 

(Breschi et al., 2003)14. Similarity between technological classes is thus calculated on the 

basis of their relative position in the technology space. The closer technologies are in the 

technology space, the higher is Slj and the lower their cognitive distance (Engelsman and 

van Raan, 1991; Jaffe, 1986; Breschi et al., 2003). 

The cognitive distance between j and l can be therefore measured as the complement of their 

index of technological proximity:  

ljlj S1d           (12) 

Having calculated the index for all possible pairs, it needs to be aggregated at the firm level to 

obtain a synthetic index of distance amongst the technologies in the firm‟s patent portfolio. 

This is done in two steps. First we compute the weighted average distance of technology l, i.e. 

the average distance of l from all other technologies.  

                                                           
14 For Engelsman and van Raan (1991), this approach produces meaningful results particularly at a „macro‟ level, 
i.e. for mapping the entire domain of technology.  
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 


lj jt

lj jtlj

lt P

Pd
WAD         (13) 

where Pj is the number of patents in which the technology j is observed. The average 

cognitive distance at time t is obtained as follows: 

 
l

l lt

lt
ltt P

P
WADCD        (14) 

The cognitive distance index measures the inverse of the similarity degree among 

technologies. When cognitive distance is high, this is an indication of the increased difficulty 

or cost the firm faces to learn the new type of knowledge which is located in a remote area of 

the technological space. Increased cognitive distance is related to the emergence of 

discontinuities associated with paradigmatic shifts in the sector knowledge base. It signals the 

combination of core technologies with unfamiliar technologies. 

 

The adoption of these variables marks an important step forward in the operational translation 

of knowledge creation processes. In particular, they allow for a better appreciation of the 

collective dimension of knowledge dynamics. Knowledge is indeed viewed as the outcome of 

a combinatorial activity in which intentional and unintentional exchange among innovating 

agents provides the access to external knowledge inputs (Fleming and et al., 2007). The 

network dynamics of innovating agents provide the basis for the emergence of new 

technological knowledge, which is in turn represented as an organic structure, characterized 

by elementary units and by the connections amongst them.  

 

An increase in knowledge coherence is likely to signal that firms innovation activities are 

dominated by the exploitation of accumulated technological competences, while a decrease in 

knowledge coherence is linked tothe emergence of new technological trajectories which firms 

address by means of  exploration across untried areas of the technology landscape. Similarly, 

increasing values of cognitive distance are related to   exploration dynamics, while decreasing 
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cognitive distance is more likely to be linked to exploitation and organized search across the 

technology landscape . Knowledge variety is likely to increase in any case when new 

combinations are introduced in the system. (Krafft, Quatraro, Saviotti, 2009). 

 

Consistently with the theoretical framework lied down in the previous section, we expect the 

survival rates of the firms to be positively related to knowledge coherence and knowledge 

variety, and negatively related to cognitive distance. 

 

3.2.3 Control variables 

 
Besides the effects of the knowledge related variables, we also control for the effects of a 

number of variables that have proved to affect the survival likelihood in previous empirical 

settings. 

 

To this purpose we include in the regressors vector the current size of the firm at the beginning 

of the period of observation. The variable is derived by the DIANE dataset and measured as 

the log of firms‟ sales at 2002. Moreover, in order to account for possible non-linear effects of 

size on survival, we also included the squared term of firm size in the econometric estimation 

(Evans, 1987; Hall, 1987). 

 

Also firm’s age has been found to affect survival patterns. The age of the firm is calculated in 

terms of elapsed years since the foundation of the firm. Also in this case, since the 

relationship between age and survival can be non-linear and take a U-inverted shape, we 

included the squared term of age in the econometric model (Evans, 1987; Bruderl and 

Schussler, 1990). Moreover, we also accounted for the possibility for size and age to interact 

(Cefis and Marsili, 2006). 
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In addition to size and age, we also accounted for the effects of differential growth rates at the 

beginning of the observed period (Agarwal, 1997). We calculated firm‟s growth as the log 

difference of firms sales between 2002 and 2001. 

