
HAL Id: hal-00923567
https://hal.science/hal-00923567v2

Preprint submitted on 3 Jan 2014 (v2), last revised 7 Oct 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Brauer group and indecomposable (2,1)-cycles
Bruno Kahn

To cite this version:

Bruno Kahn. The Brauer group and indecomposable (2,1)-cycles. 2014. �hal-00923567v2�

https://hal.science/hal-00923567v2
https://hal.archives-ouvertes.fr


THE BRAUER GROUP AND INDECOMPOSABLE

(2, 1)-CYCLES

BRUNO KAHN

Abstract. We show that the torsion in the group of indecom-
posable (2, 1)-cycles on a smooth projective variety over an alge-
braically closed field is isomorphic to a twist of its Brauer group,
away from the characteristic. In particular, this group is infinite
as soon as b2 − ρ > 0. We derive a new insight into Rǒıtman’s
theorem on torsion 0-cycles over a surface.

Introduction

Let X be a smooth projective variety over an algebraically closed
field k. The group

C(X) = H1(X,K2) ≃ CH2(X, 1) ≃ H3(X,Z(2))

has been widely studied. Its most interesting part is the indecomposable
quotient

H1
ind(X,K2) ≃ CH2

ind(X, 1) ≃ H3
ind(X,Z(2))

defined as the cokernel of the natural homomorphism

(1) Pic(X)⊗ k∗ θ
−→ C(X).

It vanishes for dimX ≤ 1.
Let Br(X) = H2

ét(X,Gm) be the Brauer group of X : it sits in an
exact sequence

(2) 0→ NS(X)⊗Q/Z→ H2
ét(X,Q/Z(1))→ Br(X)→ 0

(see [7, p. 629, (5.8.4)] for the p-primary part in characteristic p).

Theorem 1. Let p be the exponential characteristic of k. There are
natural isomorphisms

β ′ : Br(X){p′}(1)
∼
−→ H3

ind(X,Z(2)){p′}

βp : H
2(X,Qp/Zp(2))

∼
−→ H3

ind(X,Z(2)){p}

where {p} (resp. {p′}) denotes p-primary torsion (resp. prime-to-p
torsion.)
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Here we write A(1) for lim
−→(n,p)=1 nA ⊗ µn for a prime-to-p torsion

abelian group A, and

H2(X,Qp/Zp(2)) = lim
−→
s

H1
ét(X, νs(2))

where νs(2) is the s-th sheaf of logarithmic Hodge-Witt differentials of
weight 2 [7, 10, 6].

Theorem 1 gives an interpretation of the Brauer group (away from
p)1 in terms of algebraic cycles. In view of (2), it also implies:

Corollary 1. If b2− ρ > 0, H3
ind(X,Z(2)) is infinite. In characteristic

zero, if pg > 0 then H3
ind(X,Z(2)) is infinite. �

To my knowledge, this is the first general result on indecomposable
(2,1)-cycles. It relates to the following open question:

Question 1 (See also Remark 1). Is there a surface X such that b2−ρ >
0 but H3

ind(X,Z(2))⊗Q = 0?

Many examples of complex surfaces X for which H3
ind(X,Z(2)) is not

torsion have been given: we refer for example to [3] and the references
therein. In all of them, one shows that a version of the Beilinson
regulator with values in a quotient of Deligne cohomology takes non
torsion values on this group. On the other hand, there are examples
of complex surfaces X with pg > 0 for which the regulator vanishes
rationally [13, Th. 1.6], but there seems to be no such X for which one
can decide whether H3

ind(X,Z(2))⊗Q = 0.
Question 1 evokes Mumford’s nonrepresentability theorem for the

Albanese kernel T (X) in the Chow group CH0(X) under the given
hypothesis. It is of course much harder, but not unrelated. The link
comes through the transcendental part of the Chow motive of X , intro-
duced and studied in [8]. If we denote this motive by t2(X) as in loc.
cit., we have

T (X)Q = HomQ(t2(X),L2) = H4(t2(X),Z(2))Q

1The group H2(X,Qp/Zp(2)) is very different from Br(X){p}: suppose that k
is the algebraic closure of a finite field Fq over which X is defined. In [10, Rk 5.6],
Milne proves

det(1− γt | Hi(X,Qp(n)) =
∏

v(aij)=v(qn)

