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AMALGAMATED PRODUCTS OF C∗-BUNDLES

ÉTIENNE BLANCHARD

Abstract. We describe which classical amalgamated products of continuous C∗-
bundles are continuous C∗-bundles and we analyse the involved extension problems
for continuous C∗-bundles.

Introduction

Different (fibrewise) amalgamated products of continuous C∗-bundles have been
studied over the last years ([1], [8], [6], [4]), one of the main questions being to know
when these amalgamated products are still continuous C∗-bundles.

In order to gather these different approaches in a joint survey, we first recall a few
definitions from the theory of deformations of C∗-algebras and we fix several notations
which will be used in the sequel.

Then we present a few possible extension properties for continuous C∗-bundles. More
precisely, given a compact Hausdorff space X which is perfect, i.e. without any isolated
point, we first recall in §2 that there is no general C(X)-linear version of the Hahn-
Banach extension theorem for continuous C(X)-algebra. But we describe in §3 a Tietze
extension property for continuous C(X)-algebras which will enable us to characterize
in the following sections:
- when the canonical fiberwise amalgamated tensor products of a given continuous
C(X)-algebra A with any other continuous C(X)-algebra B is a continuous C(X)-
algebra ([6, Theorem 1.1 and Theorem 1.2]),
- when the canonical fiberwise amalgamated free products of a given continuous C(X)-
algebra A with any other continuous C(X)-algebra B is a continuous C(X)-algebra
([4, Theorem 3.7 and Corollary 4.8]).

The author of these notes would like to thank the organizers of the 23nd International
Conference on Operator Theory for inviting him to present these results in Timisoara.

1. C(X)-algebras

We recall first a few definitions from deformation theory for C∗-algebras and we fix
the notations which will be used in the sequel.

Let X be a compact Hausdorff space and C(X) the C∗-algebra of continuous func-
tions on X with values in the complex field C.

Definition 1.1. A C(X)-algebra is a C∗-algebra A endowed with a unital ∗–homo-
morphism from C(X) to the centre of the multiplier C∗-algebra M(A) of A.
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Given a closed subset Y ⊂ X, we denote by C0(X \Y ) the closed ideal of continuous
functions on X that vanish of Y . If A is a C(X)-algebra, then the subset C0(X \Y ).A
is a closed ideal in A (by Cohen factorisation Theorem) and we denote by πX

Y the
quotient map A→ A/C0(X \ Y ).A .

If the closed subset Y is reduced to a point x and the element a belongs to the
C(X)-algebra A, we usually write πx, Ax and ax for πX

{x}, π
X
{x}(A) and π

X
{x}(a).

Note that the function

(1.1) x 7→ ‖ax‖ = inf{‖ [1− f + f(x)]a‖ ; f ∈ C(X)}

is always upper semi-continuous by construction. And the C(X)-algebra A is said to
be continuous (or to be a continuous C∗-bundle over X) if the function x 7→ ‖ax‖ is
actually continuous for all a in A.

Definition 1.2. A continuous field of states on a unital C(X)-algebra A is a unital
positive C(X)-linear map ϕ : A→ C(X).

Remark 1.3. A (unital) separable C(X)-algebra A is continuous if and only if (iff)
there exists a continuous field of states ϕ : A → C(X) such that for all x ∈ X, the
induced state ϕx : ax ∈ Ax 7→ ϕ(a)(x) is faithful on Ax ([2]).