 

Finally, we also controlled for differences in the technological regimes of the sector in which 

firms operate (Agarwal and Audretsch, 2001). In this perspective we classified the sampled 

firms according to Pavitt‟s taxonomy (1984) (see Appendix A for the details) in science-

based, supplier-dominated, specialized suppliers and scale-intensive. 

 

>>> INSERT Table 2 ABOUT HERE <<< 

 

Table 2 provides a synthesis of the variables that we will use in the empirical analysis. 

 

3.3 Methodology 

 
In order to evaluate the effects of the structural properties of firms‟ knowledge bases on post-

entry performances we focus on the survival time of the firm which is a duration variable. If T 

indicates the number of months that our firms have survived up to December 2011, then we 

can write the cumulative distribution function F of the duration time T as follows: 

 � � = �(ܶ ≤ �), t ≥ 0         (1) 
 

This specification gives the probability that the duration T is less than or equal to t. In other 

words, this function represents the probability that a firm exits the population before t months 

after December 2001. 

 



23 

 

The survival function is then defined as: 

 ܵ � = 1 − � � = �(ܶ > �)        (2) 

 

Which represents the probability that a firm survives t months after December 2001. 

 

The analysis is articulated in two steps. First of all we check the extent to which differences in 

survival rates in sampled firms can be explained by the ability to successfully undertake 

knowledge creation activities. In this perspective we calculated the empirical survival 

function by using the life-table approach (Kalbfleish and Prentice, 1980) and then estimated 

the survival functions for different categories of firms on the basis of their innovative 

performance. In this step, we simply distinguished between innovators and non-innovators by 

generating a dummy which takes value 1 if the knowledge capital stock of the firm is different 

from 0. We also performed statistical test of equality of survival distributions across the 

different categories of firms, and in particular the log-rank, the Wilcoxon and the Cox test. 

 

While this former step allows us to assess whether knowledge assets may provide an 

explanation of post-entry performances, the purpose of this paper goes well beyond this. Once 

we acknowledge the role of knowledge creation activities, we aim at investigating whether 

differential survival patterns within the innovators subsample are explained by the structural 

properties of firms knowledge base. This leads us to estimate a duration model in which the 

survival time is function of a vector of covariates which consists of the measures described in 

Sections 3.2 and 3.3. 
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In the literature different empirical strategies have been followed to empirically estimate the 

determinants of differential survival rates. A number of papers have adopted traditional 

estimation models for binary categorical variables. Audrestch (1991) implements a logit 

analysis on survival rates, while Helmers and Rogers (2010) adopt a probit regression on the 

probability of exit of firms. Fritsch et al. (2007) use an OLS estimation on survival rates, in a 

framework better suited to tobit regression. On a different perspective, some other papers 

have instead made explicit use of duration models. Audretsch and Mahmood (1995) and 

Agarwal and Audretsch (2001) implemented a Cox proportional hazard regression, which is 

based on hazard rations. Cefis and Marsili (2006) used a parametric approach based on 

accelerated time models. 

 

In this paper we will follow this latter approach, as the test based on Schoenfeld residuals 

suggests that our data violates the proportional hazard assumption. The accelerated time 

models assume a linear form for the effects of the explanatory variables on survival time and 

also for the underlying survival function. The data in our dataset, as is often the case in 

duration models, are well suited to be represented by a lognormal distribution. 

 

The accelerated time model estimated with survival time distributed as a lognormal is given 

by: 

 

ln ܶ = �� + ��          (3) 

 

Where T is the survival time, X is the matrix of explanatory variables (see Table 2),  is the 

vector of the coefficients to be estimated and  is the vector of the residuals assumed to be 

normally distributed. Since all the explanatory variables are calculated in logarithms, the 
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coefficients  of the model can be interpreted as the elasticities of the covariates on the 

expected survival time. The parameters are estimated by maximum likelihood. 

4 Results 

4.1 Descriptive Statistics 

 
Before presenting the results of the econometric estimations, we compare the general 

characteristics of the sampled firms, with a special focus on the distinction between 

innovating and non-innovating firms. 