(1 − (qn/aij)t)

where γ is the “arithmetic” Frobenius of X over Fq and the aij are the eigenvalues
of the “geometric” Frobenius acting on the crystalline cohomology Hi(X/W ) ⊗
Qp (or, equivalently, on l-adic cohomology for l 6= p by Katz-Messing). We get
Vp(Br(X){p}) for i = 2, n = 1 and Vp(H

2(X,Qp/Zp(2))) for i = 2, n = 2.
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[8, Prop. 7.2.3]. Here, all groups are taken in the category Ab⊗Q of
abelian groups modulo groups of finite exponent and HomQ denotes
the refined Hom group on the category Meff

rat(k,Q) of effective Chow
motives with Q coefficients (see Section 2 for all this), while L is the
Lefschetz motive; to justify the last term, note that Chow correspon-
dences act on motivic cohomology, so that motivic cohomology of a
Chow motive makes sense. We show:

Theorem 2 (see Proposition 3). If X is a surface, we have an iso-
morphism in Ab⊗Q:

H3
ind(X,Z(2))Q ≃ H3(t2(X),Z(2))Q.

Corollary 2 ([4, Prop. 2.15]). In Theorem 2, assume that k has in-
finite transcendence degree over its prime subfield. If T (X) = 0, then
H3

ind(X,Z(2)) is finite.

Proof. Under the hypothesis on k, T (X) = 0 ⇐⇒ t2(X) = 0 [8,
Cor. 7.4.9 b)]. Thus, T (X) = 0 ⇒ H3

ind(X,Z(2))Q = 0 by Theorem 2.
This means that H3

ind(X,Z(2)) has finite exponent, hence is finite by
Theorem 1 and the known structure of Br(X). �

Remark 1. 1) For l 6= p, H3
ind(X,Z(2)){l} finite ⇐⇒ b2 − ρ = 0 by

Theorem 1. Under Bloch’s conjecture, this implies t2(X) = 0 [8, Cor.
7.6.11], hence T (X) = 0 and (by Theorem 2) H3

ind(X,Z(2)) finite. This
provides conjectural converses to Corollaries 1 (for a surface) and 2.
2) The quotient ofH3

ind(X,Z(2))tors by its maximal divisible subgroup is
dual to NS(X)tors, at least away from p: we leave this to the interested
reader.

We also apply Theorem 2 to give in Section 4 a new proof of Rǒıt-
man’s theorem that T (X) is uniquely divisible, up to a group of finite
exponent.

Acknowledgements. This work was done during a visit in the Tata
Institute of Fundamental research (Mumbai) in the fall 2006: I would
like to thank R. Sujatha for her invitation, TIFR for its hospitality and
support and IFIM for travel support. I also thank James Lewis and
Masanori Asakura for helpful remarks.

1. Proof of Theorem 1

This proof is an elaboration of the arguments of Colliot-Thélène and
Raskind in [4], completed by Gros-Suwa [6, Ch. IV] for l = char k. We
use motivic cohomology as it smoothens the exposition and is more
inspirational, but stress that these ideas go back to Bloch [2] and [4].
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We refer to [9, §2] for an exposition of ordinary and étale motivic
cohomology and the facts used below, especially to [9, Th. 2.6] for
the comparison with étale cohomology of twisted roots of unity and
logarithmic Hodge-Witt sheaves.
Multiplication by ls on étale motivic cohomology yields “Bockstein”

exact sequences

0→ H i
ét(X,Z(n))/ls → H i

ét(X,Z/ls(n))→ lsH
i+1
ét (X,Z(n))→ 0

for any prime l, s ≥ 1, n ≥ 0 and i ∈ Z. Since lim
←−

1H i
ét(X,Z(n))/ls = 0,

one gets in the limit exact sequences:

(3) 0→ H i
ét(X,Z(n))̂

a
−→ H i

ét(X, Ẑ(n))
b
−→ T̂ (H i+1

ét (X,Z(n)))→ 0

where T̂ (−) = Hom(Q/Z,−) denotes the total Tate module. This first
yields:

Proposition 1. For i 6= 2n, Ker b is finite in (3) and H i
ét(X,Z(n)) is

an extension of a finite group by a divisible group.

