
HAL Id: hal-00923547
https://hal.science/hal-00923547v1

Submitted on 7 Jan 2014 (v1), last revised 25 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance-based Trace Diagnosis for Multimedia
Applications: Help me TED!

Christiane Kamdem Kengne, Noha Ibrahim, Marie-Christine Rousset,
Maurice Tchuenté

To cite this version:
Christiane Kamdem Kengne, Noha Ibrahim, Marie-Christine Rousset, Maurice Tchuenté. Distance-
based Trace Diagnosis for Multimedia Applications: Help me TED!. 2013. �hal-00923547v1�

https://hal.science/hal-00923547v1
https://hal.archives-ouvertes.fr

Distance-based Trace Diagnosis for Multimedia

Applications: Help me TED!

Christiane Kamdem Kengne∗†, Noha Ibrahim∗

∗University of Grenoble

LIG

681 rue de la passerelle

38400 Saint Martin d’Hères

France

{surname.name}@imag.fr

Marie-Christine Rousset∗, Maurice Tchuente†

†University of Yaounde I

LIRIMA, Equipe IDASCO

BP 812 Yaoundé, Cameroun

UMI 209 UMMISCO

BP 337 Yaoundé, Cameroun

Maurice.Tchuente@ens-lyon.fr

Abstract—Execution traces have become essential resources that
many developers analyze to debug their applications. Ideally, a
developer wants to quickly detect whether there are anomalies
on his application or not. However, in practice, size of multime-
dia applications trace can reach gigabytes, which makes their
exploitation very complex. Usually, developers use visualization
tools before stating a hypothesis. In this paper, we argue that this
solution is not satisfactory and propose to automatically provide
a diagnosis by comparing execution traces. We use distance based
models and conduct a user case to show how TED, our automatic
trace diagnosis tool, provides semantic added-value information
to the developer. Performance evaluation over real world data
shows that our approach is scalable.

Index Terms—Execution traces; Diagnosis; Audio/Video decod-
ing; Multimedia applications.

I. INTRODUCTION

With the proliferation of embedded systems (from home

boxes to tablets and smartphones) providing an everywhere

access to multimedia contents, the development of multimedia

applications is an area of high competition in which every

second lost by a developer to debug the application amounts

a financial loss for companies.

The analysis of execution traces, that are sequences of time-

stamped events, is at the core of the optimization and de-

bugging of applications. When the developer has a reference

trace (which can be produced by a simulator), a technique for

detecting possible anomalies within an execution trace is to

compare it with the reference trace using a suitable distance

[1]. However, although there is an abundant literature about

distances on sequences ([2]–[4]), very few distances take

into account the temporal aspect that is crucial in execution

traces. More generally, designing an appropriate distance for a

meaningful comparison between multimedia execution traces

is a difficult task. Indeed, it requires to capture and combine

within a single numerical function, several aspects that are

specific to multimedia execution traces. Whatever the quality

of a distance for suggesting the existence of a bug in an execu-

tion trace, based on its numerical comparison with a reference

trace, the results of the distance calculation are inherently

difficult to interpret by human developers, in particular for

finding the actual cause of the bug.

In this paper, we propose to replace a black-box approach

encapsulated in a single complex distance by a glass-box

approach based on a fine-grained analysis of problems that

are likely to occur in multimedia applications. The idea is

that anomalies in multimedia applications usually have visible

effects such as desynchronization of sound with the picture

or subtitles, the interruption of a video streaming or the loss

of some frames (a frame being an image rendered during a

known time interval).

We make the following contributions:

1) We have identified a family of anomalies likely to

occur in multimedia applications and that are visually

perceptible when a user is watching a video.

2) For each type of anomaly, we have designed a specific

distance which measures appropriately the amplitude of

the corresponding anomaly.

3) Based on these distances, we have designed a diagnosis

tool able to detect degraded execution traces and to

identify the causes of such a degraded behaviour.

The rest of the paper is organized as follows: Section II

provides some background and states the problem that we

consider in this paper. In Section III we present the general

approach that we propose to solve this problem. In Section

IV, we describe our TED tool and illustrate it on a use case.