 

Table 3 presents the descriptive statistics for all the explanatory variables. Of course, non-

innovating firms do not display any statistics for what concerns the knowledge-related 

variables, and knowledge capital is null. Let us recall that size is measured in term of sales. 

The data show that on average the size of non-innovating firms is close to the overall mean, 

although significantly lower than the average size of innovating firms. A similar evidence 

concerns also firms‟ age. Indeed non-innovating firms show values very close to the overall 

figure. Moreover, non-innovating firms in our sample are on average younger than innovating 

firms. 

 

>>> INSERT Table 3 ABOUT HERE<<< 

 

We also compare the two group of firms for what concerns their sectoral distribution in terms 

of Pavitt‟s sectors (Table 4). The two groups are clearly different also in this respect. Indeed 

the bulk of non-innovating firms (59.24%) is in the suppliers dominated sector, followed by 

the science based sector (20.63%), while most of innovating firms (49.71%) are in the 

science-based sector, followed by the scale and information intensive sector (22.11%). 
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>>>INSERT Table 4 ABOUT HERE <<< 

 

Table 5 reports the correlation matrix for survival time (number of months a firm survives 

since December 2001), the knowledge-related variables and the control variables. As expected 

age is positively and significantly correlated with firm‟s survival. The same applies also for 

knowledge capital. This latter also shows a high and significant correlation with the other 

knowledge-related variables. For this reason we use knowledge capital only in the first step of 

our empirical strategy, which is aimed at assessing the impact of innovative behaviour on 

survival. Actually in the second step we focus on the impact on knowledge-related variable on 

the survival on the sub-sample of innovating firms. 

 

>>> INSERT Table 5 ABOUT HERE <<< 

 

4.2 Univariate and graphical analysis 

 

In order to assess the impact of the properties of knowledge base on the likelihood of firms 

survival we first investigate whether engaging in knowledge creating activities can explain to 

some extent the variety in post-entry performances. In this direction, we report in Table 6 the 

life-table estimates of survival rates of the two groups, i.e. innovators and non-innovators. The 

two groups are identified on the basis of the values of the knowledge capital stock variable. In 

particular innovators are those firms for which the logarithm of knowledge capital is higher 

than zero. The table shows that at the end of the observed period the percentage of firms that 

exited is about 27% for the non-innovators and about 24% for the innovators. At the end of 

the period the survival rate of non-innovators was about 5% lower than that of innovators. We 
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can also notice that for most of the observed years the survival rate of non-innovators is lower 

than that of innovators. 

 

>>> INSERT Table 6 ABOUT HERE <<< 

 

An alternative way to grasp these different patterns can be represented by the plot of the 

Kaplan-Meier survivor function (Figure 2). The Kaplan-Meier estimator (Kaplan and Meier, 

1958) is a simple frequency non-parametric estimator, and as such it does not make any ex-

ante assumption about the distribution of exit times. The estimator is given by: 

  ܵ � =   1 − �݅�݅ �݅≤�         (4) 

 

Where ni denotes the number of firms in the risk set at ti and di the number of exits at ti. The 

product is over all observed exit times that are less than or equal to t. 

 

>>> INSERT Figure 2 ABOUT HERE <<< 

 

The graph shows that actually the function for innovators (dashed line) is above the one 

representing the survival rates of non-innovators (continuous line). Finally, we also 

investigated whether the differences between the survival functions are statistically 

significant. To this purpose we implemented three statistical tests reported in Table 7. It can be 

seen that in all of the tests the differences between innovators and non-innovators are 

significant at the 1% level. 

 

>>> INSERT Table 7ABOUT HERE <<< 
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The analysis conducted so far suggests that engaging in technological activities may enhance 

the probabilities for firms to survive. In this respect, the results are much in line with the 

existing literature on the subject. The analysis of the effect of the properties of firms‟ 

knowledge bases requires however the adoption of a regression framework allowing for the 

evaluation of the effects of the different covariates. 

 

4.3 Multivariate analysis 

 

In this section we provide an empirical account of the relationship between firms‟ 

characteristics and firm survival. To this purpose we estimated a parametric survival model 

with lognormal distribution, including a set of firm-specific covariates. Following Cefis and 

Marsili (2005), we estimated different specifications of the model by adopting a three-stage 

hierarchical procedure.  