2. Hahn-Banach extension properties

Given a compact Hausdorff space X, a continuous unital C(X)-algebra A, a unital
C(X)-subalgebra B ⊂ A and a continuous field of states φ : B → C(X), there does
not exist in general a C(X)-linear positive unital map ϕ : A→ C(X) extending φ, i.e.
a continuous field of states ϕ on A making the following diagram commutative:

B
φ

// C(X)

∩ ‖

A
ϕ

// C(X)

The problem happens as soon as the interior of X is non empty. Indeed, consider:

– the compact space X := {0} ∪ { 1
n
;n ∈ N

∗},
– the unital continuous C(X)-algebra A := C(X)⊕ C(X) and

– the C(X)-subalgebra B := C(X).1A +
(

C0(X \ {0})⊕ C0(X \ {0})
)

⊂ A

And let φ : B → C(X) be the continuous field of states on B fixed by the formulae

φ( (b1, b2) )(
1

n
) =







b1(
1
n
) if n is odd

b2(
1
n
) otherwise

for (b1, b2) ∈ C0(X \ {0})⊕ C0(Y \ {0})

Then, there cannot be any continuous field of states ϕ : A → C(X) such that ϕ(b) =
φ(b) for all b ∈ B. Indeed, if a = 1⊕ 0 ∈ A, one has that:
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(1) ϕ(a)( 1
n
) = 1 if n is odd and

(2) ϕ(a)( 1
n
) = 0 otherwise.

Hence, the function x 7→ ϕ(a)(x) cannot be continuous at x = 0.

On the other hand, if Z is a second countable compact Hausdorff space Z and X ⊂ Z
is a non empty closed subspace, then any continuous field of states φ : πZ

X(A) → C(X)
on the restriction πZ

X(A) can be extended to a continuous field of states ϕ : A→ C(Z)
by Michael continuous selection theorem (see e.g. [2, Proposition 3.13]), i.e. such that
the following diagramme commutes:

πZ
X(A)

φ
// C(X)

A

OO

ϕ
// C(Z)

OO

3. Tietze extension properties

Given a second countable compact Hausdorff space X and a closed non empty sub-
space Y ⊂ X, we describe in this section when a continuous C(Y )-algebra A can be
extended to X, i.e. when there exists a continuous C(X)-algebra D with a C(Y )-
algebra isomorphic πX

Y (D) ∼= A .

If the C∗-algebra A is an exact separable C∗-algebra, then there exists a unital
embedding of the C(Y )-algebra A into the trivial C(Y )-algebra C(Y ;O2) ∼= C(Y )⊗O2,
where O2 is the unital Cuntz C∗-algebra generated by two isometries s1, s2 satisfying
the relation 1O2

= s1(s1)
∗ + s2(s2)

∗ ([3]). Hence, the continuous C(X)-algebra D :=
{ f ∈ C(X,O2) ; π

X
Y (f) ∈ A } answers the question in that case.

But there are continuous C(Y )-algebras which are not exact C∗-algebras. Thus, in
order to study extensions in the general case, let us define in X × Y × [0, 1]:

- the open subspace U = {(x, y, t) ∈ X × Y × [0, 1] ; 0 < t} and
- the closed subspace Z = {(x, y, t) ∈ X×Y ×[0, 1] ; 0 ≤ t.d(x, Y ) ≤ 2d(x, Y )−d(x, y)}.

And let d̄ be the metric on Z given by d̄((x, y, t), (x′, y′, t′)) = d(x, x′)+d(y, y′)+ |t−t′|.

Proposition 3.1. ([6]) The coordinate map p1 : (x, y, t) 7→ x gives a structure of
C(X)-algebra on C(Z) and the ideal C0(U ∩Z) is a continuous C(X)-algebra such that
C0(U ∩ Z)|Y ∼= C0(Y × (0, 1]), i.e. the map (x, y, t) ∈ U ∩ Z 7→ x ∈ X is open.

Proof. Given a function f in C0(U ∩ Z), let us prove the continuity of the function

x ∈ X 7→ ‖πX
x (f)‖ = sup{|f(z)| ; z ∈ p−1

1 ({x})}

This map is already upper semi-continuous (u. s. c.) by construction. Hence, it
only remains to show that for any point x0 ∈ X and any constant ε > 0, one has
‖πX

x (f)‖ > ‖πX
x0
(f)‖ − ε for all points x in a neighbourhood of x0 in X.