Section V summarizes experiments conducted using TED.

Finally, Section VI briefly surveys related work, and concludes

with some perspectives.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we explain how execution traces are obtained

and described as timestamped sequences. We also introduce

three well-known types of anomalies occurring in video

streaming. Finally, we state the trace diagnosis problem.

A. Execution Traces Generation and Description

Embedded systems directly integrate hardware tracing

support to collect events generated by applications or

perform a post-mortem analysis of their execution. These

techniques minimize intrusiveness, i.e tracing an application

has a minimal impact on its behaviour, allowing complex

interactions to be shown in real-time applications such as

video decoding. In some cases, software tracing solutions

are provided by the operating system. For instance, on an

ST40 core [5], applications run on a Linux distribution

for STMicroelectronics products. This operating system

provides a tracing tool based on KProbes [6], which registers

system and application events: interrupts, context switches,

function calls, system calls, etc. In general there are toolkits

for managing multimedia data, from source acquisition to

treatment and diffusion. The source can be a network stream, a

webcam or a file on the hard disk. The treatment concerns for

instance audio/video effects and encoding. The architecture

of such toolkits are generally modular, pipeline-based and

composed of a gstreamer [7] core and different plugins. The

pipeline connects a number of elements and each element

is provided by a plug-in. To play a stream containing both

video and audio data for instance, one thread is used for each

output. In this case, the pipeline has essential components as

audio decoder, video decoder, demuxer or filesrc [7].

Based on our previous work [8], we formalize the execution

traces that are generated as sequences of timestamped events

as depicted in Fig. 1, where, for instance, 1965720232 is a

timestamp of the event ffmpeg : gstffmpegdecchain :′

Received.

Fig. 1. An execution trace

More formally, let Σ be a set of events. A timestamped event

is a pair (t, e) where t ∈ N is a timestamp and e is an event.

A trace is a sequence of timestamped events. The length of a

trace T , denoted |T |, is the number of its timestamped events.

B. Audio/Video decoding Anomalies Description

While streaming a video, some common anomalies can occur.

These anomalies are well known in the community of A/V

developers ([9], [10]) and almost always have visual and

sound effects on the video streaming. They can even be

simulated using existing tools that are able to inject those

perturbations.

We have chosen to detect three of the common errors that a

developer encounters in his video players:

P1: Audio/video/subtitle desynchronization anomaly: This

anomaly reflects a desynchronization in time between audio,

video or subtitles. The audio may be slower than the video

or the subtitle may not appear at the right moment.

P2: Player crash anomaly: The player stops abruptly at a

random execution time, without any reason.

P3: Slow streaming anomaly: Visually, video is very slow.

In this case the audio/video/subtitles are synchronized but take

much more time than in a normal execution.

C. Trace Diagnosis Problem Statement

The general trace diagnosis problem can be decomposed into

two sub-problems.

1) Detect whether an execution trace presents some anoma-

lies reflecting an abnormal behaviour of the application

under supervision, and if this is the case

2) Identify the cause or at least the type(s) of these anoma-

lies.

The two sub-problems are difficult to solve in general, i.e.

without exploiting some additional knowledge or without

restricting their scope in order to exploit some domain-specific

characteristics.

Our approach to address the first sub-problem is to exploit

error-free reference traces that can be obtained by a simulator,

and to compare them with real execution traces using suitable

distances. Detecting whether a real trace execution is abnormal

consists in a distance-based comparison with the reference

trace obtained by the simulator ran on the same video.

Addressing the second sub-problem is crucial for trace debug-

ging since the developers need to understand what is going

wrong in order to identify the anomalies revealed by trace

comparison. Our approach is to focus on the identification

of pre-established types of domain-specific anomalies, namely

those mentioned in Section II-B and referred to as P1, P2 and

P3 respectively.

The trace diagnosis problem that we consider in this paper can

then be stated as follows:

Given an execution trace T and a reference trace Tr, how

to automatically detect whether T contains anomalies of type

P1, P2 or P3, using a distance-based comparison with Tr.