 

The first specification (Model 1) is aimed at assessing the contribution of knowledge capital 

stock. This specification not only allows for a direct comparison between innovators and non-

innovators, but also an assessment of the effects of differential endowments in terms of 

knowledge capital. The base model 1.A takes into account firm size and age as control 

variables, while in the model 1.B we also include the squared terms on size and age. Finally 

model 1.C also includes the control for firms‟ growth. The second specification is aimed at 

assessing the differential impact of the properties of the knowledge base. This estimation is 

therefore restricted to the sub-sample of innovating firms, as according to our definition non-

innovators does not possess any measurable knowledge base. The procedure aimed at 

assigning a zero values for the properties of the knowledge base would not work indeed, as 

the zero value does not stand for the absence of the property. For example, knowledge 
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coherence may take both positive and negative values, i.e. zero is in the interval of possible 

values and would signal the presence of an average level of integration of the knowledge 

base. In the same vein, a zero value for cognitive distance would imply a knowledge base 

built upon the recombination of very similar technologies. The hierarchy of Model 2 is the 

same as the one of Model 1. Model 2.A includes only size and age as firm control variables, 

Model 2.B extends the covariates list to the squared terms of size and age and finally Model 

2.C also accounts for the firms‟ differential growth rates. Sectoral dummies are included in all 

of the specifications. 

 

>>> INSERT Table 8 ABOUT HERE <<< 

 

The results of the econometric estimations are reported in Table 8. As for Model 1, the 

coefficients for size and age are also quite robust across the three specifications. In particular, 

size shows a negative and significant coefficient, while age a positive and significant one. The 

evidence on size is not in line with the literature. However, when we include the squared 

effect on size, the situation gets clearer. Indeed the sign on the coefficients suggest the 

existence of a U-shaped relationship between size and survival rate, according to which the 

likelihood to survive begins to increase beyond a critical value of firms‟ size. This is also 

reflected by the fact that innovators in our sample show an average size significantly higher 

than non-innovators. The coefficient on the squared age term suggests instead the existence of 

an inverted U-shaped relationship with firm survival, as indicated in some previous analyses 

(Audretsch and Mahmood, 1994; Wagner, 1994). The coefficient on knowledge capital turns 

out to be positive and statistically significant across the three specifications. This is consistent 

with what we have observed in the univariate analysis and supports the idea that the more a 
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firm commits resources to the development of their knowledge base the higher are its chances 

to survive. However this is only part of the story. 

 

In the theoretical framework articulated in Section 2 we indeed formulated the hypothesis that 

not only knowledge matters from a quantitative viewpoint, but also from a qualitative one. By 

adopting a collective knowledge approach, we propose to characterize the structure of firms‟ 

knowledge base on the basis of three properties, i.e. knowledge coherence, cognitive distance 

and knowledge variety. The former provides of a measure of the degree of complementarity 

across the bits of knowledge that are combined together in the knowledge base. The second 

provides a measure of the extent to which the combined knowledge bits are dissimilar while 

the latter refers to the degree of technological differentiation. 

 

The idea is that the contribution of technological activities to survival changes according to 

the kind of search strategies followed by innovating firms. The results of Model 2 provide full 

support to our hypotheses. The coefficient on knowledge coherence, like the one on 

knowledge variety, is indeed positive and significant across the three specifications. On the 

opposite, cognitive distance shows a negative and significant coefficient. 

 

This is consistent with the idea that the higher the degree of technological variety, the higher 

the success of innovation activities and hence the higher the profitability of the firm. This 

affects also the likelihood of firms‟ survival. However, the positive effect of knowledge 

variety is not related with the combination of knowledge bits, no matter which technological 

domain they come from. On the contrary, the coefficients on knowledge coherence and 

cognitive distance suggest that firms searching in areas of the technological landscape with 

which they are more familiar, have higher chances to survive. In other words, the direction of 
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knowledge efforts with respect to the competences cumulated over time matters in shaping the 

post-entry performance of firms. 