The uniform continuity of the function f implies that there exists δ > 0 such that
|f(z)− f(z′)| < ε for all z, z′ in Z with d̄(z, z′) < δ. Now three cases can appear:
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1) If x0 ∈ Y and x ∈ Y satisfies d(x0, x) < δ/2, then |f(x, x, t)− f(x0, x0, t)| < ε for
all t ∈ [0, 1]. And so ‖πX

x (f)‖ > ‖πX
x0
(f)‖ − ε.

2) If x0 ∈ Y and x ∈ X \ Y satisfies d(x0, x) < δ/4, then for all y ∈ Y , the relation
d(x, y) ≤ 2d(x, Y ) implies that d(y, x0) ≤ d(y, x) + d(x, x0) ≤ 2d(x, Y ) + d(x, x0) ≤

3
4
δ

and so
∣

∣f(x, y, t) − f(x0, x0, t)
∣

∣ < ε for all t ∈ [0, 2 − d(x,y)
d(x,Y )

]. Whence the inequality

‖πX
x (f)‖ > ‖πX

x0
(f)‖ − ε.

3) If x0 6∈ Y and the triple (x0, y0, t0) ∈ U ∩Z satisfies |f(x0, y0, t0)| = ‖πX
x0
(f)‖ 6= 0,

then d(x0, y0) < 2d(x0, Y ). Thus, there exists by continuity a constant α(x0) ∈]0, δ/2[
such that all x ∈ X in the ball of radius α(x0) around x0 satisfy:

a) d(x, Y ) > 0 , b) d(x, y0) < 2d(x, Y ) , c) t0 < 2− d(x,y0)
d(x,Y )

+ δ/2 .

And so ‖πX
x (f)‖ ≥

∣

∣

∣
f(x, y0, inf{t0, 2−

d(x,y0)
d(x,Y )

})
∣

∣

∣
> ‖πX

x0
(f)‖ − ε. �

Remark 3.2. S. Wassermann pointed out that if Y = {0, 1} ⊂ X = [0, 1], then
Z = {(x, 0, t) ∈ [0, 1]×{0}×[0, 1] ; t ≤ 2−3x

1−x
}∪{(x, 1, t) ∈ [0, 1]×{1}×[0, 1] ; t ≤ 3x−1

x
}.

Hence, the C(X)-algebra C(Z) is not continuous at x = 1
3
and x = 2

3
.

But the essential ideal C0

(

Z ∩ (0, 1]× {0, 1} × (0, 1]
)

is a continuous C(X)-algebra.

The following Corollary will be essential in the proof of Proposition 4.2.

Corollary 3.3. Let X be a second countable compact space, Y ⊂ X a non zero closed
subset and A a continuous C(Y )-algebra.

a) B := C(X)⊗ A⊗ C([0, 1]) is a continuous C(X × Y × [0, 1])-algebra.
b) D := [C0(U).B]|Z = C0(U).B

/

C0(U\U ∩ Z).B is a continuous C(X)-algebra.

c) There is an isomorphism of C(Y )-algebras D|Y
∼= A⊗ C0((0, 1]).

Proof. a) holds because the C∗-algebras C(X) and C0((0, 1]) are nuclear.

b) Let b ∈ D. Then for all x ∈ X, we have

‖πX
x (b)‖ = ‖b+ C0(X \ {x})D‖ = sup{‖πZ

z (b)‖ ; z ∈ p−1
1 ({x})} ,

whence the continuity of the map x 7→ ‖πX
x (b)‖ by a) and Proposition 3.1.

c) One has DY
∼= [C0(U).B]Y ∼= A⊗ C0((0, 1]) by Proposition 3.1. �

4. Amalgamated tensor products of continuous C(X)-algebras

Given a fixed compact Hausdorff space X, we study in this section the continu-
ity properties of the different tensor products amalgamated over C(X) of two given
continuous C(X)-algebras A and B.