III. DISTANCE-BASED DIAGNOSIS

In this section, we explain our general approach for solving

the trace diagnosis problem stated above, using appropriate

distances.

A distance d between two objects is a numerical measure

of how far apart these objects are [11]. There exist many

distance definitions in the literature. For every three objects

T1, T2 and T3, the following relations must hold:























d(T1, T2) ≥ 0

d(T1, T2) = 0 only if T1 = T2

d(T1, T2) = d(T2, T1)

d(T1, T2) + d(T2, T3) ≥ d(T1, T3)

Instead of defining a single distance as a black-box to detect

various anomalies, our glass-box approach defines multiple

distances that are appropriate to the types of anomalies we

want to detect.

The procedure we follow to define our distances is the fol-

lowing. First, we decode a movie video with gstreamer and

obtain a reference trace. Then, we inject in the streaming,

perturbations corresponding to the three types of anomalies

and we obtain for each anomaly the corresponding abnormal

execution traces. Finally, for each type of anomaly, we man-

ually analyze the reference trace and the execution trace, and

extract the differences that are relevant for each distance.

Let us now present our three distances. The first distance is the

occurrence distance, suitable for detecting an anomaly of type

P1 when applied to an execution trace and the corresponding

reference trace. The second distance is the dropping distance,

appropriate to identify anomalies of type P2. Finally, we

introduce the temporal distance designed to detect anomalies

of type P3. For each distance, we give a formal definition and

an algorithm for its computation.

A. Occurrence distance

For P1 anomaly, when examining the traces, one can detect

different numbers of occurrences of some events in the simu-

lated trace and the abnormal one.

We first define the occurrence ratio of an event in two traces.

Definition 1: Let T1 and T2 be two execution traces. Let

nb occur(e, T) be the number of occurrences of event e in

trace T . The occurrence ratio of an event e in the two traces

T1 and T2 is defined as follows:

occ ratio(e, T1, T2) =
Min{nb occ(e, T1), nb occ(e, T2)}

Max{nb occ(e, T1), nb occ(e, T2)}

Note that e should appear in traces. A value of

occ ratio(T1, T2) close to zero, means that event e
occurs in one of the two traces much more frequently than in

the other one. Such a situation is related to an anomaly P1

because a desynchronization in time between audio, videao

and/or subtitles induces many abnormal events.

That is why we define the occurrence distance between

two traces as the number of events that have an occurrence

ratio less than or equal to a given threshold. This distance

is appropriate to retrieve P1, A/V/S desync. anomaly, (see

section II-B) because it measures the number of events

that differentiate T1 from T2. The formal definition of this

distance, thereafter denoted d1 is the following:

Definition 2: Let T1 and T2 be two execution traces. The

occurrence distance between T1 and T2 is:

d1(T1, T2) = |{e | occ ratio(e, T1, T2) ≤ θ}|

where θ is a given threshold.

Example 1: consider the traces T1 and T2 below, and let θ =
0.5. d1(T1, T2) = 1 with occ ratio(It, T1, T2) = 3/4 = 0.75,

occ ratio(CS, T1, T2) = 1/3 = 0.33 .

B. Dropping distance

For P2 anomaly, when comparing the simulated and abnormal

traces, we found that some events seem to appear only in one

trace and not in the other one.

The corresponding dropping distance refers to the number of

distinct events that belong only to one trace.

Definition 3: Let events(T) be the set of distinct events in T .

The dropping distance between T1 and T2 is the size of the

symmetric difference between event(T1) and event(T2).

d2(T1, T2) = |events(T1)△ events(T2)|

This distance is appropriate to retrieve P2, i.e. Player crash

anomaly (see section II-B).

Example 2: for traces T1 and T2 below, events(T1) =
{X,CS, It, E}, events(T2) = {CS, It, U}; events(T1) △
events(T2) = {X,E,U} and d2(T1, T2) = 3.

C. Temporal distance

For P3 anomaly, the duration and the order of some events

differ in the two traces. In the abnormal trace, some events

durations are much longer than in the simulated trace.