5 Conclusions and Policy Implications 

 
One basic issue in the paper, consistent with the literature, is that survival likelihood should 

not be related only to age and size. Age and size are firms characteristics that allow for a 

distinction between the formative stages of the industry and the more mature ones, explaining 

why and how firms maintain themselves in the market over a medium or longer time period. 

However, age and size are not the only dimensions to be taken into account. The idea that 

firms engage in product innovation in the explorative stages, and succeed to survive in the 

exploitation phases as they move progressively or more drastically into process innovation 

has been also debated as a crucial issue. In that perspective, the main outcome of the paper, 

contributing to the advancement of the literature, is that we get to know how this intentional 

process of engaging innovation matters for firms survival in the dynamics in the industry. 

Summing up, the value of the theoretical view developed in this paper is thus the following: 

using such an analysis we grasp the way in which firms influence the development of the 

industry, while most of the existing contributions rest on how the innovation strategies are 

shaped by the emergence, growth, maturity and decline of sectors. 

 

The recombinant and collective approach chosen to develop that paper provides a general 

framework to understand how search processes along the technological landscape can be 

computed by innovative firms, taking into account that this search process may be more or 

less diversified, coherent, and based on the combination of more or less distant bits of 

knowledge. On the issue of survival, the rationale behind this theoretical framework is that 

firms engaging an innovation process necessarily have to combine different pieces of 
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knowledge in the perspective or creating new competences, and that this combination needs to 

be coherent over time with the ability of firms to generate complementarities, and has to be 

marked by a rather smooth development of competences rather than by radical and dissimilar 

associations. Our empirical study sustains these research assumptions, as it shows that there is 

a positive and significant relationship between variety and survival, a positive and significant 

relationship between coherence and survival, and a negative and significant relationship 

between cognitive distance and survival. This means that if they wish to survive longer, firms 

have thus to maintain a large variety of technological classes in their patent portfolios, 

controlling for complementarity effects and avoiding ruptures in the development of the 

knowledge base.  

 

The analysis carried out in this paper allows to deriving some implications for technology 

policy. The latter cannot be implemented in an unselective way, but it should rather take into 

account the differential conditions of the technological environment in which firms operate. 

Technology policy should therefore be customized according to the relative stage of 

development of the technological trajectory. On the one hand, firms involved in the 

exploration of untried areas of the technology landscape are likely to face a more turbulent 

and uncertain environment and therefore more exposed to failure. These firms seem to need a 

specific support at the policy level. As a consequence, the collective dimension of knowledge 

generation calls for the full appreciation of the systemic character of technological innovation 

and therefore demands the adoption of a systemic perspective in technology policy. In this 

direction, technology policies should be oriented towards the promotion of clusters or 

technological platforms enabling firms in uncertain technological environments to access 

external technology competences and enhance exploration activities. A particular attention 

ought to be paid in this respect not only to key dimensions like geographical proximity or 
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firms‟ characteristics, but also to technological proximity amongst interacting agents. On the 

other hand, demand-driven innovation policies aiming at fostering the development of local 

competitive advantages should be targeted towards the support of innovating firms operating 

in stable and established technological environments and, thus, involved in the exploitation of 

their accumulated competences. In these latter the probability to exploit successful 

innovations is indeed much higher, and so is the likelihood to achieve technology based 

economic growth.  
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APPENDIX A 

 
Table A1 – CorrespondenĐe ďetǁeen Paǀitt’s groups and NACE reǀ. 2 ĐlassifiĐation 

SCIENCE BASED  Nace rev2 

Chemicals  20, 21 

Office machinery  28 

Manufacture of radio, television and communication equipment and apparatus  26 

Manufacture of medical, precision and optical instruments, watches and clocks  26 