More precisely, let A⊙B denote the algebraic tensor product (over C) of A and B,
let IX(A,B) be the ideal in A⊙B generated by the differences af ⊗ b− a⊗ fb (a ∈ A,
b ∈ B, f ∈ C(X) ) and let A ⊙

C(X)
B denote the quotient of A⊙ B by IX(A,B).

If C∆(X ×X) ⊂ C(X ×X) is the ideal of continuous function of X ×X which are
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zero on the diagonal and A
m

⊗B (resp. A
M

⊗B) is the minimal (resp. maximal) tensor
product over C of the two continuous C(X)-algebras A and B, then the quotient

A
m

⊗
C(X)

B := A
m

⊗B
/

C∆(X×X)A
m

⊗B (resp. A
M

⊗
C(X)

B := A
M

⊗B
/

C∆(X×X)A
M

⊗B) is

the minimal (resp. maximal) completion of the algebraic amalgamated tensor product

A ⊙
C(X)

B. Further, the ∗-algebra A ⊙
C(X)

B embeds in the C(X)-algebra A
m

⊗
C(X)

B ([1])

and we have

(4.1) ∀ x ∈ X , (A
m

⊗
C(X)

B)x ∼= Ax

m

⊗Bx and (A
M

⊗
C(X)

B)x ∼= Ax

M

⊗Bx .

Let us also recall a characterisation of exactness given by Kirchberg andWassermann.

Proposition 4.1. ([8, Theorem 4.5]) Let Y = N∪ {∞} be the one point compactifica-
tion of N and let D be a C∗-algebra. Then the following assertions are equivalent.

i) The C∗-algebra A is exact.

ii) For all continuous C(Y )-algebra B, the minimal tensor product A
m

⊗B is a

continuous C(Y )-algebra with fibres A
m

⊗By (y ∈ Y ).

It induces the following results for fibrewise tensor products of continuous C(X)-
algebras.

Proposition 4.2. ([6], [4]) Let X be a second countable compact Hausdorff space and
A a separable unital continuous C(X)-algebra.
If the topological space X is perfect (i.e. without isolated point), then the following

assertions αe) and βe) (resp. αn) and βn)) are equivalent.

αe) The C∗-algebra A is exact.

βe) For all continuous C(X)-algebra B, the amalgamated tensor product A
m

⊗
C(X)

B is a

continuous C(X)-algebra with fibres Ax

m

⊗Bx (x ∈ X).

αn) The C∗-algebra A is nuclear.

βn) For all continuous C(X)-algebra B, the amalgamated tensor product A
M

⊗
C(X)

B is a

continuous C(X)-algebra with fibres Ax

M

⊗Bx (x ∈ X).

Proof. αe) ⇒ βe) If the C∗-algebra A is exact, then the spatial tensor product A
m

⊗D

is a continuous C(X × X)-algebra with fibres Ax

m

⊗Dx′ (x, x′ ∈ X) ([8]). Hence, its
restriction to the diagonal is as desired.

βe) ⇒ αe) Suppose conversely that the C(X)-algebra A satisfies βe). And let us prove
step by step that the C∗-algebra A is exact.

Step a) All the fibres Ax are exact (x ∈ X). Indeed, given a point x in X, take a
sequence of points xn in X converging to x such that there is a topological isomorphism
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Y := {xn;n ∈ N} ∪ {x} ∼= N∪ {∞}. Then, for any separable continuous C(Y )-algebra
B, there is a continuous C(X)-algebra B such that B|Y = B⊗C0((0, 1]) (Corollary 3.3).