Proof. This is the argument of [4, 1.8 and 2.2]. Let us summarise it:

H i
ét(X,Z(n)) is “of weight 0” and H i

ét(X, Ẑ(n)) is “of weight i−2n” by
Deligne’s proof of the Weil conjectures. It follows that a has finite image
in every l-component, hence has finite image by Gabber’s theorem [5].
One derives the structure of H i

ét(X,Z(n)) from this. �

Consider now the case n = 2. Recall thatH i(X,Z(2))
∼
−→ H i

ét(X,Z(2))
for i ≤ 3 from the Merkurjev-Suslin theorem (cf. [9, (2-6)]). For l 6= p,
let

H2
ind(X, µ⊗2

ln ) = Coker(Pic(X)⊗ µln → H2
ét(X, µ⊗2

ln ))

H2
ind(X,Zl(2)) = Coker(Pic(X)⊗ Zl(1)→ H2

ét(X,Zl(2))).

Lemma 1. There is a canonical isomorphismH2
ind(X,Zl(2)) ≃ Tl(Br(X))(1).

In particular, this group is torsion-free.

Proof. Straightforward from the Kummer exact sequence. �

We have a commutative diagram

(4)

0−→ Pic(X)⊗ µls −→ H2
ét(X, µ⊗2

ls ) −→ H2
ind(X, µ⊗2

ls ) −→0

≀





y

αs





y

0−→ls(Pic(X)⊗ k∗)−→lsH
3(X,Z(2))−→lsH

3
ind(X,Z(2))−→0

where the upper row is exact and the lower row is a complex. This
diagram is equivalent to the one in [4, 2.8], but the proof of its com-
mutativity is easier, as a consequence of the compatibility of Bockstein
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boundaries with cup-product in hypercohomology. This yields maps:

H2
ind(X, µ⊗2

ls )
βs

−→ lsH
3
ind(X,Z(2))(5)

an inverse limit commutative diagram

(6)

0→NS(X)⊗ Zl(1)−→ H2
ét(X,Zl(2)) −→ H2

ind(X,Zl(2)) →0

≀





y
α̂





y
β̂





y

0→Tl(Pic(X)⊗ k∗)−→Tl(H
3(X,Z(2))−→Tl(H

3
ind(X,Z(2))→0.

(note that Pic(X)⊗µls
∼
−→ NS(X)⊗µls) and a direct limit commmu-

tative diagram

(7)

0→ Pic(X)⊗ µl∞ −→H2(X,Ql/Zl(2))−→ Br(X){l}(1) →0

≀





y

αl





y

βl





y

0→(Pic(X)⊗ k∗){l}−→ H3(X,Z(2)){l} −→H3
ind(X,Z(2)){l}→0

where βl defines the map β ′ in Theorem 1.
We shall use the following fact, which is proven in [4, 2.7] (and could

be reproven here with motivic cohomology in the same fashion):

Lemma 2. In (1), N := Ker θ has no l-torsion.

Proposition 2 (cf. [4, Rk. 2.13]). βs is surjective in (5) and β̂ is
bijective in (6); N is uniquely divisible; the lower row of (7) is exact
and βl is bijective.

Proof. Since Pic(X)⊗k∗ is l-divisible, Lemma 2 yields exact sequences

0→ ls(Pic(X)⊗ k∗)→ lsA→ N/ls → 0(8)

0→ lsA→ lsH
3(X,Z(2))→ lsH

3
ind(X,Z(2))→ 0(9)

where A = Im θ, and (9) implies the surjectivity of βs, hence of β̂ since
the groups H2

ind(X, µ⊗2
ls ) are finite. Since αs is surjective in (4), we also

get that all groups in (8) and (9) are finite. Now the upper row of (6) is
exact; in its lower row, the homology at Tl(H