Communications  58, 59, 63 

Computer and related activities  62 

Research and development  72 

SCALE AND INFORMATION INTENSIVE  
 

Pulp, paper & paper products  17 

Printing & publishing  18 

Mineral oil refining, coke & nuclear fuel  19, 81 

Rubber & plastics  22, 89 

Nonmetallic mineral products  23 

Basic metals  24 

Motor vehicles  29 

Financial intermediation, except insurance and pension funding  64 

Insurance and pension funding, except compulsory social security  65 

Activities auxiliary to financial intermediation  66 

SPECIALISED SUPPLIERS  
 

Mechanical engineering  71 

Manufacture of electrical machinery and apparatus n.e.c.  27 

Manufacture of other transport equipment  30 

Real estate activities  68, 41 

Renting of machinery and equipment  77 

Other business activities  82 

SUPPLIERS DOMINATED  
 

Food, drink & tobacco  10, 11, 12 

Textiles  13 

Clothing  14 

Leather and footwear  15 

Wood & products of wood and cork  16 

Fabricated metal products  25 

FurŶiture, ŵiscellaŶeous ŵaŶufacturiŶg; recycliŶg  31, 32, 33 

Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of automotive fuel 42, 43, 45 

Wholesale trade and commission trade, except of motor vehicles and motorcycles  46 

Retail trade, except of motor vehicles and motorcycles; repair of personal and household goods 47 

Hotels & catering  55, 56 

Inland transport  49 

Water transport  50 

Air transport  51 

Supporting and auxiliary transport activities; activities of travel agencies  52 
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Figure 1 - Distribution of patent applications across firms 

 

 

Figure 2 - Comparison of survival function between innovators and non-innovators 
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Table 1 – Sectoral distribution of firms in the dataset as compared to the distribution at the national level. 

  

Sample 

 

France 

Nace Code (rev 2) Industry Freq. % Cum 

 

Freq. % Cum 

5 Mining of coal and lignite 5 0,006 0,006 

 

10 0,001 0,001 

6 Extraction of crude petroleum and natural gas 26 0,033 0,039 

 

61 0,009 0,010 

7 Mining of metal ores 12 0,015 0,054 

 

56 0,008 0,019 

8 Othermining and quarrying 844 1,069 1,124 

 

1885 0,277 0,296 

9 Mining support service activities 16 0,020 1,144 

 

49 0,007 0,303 

10 Manufacture of foodproducts 5998 7,598 8,741 

 

59488 8,742 9,045 

11 Manufacture of beverages 1183 1,498 10,240 

 

2725 0,400 9,446 

12 Manufacture of tobaccoproducts 4 0,005 10,245 

 

5 0,001 9,447 

13 Manufacture of textiles 1132 1,434 11,679 

 

4180 0,614 10,061 

14 Manufacture of wearingapparel 1153 1,460 13,139 

 

8055 1,184 11,245 

15 Manufacture of leather and related products 382 0,484 13,623 

 

1946 0,286 11,531 

16 Manufacture of wood and of products of wood and cork 21 0,027 13,650 

 

9139 1,343 12,874 

17 Manufacture of paper and paper products 851 1,078 14,728 

 

1477 0,217 13,091 

18 Printing and reproduction of recorded media 2392 3,030 17,758 

 

16234 2,386 15,476 

19 Manufacture of coke and refined petroleum products 61 0,077 17,835 

 

88 0,013 15,489 

20 Manufacture of chemicals and chemical products 1369 1,734 19,569 

 

2874 0,422 15,912 

21 Manufacture of basic pharmaceutical products and pharmaceutical preparations 273 0,346 19,915 

 

475 0,070 15,982 

22 Manufacture of rubber and plastic products 2429 3,077 22,992 

 

4747 0,698 16,679 

23 Manufacture of other non-metallic mineral products 1789 2,266 25,258 

 

8955 1,316 17,995 

24 Manufacture of basic metals 571 0,723 25,981 

 

1095 0,161 18,156 

25 Manufacture of fabricated metal products, except machinery and equipment 8053 10,201 36,182 

 

19477 2,862 21,018 

26 Manufacture of computer, electronic and optical products 1325 1,678 37,860 

 

4063 0,597 21,616 

27 Manufacture of electricalequipment 108 0,137 37,997 

 

2656 0,390 22,006 

28 Manufacture of machinery and equipment n.e.c. 309 0,391 38,388 

 