Now, the continuity of the C(X)-algebra B
m

⊗
C(X)

A given by βe) implies that of its

restriction

(

B
m

⊗
C(X)

A

)

|Y

∼= (C0((0, 1])⊗ B)
m

⊗
C(Y )

A|Y , whence that of the C(Y )-algebra

B
m

⊗
C(Y )

A|Y since there is an isometric C(Y )-linear embedding B →֒ B|Y . And this

implies the exactness of the C∗-algebra Ax by Proposition 4.1.

Step b) If B is a C∗-algebra and B is the constant C(X)-algebra C(X;B), then for all
x ∈ X, we have the exact sequence

0 → Cx(X)A
m

⊗B → (A
m

⊗
C(X)

B)x = A
m

⊗B → Ax

m

⊗B → 0 .

Step c) If B is a C(X)-algebra, then for all x ∈ X, we have the sequence of epimor-

phisms (A
m

⊗
C(X)

B)x ։ (Ax

m

⊗B)x ։ Ax

m

⊗Bx

Step d) Now, let B be a C∗-algebra, K ⊳ B a closed two sided ideal in B and take an

element d ∈ ker{A
m

⊗B → A
m

⊗B/K}. Then for all x ∈ X, we have

dx ∈ ker{(A
m

⊗B)x → (A
m

⊗B/K)x}

= ker{Ax

m

⊗B → Ax

m

⊗B/K} by b)

= Ax

m

⊗K by a)

= (A
m

⊗K)x by c)

Thus, d ∈ A
m

⊗K. And so, the C∗-algebra A is exact.

αn) ⇒ βn) has a similar proof to that of αe) ⇒ βe).

βn) ⇒ αn) If a C∗-algebra A satisfies βn), then all the fibres Ax (x ∈ X) are nuclear by
[8, Theorem 3.2] and so the C∗-algebra A itself is nuclear (see e.g. [2, Proposition 3.23]).

�

Remark 4.3. These characterisations do not hold anymore if the compact space X is
not perfect. Indeed, if the space X is reduced to a point, then both the amalgamated

tensor products A
m

⊗
C(X)

B and A
M

⊗
C(X)

B are constant, hence continuous.

Proposition 4.2 implies the following characterisation of exact continuous C(X)-
algebras in the framework of C(X)-algebras.

Corollary 4.4. Let X be a perfect compact metric space and A be a separable contin-
uous C(X)-algebra. Then the following are equivalent

(1) The C∗-algebra A is exact.
(2) For all exact sequence of continuous C(X)-algebras 0 → J → B → D → 0, the

sequence 0 → A
m

⊗
C(X)

J → A
m

⊗
C(X)

B → A
m

⊗
C(X)

D → 0 is exact.
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Proof. (2)⇒(1) If the unital continuous C(X)-algebra A satisfies (2) and the sequence
0 → J0 → B0 → D0 → 0 is an exact sequence of C∗-algebras, then the sequence
0 → J := C(X)⊗J0 → B := C(X)⊗B0 → D := C(X)⊗D0 → 0 is an exact sequence
of C(X)-algebras. And the condition (2) implies the exactness of the sequence

0 → A
m

⊗
C(X)

J = A
m

⊗ J0 → A
m

⊗
C(X)

B = A
m

⊗B0 → A
m

⊗
C(X)

D = A
m

⊗D0 → 0 .

whence the exactness of A.

(1)⇒(2) If the C(X)-algebra A is an exact C∗-algebra and 0 → J → B → D → 0 is
an exact sequence of C(X)-algebras, then the two first lines of the following diagram
are exact by assumption (1)

C∆(X ×X)A
m

⊗ J → C∆(X ×X)A
m

⊗B → C∆(X ×X)A
m

⊗D
↓ ↓ ↓

A
m

⊗ J → A
m

⊗B → A
m

⊗D
↓ ↓ ↓

A
m

⊗
C(X)

J 99K A
m

⊗
C(X)

B 99K A
m

⊗
C(X)

D

Besides, all the columns of the diagram are exact by definition, whence the exactness
of the last line by a diagram chasing. �

5. Amalgamated free products of continuous C(X)-algebras

In this section, we describe the continuity properties of different free products amal-
gamated over C(X) of two given unital continuous C(X)-algebras A and B.