The temporal distance that we propose is an adaptation of

the distance model of Mannila et. al [12] which is an edit-

distance taking into account temporal aspects. It uses three

basic operations:

• Ins(e,t) that inserts an event e at time t
• Del(e,t) that deletes an event e at time t
• Move(e,t,t’) that moves an event e from t to t′.

Note that the Move operation is order-preserving. This means

that if t(e) = t < t′ = t(e′) and e, e′ are not deleted than one

cannot have Move(e, t, t1) and Move(e′, t′, t′1) for t1 > t′1.

Example 3: For instance, in the example below, the oper-

ation Move(It, 1) that transforms T1 into T2 is forbidden.

A cost c(o) is associated with each operation o and

c(Ins(e, t)) = c(Del(e, t)) = w(e) where w(e) is a weight

associated with event e.

c(Move(e, t, t′)) = V |t′ − t| where V is a constant such that

V ≤ 2.w(e). Without this condition, it would always be better

to do a deletion and an insertion of an event e, instead of

moving e from t to t′.
The cost of a sequence of operations can then be deduced. Let

O = o1 . . . ok be a sequence consisting of k transformations.

The cost of O is:

c(O) =
k

∑

i=1

c(oi)

The distance d(T1, T2) is defined as the cost of the cheapest

sequence of operations that transform T1 into T2. Thus, if Θ
is the set of operation sequences that transform T1 into T2,

then:
d(T1, T2) = Min

O∈Θ
c(O)

Example 4: For traces T1 and T2 below, the cheapest order-

preserving sequence of operations that transforms T1 into T2

is Move(It, 2, 1),Move(It, 4, 2), Ins(U, 5)= 3V + w(U).

The beginning timestamp in two traces is not always the

same. Consequently, results obtained with this method are

not satisfactory. We explain this problem in example 4.

Example 5: For the two traces below, d(T1, T2) 6= 0.

This is not satisfactory because T1 and T2 have exactly the

same events, and the same time intervals between events.

Clearly, such traces should be considered as similar. There-

fore, we adapt the Mannila distance model in order to have

d3(T1, T2) = 0 when T2 is obtained from T1 by a time shift.

Definition 4: Let T1 = (e1, . . . , en) and T2 = (f1, . . . , fm)
two execution traces, and let r(i, j) denote the minimum cost

of the operations needed to transform the first i events of T1

into the first j events of T2. The temporal distance between

T1 and T2 is:

d3(T1, T2) = r(n,m)

where r(i, j) is computed according to the following dynamic

programming algorithm:

r(0, 0) = 0

r(i, 0) = r(i− 1, 0) + w(ei)

r(0, j) = r(0, j − 1) + w(fj)

r(i, j) = min { r(i− 1, j) + w(ei),

r(i, j − 1) + w(fj), r(i− 1, j − 1) + cost(i, j)}

w(ei) is the cost of deleting event ei at position i. w(fj) the

cost of inserting event fj at position j and

cost(i,j) =











w(ei)+w(fj) if ei 6=fj

V.|(ti−ti−1)−(t′j−t′j−1
)| if ei=fj and i=j

V.|ti−t′j | if ei=fj and i 6=j

The application of this Temporal distance in the traces of

example 2 gives d3(T1, T2) = 0. Hence, this distance is

appropriate to retrieve P3, i.e. slow streaming anomaly (see

section II-B).

D. Distance computation algorithms

For each distance defined above the output is a value in

R
+. In order to better interpret the results, it is important to

normalize the output. We use a non-linear transformation g,

in order to normalize the distances:

g : R
+ → [0, 1]

d 7→ d/(1 + d) = g(d)

The computation of occurrence distance (Subsection III-A)

and dropping distance (Subsection III-B) are done in linear

time complexity since a simple scan of traces is necessary.

With the dynamic programming algorithm presented above,

the computation of temporal distance (Subsection III-C), has

a quadratic complexity O(m × n), where m and n are the

lengths of the two traces. [13] proposed some improvements

with a O(np) time complexity, where p = D/2− (n−m)/2
with D being the length of a shortest edit script (consisting

of insertions and deletions) between the two sequences to

compare; we suppose n ≥ m.