7928 1,165 23,171 

29 Manufacture of motor vehicles, trailers and semi-trailers 931 1,179 39,568 

 

2146 0,315 23,486 

30 Manufacture of other transport equipment 326 0,413 39,980 

 

995 0,146 23,633 

31 Manufacture of furniture 1195 1,514 41,494 

 

14200 2,087 25,719 

32 Othermanufacturing 1413 1,790 43,284 

 

16136 2,371 28,091 

33 Repair and installation of machinery and equipment 2727 3,454 46,738 

 

22565 3,316 31,407 

41 Construction of buildings 5126 6,493 53,231 

 

44007 6,467 37,874 

42 Civil engineering 2032 2,574 55,805 

 

6449 0,948 38,822 

43 Specialised construction activities 32321 40,941 96,746 

 

387333 56,923 95,745 

58 Publishingactivities 2455 3,110 99,856 

 

13506 1,985 97,730 

59 Motion picture, video and television programme production 114 0,144 100,000 

 

15448 2,270 100,000 

  
78946 100 

  
680453 100 

 Note: National-level data have been drawn from Eurostat Structural Business Statistics and refer to the year 2008.
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Table 2–Variable used in the empirical analysis 

Variable Measure Time 

Survival time Elapsed months since Jan 2002 to exit  

Age Logarithm of firms age since its foundation Evaluated at 2002 

Age² Square of Age Evaluated at 2002 

Size Logarithm of firm sales Evaluated at 2002 

Size² Square of Size Evaluated at 2002 

Size x Age Product between Age and Size Evaluated at 2002 

Kn. Stock Knowledge Capital Stock (PIM) Average value on the period 1997-2002 

Kn. Coherence Coherence of the knowledge base Average value on the period 1997-2002 

Cognitive Distance Inverse of technological proximity Average value on the period 1997-2002 

Knowledge Variety Multidimensional Information Entropy Average value on the period 1997-2002 

 

Table 3 - Descriptive Statistics 

 
N mean sd kurtosis skewness median 

Non innovators 

     

 

Kn. variety 

     

 

Cognitive Distance 

     

 

Kn. Coherence 

     

 

Kn. Capital 73333 0 0         .         . 0 

Age 70664 5.020 1.064 2.985 -0.285 5.050 

Size 63909 7.378 1.281 5.523 0.620 7.196 

Growth 38720 0.059 0.384 67.000 3.358 0.028 

Innovators 

     

 

Kn. variety 536 0.644 0.891 2.419 -0.329 0.717 

Cognitive Distance 844 -0.553 0.305 42.709 -5.478 -0.497 

Kn. Coherence 832 2.377 0.514 3.958 1.152 2.242 

Kn. Capital 1529 2.137 1.344 4.330 1.097 1.828 

Age 1511 5.454 0.962 3.153 -0.506 5.529 

Size 1420 10.064 1.953 3.747 -0.029 10.064 

Growth 1068 0.012 0.429 61.226 -1.125 0.010 

Total 

     

 

Kn. variety 539 0.639 0.892 2.400 -0.317 0.711 

Cognitive Distance 891 -0.557 0.314 38.384 -5.210 -0.499 

Kn. Coherence 832 2.377 0.514 3.958 1.152 2.242 

Kn. Capital 74862 0.044 0.358 128.003 10.304 0.000 

Age 72175 5.029 1.063 2.983 -0.290 5.050 

Size 65329 7.437 1.357 5.865 0.815 7.224 

Growth 39788 0.058 0.386 66.879 3.191 0.027 

Note: all variables are in logarithm 

 

Table 4 - Sectoral Distribution of Sampled Firms 

 

Non-Innovators Innovators 

 

Freq. Percent Cum. Freq. Percent Cum. 

Scale and information intensive 8,646 11.79 11.79 338 22.11 22.11 

Science based 15,126 20.63 32.42 760 49.71 71.81 

Specialised suppliers 6,117 8.34 40.76 142 9.29 81.1 

Suppliers dominated 43,444 59.24 100 289 18.9 100 

Total 73,333 100 

 

1,529 100 

   



44 

 

Table 5 - Correlation Matrix 

 

Survival time 

 

Kn. Variety 

 

Cognitive 

Distance 

Kn. 