3(X,Z(2)) is isomorphic
to N̂

l thanks to (8) and (9). A diagram chase then yields an exact
sequence

H2(X,Z(2))̂l ≃ Ker α̂→ Ker β̂ → N̂

l → 0

(see Proposition 1). Thus Ker β̂ is of weight 0, hence finite, hence 0 by
Lemma 1. This also shows the divisibility of N , which thanks to (8)
and (9) implies the exactness of the lower row of (4), hence of (7). Now
αl is surjective, and also injective since Kerαl ≃ H2(X,Z(2))⊗Ql/Zl

is 0 by Proposition 1. Hence βl is bijective. �
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The case of p-torsion is similar and easier: by the same argument as
above,

H2(X,Qp/Zp(2))
∼
−→ H3(X,Z(2)){p}

and that H3(X,Z(2)){p}
∼
−→ H3

ind(X,Z(2)){p} since k∗ is uniquely p-
divisible, hence also Pic(X)⊗k∗. This concludes the proof of Theorem
1.

2. Refined Hom groups

Let A be an additive category; write A⊗Q for the category with the
same objects as A and Hom groups tensored with Q, and A⊠Q for the
pseudo-abelian envelope of A⊗Q. If A is abelian, then A⊗Q = A⊠Q

is still abelian and is the localisation ofA by the Serre subcategoryAtors

of objects A such that n1A = 0 for some integer n > 0 (e.g. [1, Prop.
B.3.1]).
For A = Ab, the category of abelian groups, one has a natural

functor “tensoring objects with Q”

Ab⊗Q→ VecQ

to Q-vector spaces, but this functor is an equivalence of categories only
on the full subcategory of Ab⊗Q given by finitely generated abelian
groups. For clarity, we shall write

(10) AQ, A⊗Q

for the image of an abelian group A ∈ Ab respectively in Ab⊗Q and
VecQ.
Let F be an additive functor (covariant or contravariant) from A to

Ab, the category of abelian groups: it then induces a functor

FQ : A⊠Q→ Ab⊗Q.

In particular, we get a bifunctor

HomQ : (A⊠Q)op ×A⊠Q→ Ab⊗Q

which refines the bifunctor Hom of A⊠Q.
We shall apply this to A =Meff

rat(k), the category of effective Chow
motives with integral coefficients: the categoryA⊠Q is then equivalent
to the categoryMeff

rat(k,Q) of Chow motives with rational coefficients.

3. Chow-Künneth decomposition of K2-cohomology

In this section, X is a connected surface. Its Chow motive h(X) ∈
Meff

rat(k,Q) then enjoys a refined Chow-Künneth decomposition

(11) h(X) = h0(X)⊕ h1(X)⊕ halg
2 (X)⊕ t2(X)⊕ h3(X)⊕ h4(X)
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[8, Prop. 7.2.1 and 7.2.3]. The projectors defining this decomposition
act on the groups H i(X,Z(2))Q; we propose to compute the corre-
sponding direct summands H i(M,Z(2))Q. To be more concrete, we
shall express this in terms of the K2-cohomology of X .
We keep the notation

H1
ind(X,K2) = Coker(Pic(X)⊗ k∗ → H1(X,K2))

to which we adjoin

H0
ind(X,K2) = Coker(K2(k)→ H0(X,K2)).

To relate with the notation in Section 1, recall that H2(k,Z(2))
= K2(k) and H2(X,Z(2)) = H0(X,K2).
We shall also need a smooth connected hyperplane section C of

X , appearing in the construction of (11) [11, 12], and its own Chow-
Künneth decomposition attached to the choice of a rational point:

(12) h(C) = h0(C)⊕ h1(C)⊕ h2(C).

The projectors defining (12) have integral coefficients, while those
defining (11) only have rational coefficients in general.
The following proposition extends the computations of [8, 7.2.1 and

7.2.3] to weight 2 motivic cohomology.