It is important to emphasize that each of these distances can be

computed at different levels of granularity. Each trace can be

decomposed into blocks of events related to a specific plugin

of the pipeline (Subsection II-A). When comparing sequences

of events by plugin, we can detect in which plugin the anomaly

that takes place.

IV. THE TED TOOL ILLUSTRATED ON A USE CASE

In this section, we describe TED, our TracE Diagnosis tool

(Fig. 2), and illustrate its functioning on two use cases.

A. TED Architecture

TED handles two main phases. The Preprocessing and

trace generation phase takes as input - a reference trace

and a source file to generate an execution trace T via the

multimedia Toolkit. The traces are preprocessed. This step is

very important for a successful outcome of the analysis as a

non cleansed and non normalized data can lead to spurious

and meaningless results [2]. A parsed trace (c.f. figure 3) Tp

(respectively Tr) is obtained from T (respectively reference

trace), by removing some redundant informations or by

modifying others. If needed, we can abstract traces via the

Fig. 2. TED Architecture

abstractor tool. We further explain in section V the utility of

such abstraction and how our distance-based algorithms can

be adapted to such traces.

The Diagnosis process, is the second and core phase of

TED. The distance selector engine chooses an appropriate

distance from the Distances database and applies it to the

anomaly it needs to detect. For instance, if we want to detect

a desynchronization anomaly, the distance selector engine

applies the occurrence distance on T p and the reference trace

T r.

B. Use cases

We consider the following scenario. A user is watching a

video and (a) the video streaming becomes very slow or, (b)

the sound is desynchronized with images.

In the Preprocessing and Trace Generation phase, we decode

the movie with gstreamer to obtain the reference trace Tr.

We use a gstreamer element identity [7], with property

sleep-time, to obtain a A/V/S desync. anomaly (scenario

b). The abnormal trace obtained is T . We generate another

abnormal trace, with a slow streaming anomaly (scenario a)

by a stress of CPU and memory in the system. Tr and T
have the format of Fig. 3(a). In order to reduce the size of the

dataset for easier processing by temporal distance, we keep

only four events columns, which correspond to timestamps,

Debug level, function and the first argument of the message.

As a result, the dataset was reduced to 26, 5% of its original

size (Fig. 3(b)).

In the Diagnosis process phase, the developer uses TED as

follow:

• The developer has an idea of the anomaly and just want

to verify if his hypothesis is true or not. He selects

the distance to apply and TED gives the diagnosis. In

Fig. 4(a), temporal distance is used (scenario a). The

developer suspects a slow streaming anomaly (P3). TED

detects the anomaly and returns the value of temporal

distances between the two traces per plugins. TED points

out the audioresample plugin to be the one with the

most dissimilar events between the two traces.

• The developer has no idea of what is happening and

would like to find if there exists an anomaly in T .

He selects the choice find anomaly, and TED applies

successively all the distances, and stops when one of

them gives a non-zero value (Fig. 4(b)). In scenario b,

dropping and occurrences distances have been tested and

a A/V/S desync. anomaly was detected.

• The developer wants to find all potential anomalies in T
(choice all tests). Indeed, it is possible to have simulta-

neously a A/V/S desync. and a player crash anomaly.

By using TED, a developer analyzing an execution trace

is notified of anomalies, their types and where they appear

in the trace (the plugin concerned). TED is a time saver

for developers as they can quickly detect anomalies in their

execution traces and fix them.

V. EXPERIMENTS

We conducted a set of experiments to demonstrate the quality

and efficiency of our proposed execution trace diagnosis tool.

First we use standard distance algorithms to compare traces

and show the semantic added-value brought by TED. We also

show how helpful this automatic tool can be for developers,

by an evaluation of TED scalability and precision. Finally,

we discuss the importance of trace abstraction and show how

to adapt TED to take into account abstract traces.

System configuration: Our prototype system is implemented

in Python 3.2. The experiments were run on an Intel Xeon

E5-2650 at 2.0GHz with 32 Gigabytes of RAM with Linux.