Coherence 

Kn. Capital 

 

Age 

 

Size 

 

Growth 

 

Survival time 

 

1 

 

                Kn. Variety 0.129 1 

      

 

(0.003) 

       Cognitive 

Distance -0.012 0.062 1 

     

 

(0.726) (0.151) 

      Kn. 

Coherence 0.007 -0.113 -0.210 1 

    

 

(0.837) (0.009) (0.000) 

     Kn.  

Capital 0.020 0.722 0.081 -0.034 1 

   

 

(0.000) (0.000) (0.016) (0.322) 

    Age 

 0.033 0.062 0.053 0.005 0.063 1 

  

 

(0.000) (0.153) (0.116) (0.887) (0.000) 

   Size 

 -0.003 0.466 0.113 -0.019 0.302   0.334 1 

 

 

(0.401) (0.000) (0.001) (0.590) (0.000) (0.000) 

  Growth 

 -0.009 -0.046 -0.084  0.092 -0.020 -0.187 0.021 1 

 

(0.071) (0.358) (0.035) (0.024) (0.000) (0.000) (0.000) 

 Note: p-values in parentheses 

 

Table 6 - Survival rates by sample 

Year Non-innovators Innovators 

0 1 1 

1 99.58 99.54 

2 99.08 98.89 

3 98.28 98.63 

4 97.26 97.25 

5 95.81 95.88 

6 92.34 93 

7 86.54 88.49 

8 72.71 75.6 

   
Number of firms 73333 1529 

Percentage of 

failure 27.29 24.4 

Note: Life-table estimates of survival rates 

 

 

Table 7 - Test of equality of survival functions (innovators vs non-innovators) 

Test Chi-square Pr > Chi-square 

Log-rank 29.94 0.00 

Wilcoxon 35.90 0.00 

Cox 16.62 0.00 
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Table 8 – Results of the Econometric Estimations  

  Model 1 Model 2 

Variables A B C A B C 

Kn. Capital 0.0146*** 0.0118*** 0.0125***   
 

 
(0.00315) (0.00316) (0.00267)   

 
Kn. Coherence 

   
0.0371* 0.0379** 0.0314* 

    
(0.0210) (0.0190) (0.0175) 

Kn. Variety 
   

0.0170** 0.0162** 0.0146 

    
(0.00813) (0.00799) (0.00915) 

Cognitive Distance 
   

-0.0799** -0.0856** -0.0807* 

    
(0.0323) (0.0352) (0.0444) 

Age 0.00785*** 0.0327*** 0.0212** 0.00238 -0.131 -0.0602 

 
(0.00112) (0.00834) (0.0103) (0.00988) (0.105) (0.0953) 

Age^2 
 

-0.00281*** -0.00214*  -0.00176 0.00139 

  
(0.000826) (0.00124)  (0.00632) (0.00612) 

Size -0.00514*** -0.0216*** -0.0267*** 0.00732 -0.0478 -0.0325 

 
(0.00103) (0.00557) (0.00842) (0.00472) (0.0309) (0.0226) 

Size^2 
 

0.000941*** 0.00100**  -0.000800 0.000372 

  
(0.000277) (0.000405)  (0.00196) (0.00107) 

Sales x Age 
 

0.000296 0.00117  0.0134 0.00523 

  
(0.000669) (0.00108)  (0.0107) (0.00431) 

Growth 
  

-0.00120   -0.0298 

   
(0.00421)   (0.0200) 

Constant 4.580*** 4.586*** 4.633*** 4.326*** 5.001*** 4.746*** 

 
(0.00715) (0.0318) (0.0399) (0.100) (0.375) (0.338) 

    
  

 
Log-likelihood -1.369 -1.369 -1.421 -1.710 -1.717 -1.921 

    
  

 
Observations 64,374 64,374 39,785 503 503 404 

*** p<0.01, ** p<0.05, * p<0.1 
       