Proposition 3. a) We have the following table for H i(M,Z(2)):

M = h0(C) h1(C) h2(C)
i = 2 K2(k) H0

ind(C,K2) 0
i = 3 0 V (C) k∗

i > 3 0 0 0

where V (C) = Ker(H1(C,K2)
N
−→ k∗) is Bloch’s group.

b) We have the following table for H i(M,Z(2)), where all groups are
taken in Ab⊗Q (see Section 2):

M = h0(X) h1(X) halg
2 (X) t2(X) h3(X) h4(X)

i = 2 K2(k) A 0 B 0 0
i = 3 0 Pic0(X)k∗ NS(X)⊗ k∗ H1

ind(X,K2) 0 0
i = 4 0 0 0 T (X) Alb(X) Z

i > 4 0 0 0 0 0 0

where

Pic0(X)k∗ = Im(Pic0(X)⊗ k∗ → H1(X,K2))

A = Im(H0
ind(X,K2)→ H0

ind(C,K2))

B = Ker(H0
ind(X,K2)→ H0

ind(C,K2)).
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Proof. We proceed by exclusion as in the proof of [8, Th. 7.8.4]. Let
us start with a). We use the notation (10) of Section 2.

• For i > 3,H i(M,Z(2))Q is a direct summand ofH i(C,Z(2))Q =
0.
• One has h2(C) = L, hence

H i(h2(C),Z(2))Q = H i−2(k,Z(1))Q =

{

k∗

Q if i = 3

0 else.

• One has

H i(h0(C),Z(2))Q = H i(k,Z(2))Q =

{

K2(k)Q if i = 2

0 if i > 2.

• The case of M = h1(C) follows from the two previous ones by
exclusion.

Let us come to b).

• For i > 4,H i(M,Z(2))Q is a direct summand ofH i(X,Z(2))Q =
0.
• One has h4(X) = L2, hence

H i(h4(X),Z(2))Q = H i−4(k,Z)Q =

{

ZQ if i = 4

0 else.

• One has h3(X) = h1(X)(1), hence

H i(h3(X),Z(2))Q = H i−2(h1(X),Z(1))Q.

As h1(X) is a direct summand of h1(C), H i−2(h1(X),Z(1))Q
is a direct summand of H i−2(C,Z(1))Q. This group is 0 for
i 6= 3, 4. For i = 3, one has H1(C,Z(1))Q = H1(h0(C),Z(1))Q,
hence

H1(h1(C),Z(1))Q = H1(h1(X),Z(1))Q = 0.

For i = 4, H2(h1(X),Z(1))Q = Alb(X)Q (cf. Murre [11]).

• One has halg
2 (X) = NS(X)(1), hence

H i(halg
2 (X),Z(2))Q = (H i−2(k,Z(1))⊗ NS(X))Q

=

{

(NS(X)⊗ k∗)Q if i = 3

0 else.

• One has

H i(h0(X),Z(2))Q = H i(k,Z(2))Q =

{

K2(k)Q if i = 2

0 if i > 2.
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• As h1(X) is a direct summand of h1(C), H i(h1(X),Z(2))Q is
a direct summand of H i(C,Z(2))Q: this group is therefore 0
i > 3. This completes row i = 4 by exclusion.
• The action of refined Chow-Künneth projectors respects the
homomorphism (Pic(X)⊗k∗)Q → H3(X,Z(2))Q. As the action
of πtr

2 (defining t2(X)) is 0 on Pic(X)Q, we getH
3(t2(X),Z(2))Q

≃ H1
ind(X,K2)Q, which completes row i = 3 by exclusion.

• The construction of πtr
2 [8, proof of 2.3] shows that the compo-

sition
h(C)

i∗→ h(X)→ t2(X)

is 0. Hence the composition

H i(t2(X),Z(2))Q → H i(X,Z(2))Q
i∗
→ H i(C,Z(2))Q

in 0 for all i. Applying this for i = 2, we see thatH2(t2(X),Z(2))Q
⊆ BQ. On the other hand, H2(h1(X),Z(2))Q is a direct sum-
mand of H2(h1(C),Z(2))Q, hence injects in AQ. By exclusion,
we haveH2(t2(X),Z(2))Q⊕H

2(h1(X),Z(2))Q ≃ H0
ind(X,Z(2))Q,

hence row i = 2.