Data Set: We use traces from two real applications, described

below:

Gstreamer application: Gstreamer [7] is a powerful open

source multimedia framework for creating streaming appli-

cations, used by several corporations as Intel, Nokia, STMi-

croelectronics and many others. For these experiments we

decoded several movies using Gstreamer on a Linux platform,

with the ffmpeg plugin for video decoding.

GSTapps application: It is a test video decoding application for

STMicroelectronics development boards. This application is

widely used by STMicroelectronics developers. The execution

trace contains both application events and system-level events.

It is generated from a ST40 core of the SoC, which is

dedicated to application execution and device control.

Table I gives a description of reference traces.

Comparison with standards sequence distances: We used

existing implementations of two well known sequence dis-

(a) original trace (b) parsed trace

Fig. 3. Example of data preparation

(a) execution trace with a slow streaming anomaly. The developer selects the distance to apply (scenario a)

(b) TED finds and detects one anomaly: A/V/S desync. anomaly (scenario b)

Fig. 4. TED’s help

TABLE I
EXPERIMENTAL DATASET

Video Duration Nb. of events Size
generic 5s 15, 110 2.9Mo

pub 30s 74, 510 14.3Mo

movie 3628s 12, 423, 095 2457, 6Mo

SDK2 335s 2, 382, 720 73.2Mo

tances DTW [14] and LCS [4]. These implementations are

given by mlpy [15], a Python module for Machine Learning

built. For our experimentations, the events of execution traces

were coded as integers, as required by mlpy. LCS(x, y)
returns the length of the longest common sequence of x and

y. We then obtain distance between x and y by d(x, y) =
|x|+|y|−2∗LCS(x, y). Table II shows the values of distances

obtained w.r.t to two execution traces given as input.

TABLE II
DTW AND LCS DISTANCES

DTW LCS

(Tr, T1) 509069 28035
(Tr, T2) 504472 28086
(Tr, T3) 920600 18377

Tr is the reference trace of generic video; T1 is obtained

by using the gstreamer element identity before the video

decoding plugin, with property sleep − time = 30000.

With sleep − time = 5000, we obtained T2 and a visual

degradation slighter than those related to T1, not really

perceptible. Naturally, we expect that d(Tr, T1) > d(Tr, T2).
It is the case with DTW distance (509069 > 504472), but not

with LCS distance. T3 is obtained with property error-after.

An error occurs during the video streaming, after a given

number N of buffers. N = 500. We obtained for instance

dtw(Tr, T3) = 920600.

The observation is that T1, T2 and T3 are far from Tr. With

standard distance algorithms, we can only compute distance

values but we have no idea which type of anomalies are in

the traces.

In our proposal, for T1, TED diagnoses a slow

streaming problem. He gives 132090.5 as d3(Tr, T1),
and 131525 as d3(Tr, T2) which confirm our expectation of

d(Tr, T1) > d(Tr, T2), and the fact that the video execution

of T1 is slower than the one of T2. For T3, TED diagnoses

a player crash anomaly in addition to giving a distance value

between T3 and Tr.

Running time and Scalability: Fig. 5 reports the wall clocks

of TED for occurrence and dropping distance, when varying

events number of execution traces. Horizontal axis represent

the maximum number of events of the two compared traces.

In practice, we consider as θ = 0.25, as threshold of

occ ratio. One can notice that, for traces of more than 1Go,

corresponding to approximatively 4, 000, 000 events, TED can

give a diagnosis in less than 10s. For the pub video of table

II, an output is obtained in 0.12s. The experiments showed

that the proposed methods can scale to real application traces.

This makes TED suitable for analysis of real traces.

10-2

10-1

100

101

105 106 107

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of events

Scalability with TED

occurrence distance
dropping distance

Fig. 5. Running time

Precision: In order to evaluate the accuracy of the diagnosis

done by TED, we run TED on a sample of 300 execution

traces as shown in Table III. The first observation is that all

execution traces initially considered as normal were diagnosed

as such by TED. However, the tool gave 14 false-true which

are execution traces considered by TED as normal but which

contain anomalies. Thus, TED has a precision of 95.33%. A

reason of this lack of precision can be the value of threshold

for occurrence distance. We fixed it at θ = 0.25 but we

will surely gain to adapt the threshold value to the length of

the video decoded. We are currently testing the correlation

between the video length and the threshold value.