Proposition 5.1. ([4]) Let X be a second countable perfect compact Hausdorff space
and A a separable unital continuous C(X)-algebra.

Then the following assertions are equivalent.

αe) The C∗-algebra A is exact.

γe) For all separable unital continuous C(X)-algebra B and all continuous fields of
faithful states φ : A → C(X), ψ : B → C(X), the reduced amalgamated free product
(C, φ ∗ ψ) = (A, φ) ∗

C(X)
(B,ψ) is a continuous C(X)-algebra with fibres (Cx, φx ∗ ψx) =

(Ax, φx) ∗(Bx, ψx).

Proof. γe) ⇒ αe) Let B be a unital separable continuous C(X)-algebra and let ψ be a

continuous field of faithful states ψ on B. Set D = A
m

⊗
C(X)

B and let E be the Hilbert

D-bimodule E = L2(D,φ⊗ ψ) ⊗
C(X)

D.

Then, the following assertions are equivalent ([4, Lemma 4.5]).

a) D is a continuous C(X)-algebra with fibres Dx
∼= Ax

m

⊗Bx (x ∈ X).
b) The Pimsner C∗-algebra TD(E ⊕D) of the full Hilbert D-bimodule E ⊕D is a

continuous C(X)-algebra with fibres TDx
(Ex ⊕Dx) (x ∈ X).
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But there is a C(X)-linear isomorphism TD(E ⊕ D) ∼= C ⋊ N. And so, these two
assertions are equivalent to the continuity of the reduced amalgamated free product
(C, φ ∗ ψ) = (A, φ) ∗

C(X)
(B,ψ) since the group Z is amenable ([2, Corollaire 5.10]).

αe) ⇒ γe) Conversely, if A is an exact C∗-algebra and B is a unital separable continuous

C(X), the amalgamated tensor product D = A
m

⊗
C(X)

B is a continuous C(X)-algebra

with fibres Dx
∼= Ax

m

⊗Bx for x ∈ X ([1]). Hence, the reduced amalgamated free
product (C, φ ∗ ψ) = (A, φ) ∗

C(X)
(B,ψ) is a continuous C(X)-algebra ([4, Theorem 4.1]).

�

Remark 5.2. There is no similar result for full amalgamated free product. Indeed, the

full amalgamated free product A
f
∗

C(X)
B of two unital continuous C(X)-algebras A and

B is always a continuous C(X)-algebra with fibres Ax

f
∗Bx (x ∈ X) ([4, Theorem 3.7]).

Sketch of proof. The algebraic amalgamated free product A ⊛
C(X)

B is a dense C(X)-

submodule of the amalgamated Haagerup tensor product A
h

⊗
C(X)

B , which itself is con-

tained in the full amalgamated free product A
f
∗

C(X)
B ([9]). And for all d ∈ A ⊙

C(X)
B ,

one has

‖dx‖
Ax

f
∗Bx

= ‖dx‖
Ax

h
⊗Bx

= inf

{

‖
∑

i

aia
∗
i ‖

1

2 .‖
∑

i

b∗i bi‖
1

2 ; dx =
∑

i

ai ⊗ bi

}

= sup
{

∣

∣

∣

∣

〈ξ,
∑

i

π(ai).σ(bi)η〉

∣

∣

∣

∣

;
ξ, η unit vectors in the Hilbert space ℓ2(N)
π , σ unital ∗ −rep. of Ax, Bx on ℓ2(N)

}

Hence, the map x 7→ ‖dx‖ is both upper and lower semi-continuous if d ∈ A ⊙
C(X)

B .

The proof for the continuity of the map x 7→ ‖dx‖ for elements d in the algebraic
amalgamated free product A ⊛

C(X)
B is similar ([4]).
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