�

Remark 2. Let us clarify the “reasoning by exclusion” that has been
used repeatedly in this proof. Let F be a functor from smooth projec-
tive varieties to Ab⊗Q, provided with an action of Chow correspon-
dences. Then F automatically extends to Meff

rat(k,Q), and we wish
to compute the effect of a Chow-Künneth decomposition of h(X) on
F (X). The reasoning above is as follows in its simplest form:
Suppose that we have a motivic decomposition h(X) = M ⊕ M ′,

hence a decomposition F (X) = F (M) ⊕ F (M ′). Suppose that we
know an exact sequence

0→ A→ F (X)→ B → 0

and an isomorphism F (M) ≃ A. Then F (M ′) ≃ B.
Of course this reasoning is incorrect as it stands; to justify it, one

should check that if π is the projector with imageM yielding the decom-
position of h(X), then F (π) does have image A. This can be checked
in all cases of the above proof, but such a verification would be tedious,
double the length of the proof and probably make it unreadable. I hope
the reader will not disagree with this expository choice.

4. Generalisation

In this section, we take the gist of the previous arguments. For con-
venience we pass from effective Chow motivesMeff

rat(k,Q) to all Chow
motives Mrat(k,Q). Since étale motivic cohomology has an action of
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Chow correspondences and verifies the projective bundle formula, it
yields well-defined contravariant functors

H i
ét :Mrat(k,Q)→ Ab⊗Q

such that H i
ét(X,Z(n))Q = H i−2n

ét (h(X)(−n)) for any smooth projec-
tive k-variety X and i, n ∈ Z. We also have (contravariant) realisation
functors

H i
l :Mrat(k,Q)→ Cl ⊗Q

extending l-adic cohomology for l 6= char k, where Cl denotes the cate-
gory of lZ-adic inverse systems of abelian groups [SGA 5, V.3.1.1]. For
l = char k we use logarithmic Hodge-Witt cohomology as in Theorem
1 [10, §2], [6].

Definition 1. Let M ∈ Mrat(k,Q). If i ∈ Z, we say that M is pure

of weight i if Hj
l (M) = 0 for all j 6= i and all primes l.

For example, if h(X) =
⊕2d

i=0 hi(X) is a Chow-Künneth decomposi-
tion of the motive h(X) of a d-dimensional smooth projective variety
X , then hi(X) is pure of weight i. If d = 2, the motive t2(X)(−2) is
pure of weight −2 as a direct summand of h2(X)(−2).

Theorem 3. Let M be pure of weight i. Then Hj
ét(M) is uniquely

divisible for j 6= i, i + 1. If moreover i 6= 0, then H i
ét(M) is uniquely

divisible and H i+1
ét (M){l} ≃ H i

l (M)⊗Q/Z.

(An object A ∈ Ab⊗Q is uniquely divisible if multiplication by n is
an automorphism of A for any integer n 6= 0.)

Proof. As in Section 1, we have Bockstein exact sequences in Cl ⊗Q

0→ Hj
ét(M)/l∗

a
−→ Hj

l (M)→ l∗H
j+1
ét (M)→ 0

which yields the first statement. For the second one, the weight argu-
ment of [4] yields Im a = 0. �

Let X be a surface. Applying Theorem 3 to M = t2(X)(−2) as
above, we get that H i

ét(t2(X),Z(2)) is uniquely divisible for i 6= 3 and

H3
ét(t2(X),Z(2)){l} ≃ H3

tr(X,Zl(2)⊗Q/Z ≃ Br(X){l}

in Ab⊗Q, recovering a slightly weaker version of Theorem 1 in view
of Proposition 3. For i = 4, the exact sequence [9, (2-7)]

0→ CH2(X)→ H4
ét(X,Z(2))→ H0(X,H3

ét(Q/Z(2)))→ 0

shows that CH2(X)
∼
−→ H4

ét(X,Z(2)) since dimX = 2, whence

T (X) = H4(t2(X),Z(2))
∼
−→ H4

ét(t2(X),Z(2))

yielding a new proof of Rǒıtman’s theorem up to small torsion.
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Remark 3. This argument is not integral because the projector πtr
2

defining t2(X) is not an integral correspondence. It is however l-integral
for any l prime to a denominator N of πtr

2 . This N is essentially con-
trolled by the degree of the Weil isogeny

Pic0X/k → Pic0C/k = Alb(C)→ Alb(X)

where C is the ample curve involved in the construction of πtr
2 . If one

could show that various C’s can be chosen so that the corresponding
degrees have gcd equal to 1, one would deduce a full proof of Rǒıtman’s
theorem from the above.
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