TABLE III
TED PRECISION

Nb. traces Initially With TED

Sample of 300 traces
normal: 130 normal: 144

abnormal: 170 abnormal: 156

Discussion about abstract traces:

One way to bypass the problem raised by multimedia

applications in which raw execution traces are very large

(more than a gigabyte for few minutes of video decoding

[16], [17]) is to abstract traces. The abstraction process

produce more compact traces and facilitate the readability of

traces for human programmers. An abstract trace example is

given Fig. 7.

Fig. 6. A block in an execution trace

We define as timestamped block a pair (t, B) where B is a

block and t ∈ N, is the timestamp of the first event of B.

A abstracted trace is a sequence of timestamped blocks. The

length of a abstracted trace T denoted |T | is the number of

its blocks (c.f. fig. 6). The size of a sequence S, denoted by

‖S‖, is the total number of events that it contains. For an

execution trace T , |T | = ‖T‖ whereas for an abstracted trace

T a, described by blocks, |T a| 6= ‖T a‖ (except when blocks

are singletons of events).

Fig 7 is an example of abstracted trace obtained by FrameM-

iner [8] on pub video.

Our approach gains to be generic i.e. applicable to execution

traces described at different levels of abstractions: on

raw execution traces that are sequences of time-stamped

low-level events, as well as on sequences of time-stamped

blocks, in which (subsequences of) low-levels events have

been abstracted into blocks [8] more meaningful to the

programmer. In order to apply TED on abstract traces, a first

idea would be to consider occurrence of a block as a strict

Fig. 7. An abstracted trace obtained with FrameMiner

sequence of events and to apply our distances not on events

but on blocks. The adaptation of TED to abstracted traces is

currently under development.

VI. CONCLUSION

To analyse traces of finished events, and fix bugs, programmers

use several tools such as trace visualizers ([18]–[21]) and

techniques such as tracepoints on the execution traces. These

techniques need to have an expert to interpret the graphical

representation. In contrast, our work based on distances de-

velops a technique which limits the developer intervention.

There is an abundant literature about distances. For distances

between sequences, an edit distance model is used in [22] to

approximate matching of timed strings; [23], [24] propose to

represent each sequence in a suitable form, before computing

distance. However, very few distances take into account the

temporal aspect. We propose a temporal distance that is

adapted for trace comparison. But the most distinguishing

point of our approach is that our method is the first, to the

best of our knowledge which returns a diagnosis to the user,

added to the effective values of distance.

Our approach diagnoses anomalies in an execution trace of

multimedia application, by comparison with a reference trace.

We use distances as models of comparison and specifically

design three distinct distances in order to tackle well-known

anomalies of the multimedia domain. We experimentally show

the originality of our solution compared to existent distances

and show that our proposed approach scales well to real huge

application traces. Distances defined in our approach allow to

identify a specific problem and give a semantic added-value

level to the analysis. Moreover, as all distances, they also

provide insights of how far an abnormal trace is from a correct

one. We also present a use case on how TED performs the

analysis of a trace and conduct some experiments to evaluate

TED scalability and accuracy.

We have three research directions. The first direction is to

adapt our distances to abstract traces so that our proposal

be as generic as possible. The second direction is to enlarge

TED to other types of anomalies for instance the image is

completely fuzzy, upside down and/or cut in half. The strength

of our contribution is that it is easily extensible to other

types of anomalies. For each new anomaly, we only need

to follow the same methodology as explained in the paper

to find the best suitable distance capable of clearly detecting

the anomaly. There is no need to do any changes in TED

existing architecture. Finally, additional constraints can be

introduced such as parallel execution traces and the challenge

is to identify, for example, streams of different execution and

take them into account for the computation of distances.

ACKNOWLEDGMENT

This work is supported by French FUI project SoCTrace.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 24, no. 5, pp. 823–839, 2012.
[2] F. Mörchen, “Time series knowledge mining,” 2006.
[3] R. Tavenard, L. Amsaleg, and G. Gravier, “Estimation de similarité entre

séquences de descripteurs à l’aide de machines à vecteurs supports,” in
Proc. Conf. Base de Données Avancées, Marseille, France, 2007.

[4] L. Bergroth, H. Hakonen, and T. Raita, “A survey of longest com-
mon subsequence algorithms,” in String Processing and Information

Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Sym-

posium on. IEEE, 2000, pp. 39–48.
[5] Stlinux website. [Online]. Available: http://www.stlinux.com/
[6] R. Krishnakumar, “Kernel korner: kprobes-a kernel debugger,” Linux

Journal, vol. 2005, no. 133, p. 11, 2005.
[7] Gstreamer website. [Online]. Available: http://www.gstreamer.net
[8] C. K. Kengne, L. C. Fopa, A. Termier, N. Ibrahim, M.-C. Rousset,

T. Washio, and M. Santana, “Efficiently rewriting large multimedia ap-
plication execution traces with few event sequences,” in KDD Industrial

Track (To appear), 2013.
[9] Discussion page: Troubleshooting guide.

[Online]. Available: http://www.cccp-
project.net/wiki/index.php?title=Troubleshooting Guide

[10] Faq: Play an audio or video file. [Online]. Avail-
able: http://windows.microsoft.com/en-us/windows7/play-an-audio-or-
video-file-frequently-asked-questions

[11] T. Pang-Ning, M. Steinbach, and V. Kumar, “Introduction to data
mining,” 2006.

[12] H. Mannila and P. Ronkainen, “Similarity of event sequences,” in Pro-

ceedings of the 4th International Workshop on Temporal Representation

and Reasoning (TIME ’97), ser. TIME ’97. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 136–.

[13] S. Wu, U. Manber, G. Myers, and W. Miller, “An o(np) sequence
comparison algorithm,” Inf. Process. Lett., vol. 35, no. 6, pp. 317–323,
Sep. 1990.

[14] Y. Sakurai, C. Faloutsos, and M. Yamamuro, “Stream monitoring under
the time warping distance,” in Data Engineering, 2007. ICDE 2007.

IEEE 23rd International Conference on. IEEE, 2007, pp. 1046–1055.
[15] D. Albanese, R. Visintainer, S. Merler, S. Riccadonna, G. Jurman, and

C. Furlanello, “mlpy: Machine learning python,” 2012.

[16] X. gurin, “Approche Efficace de Développement de Logiciel Embarqué
pour des Systèmes Multiprocesseurs sur Puce,” Ph.D. dissertation, 2010.

[17] C. Prada-Rojas, M. Santana, S. De-Paoli, X. Raynaud et al., “Summariz-
ing embedded execution traces through a compact view,” in Conference

on System Software, SoC and Silicon Debug S4D, 2010.
[18] B. D. O. Stein, “Pajé trace file format,” 2003.
[19] J. Roberts, “Tracevis: an execution trace visualization tool,” in In Proc.

MoBS 2005. Citeseer, 2005.
[20] M. McGavin, T. Wright, and S. Marshall, “Visualisations of execution

traces (vet): an interactive plugin-based visualisation tool,” in Proceed-

ings of the 7th Australasian User interface conference - Volume 50,
ser. AUIC ’06. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2006, pp. 153–160.

[21] J. Seyster, “Techniques for visualizing software execution,” Citeseer,
Tech. Rep., 2008.

[22] S. Dobrisek, J. Zibert, N. Pavesic, and F. Mihelic, “An edit-distance
model for the approximate matching of timed strings,” Pattern Analysis

and Machine Intelligence, IEEE Transactions on, vol. 31, no. 4, pp.
736–741, 2009.

[23] O. Kostakis, P. Papapetrou, and J. Hollmén, “Distance measure for
querying sequences of temporal intervals,” in Proceedings of the 4th

International Conference on PErvasive Technologies Related to Assistive

Environments. ACM, 2011, p. 40.
[24] O. E. Gundersen, “Toward measuring the similarity of complex event

sequences in real-time,” in Case-Based Reasoning Research and Devel-

opment. Springer, 2012, pp. 107–121.

