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Abstract7

Flood frequency analyses are often based on recorded series at gauging8

stations. However, the length of the available data sets is usually too short to9

provide reliable estimates of extreme design floods. Hence, hydrologists have10

tried to make use of alternative sources of information to enrich the datasets11

used for the statistical inferences. Two main approaches were therefore pro-12

posed. The first consists in extending the information in time, making use13

of historical and paleoflood data. The second, spatial extension, consists14

in merging statistically homogeneous data to build large regional data sam-15

ples. Recently, a combination of the two techniques aiming at including16

estimated extreme discharges at ungauged sites of a region in the regional17

flood frequency analyses has been proposed. This paper presents a consoli-18

dation of this approach and its comparison with the standard regional flood19

frequency approach proposed by Hosking & Wallis. A modification of the20

likelihood function is introduced to enable the simultaneous calibration of a21

regional index flood relation and of the parameters of the regional growth22

curve. Moreover, the efficiency of the proposed method is evaluated based23
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on a large number of Monte Carlo simulated data sets. This work confirms24

that extreme peak discharges estimated at ungauged sites may be of great25

value for the evaluation of large return period (typically over 100 years) flood26

quantiles. They should therefore not be neglected despite the uncertainties27

associated to these estimates.28

Keywords:29

Floods, regional analysis, statistics, Extremes , GEV30

1. Introduction31

Although a large number of statistical inference methods have been pro-32

gressively developed, the question of estimating extreme design floods is still33

problematic due to the generally limited amount of available data. Continu-34

ous discharge series at gauged sites are generally too short to provide reliable35

estimates of extreme quantiles - typically the 100-year or higher return period36

quantiles (NERC, 2000). To cope with this difficulty, hydrologists have tried37

to complement the available data sets, either through a “temporal exten-38

sion”, incorporating data on historical and paleofloods (Hosking and Wallis,39

1986a,b; Stedinger and Cohn, 1986; Cohn and Stedinger, 1987; Gary and40

Stedinger, 1987; Sutcliffe, 1987; Minghui and Stedinger, 1989; Sheffer et al.,41

2003; Reis et al., 2005; Neppel et al., 2010; Payrastre et al., 2011), or through42

a “spatial extension”, merging data sets in regions considered as statistically43

homogeneous, “trading space for time” according to the words of Hosking &44

Wallis (Hosking and Wallis, 1997; Heinz and Stedinger, 1998; Charles and45

Stedinger, 1999; Ouarda et al., 2001; Kjeldsen et al., 2002; Merz and Blöschl,46

2003; Seidou et al., 2006; Ribatet et al., 2007; Norbiato et al., 2007; Wallis47
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et al., 2007; Kjeldsen and Jones, 2009; Haddad and Rahman, 2011).48

Recently, Gaume et al. (2010) observed that estimated extreme peak49

discharges at ungauged sites are often available, but never really used in flood50

frequency studies and proposed a method to incorporate such information in51

regional flood frequency analyses.52

The proposed approach is based on the index flood principle (Dalrymple,53

1960), assuming that, within a statistically homogeneous region, all local54

statistical distributions are identical apart from a site-specific scaling factor:55

the index flood. Usually, the index flood corresponds to the mean of the56

local series (Hosking and Wallis, 1997). The approach proposed by Gaume57

et al. (2010) is based on the calibration of an index flood relation linking58

the characteristics of the watersheds and the index flood value. Although59

this relationship represents an additional homogeneity requirement that may60

limit the extent of the region used for the statistical analysis, it also enables61

to estimate the index flood at ungauged sites, and thus to incorporate the62

corresponding ungauged extremes in the regional sample.63

Based on several case studies, Gaume et al. (2010) showed the possible64

great value of such an approach, depending on the characteristics of available65

extreme flood inventories. The index flood relationship proposed, of the form66

Sβ (S being the area of the watershed and β a parameter to be calibrated),67

appeared satisfactory in the test regions. The presented inference results were68

based on a Bayesian MCMC framework (Castellarin, 2005; Reis et al., 2005;69

Seidou et al., 2006; Ribatet et al., 2007; Castellarin et al., 2007; Payrastre70

et al., 2005, 2011) to adjust the regional growth curve with associated 90%71

credibility intervals. The results showed that the incorporation of ungauged72
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extremes could lead to a significant reduction of the width of the computed73

credibility intervals.74

In the initial version of the method (Gaume et al., 2010), the index flood75

relation was adjusted prior to the calibration of the regional growth curve,76

and the uncertainties associated with its calibration were not taken into77

account. This led certainly to underestimate the credibility intervals and78

over-rate the added value of the ungauged extremes and of the proposed79

method. The effects of possible variations (heterogeneities) in the average80

relation calibrated in a given region should also be considered for a fair81

comparison with other statistical methods. This paper proposes an extension82

of the initial method to account for uncertainties in the calibrated index flood83

relation. It also tests the effect of possible regional variations in the average84

relation on the efficiency of the proposed statistical inference approach.85

The performances (i.e. widths and correctness of computed credibility86

intervals) of the proposed approach and of the standard regional frequency87

approach proposed by Hosking & Wallis (1997) are first compared in the88

case where gauged data only are considered. The comparison is based on89

samples generated through Monte Carlo simulations in order to be able to90

verify the accuracy of the calculated credibility intervals and to introduce91

controlled heterogeneities in the samples. In a second step, both approaches92

are applied to the statistical analysis of a data set from the Ardèche region93

in France composed of 168 records at 5 gauging stations and 18 estimated94

ungauged extremes.95

The paper is organised as follows: section 2 presents the basics and adap-96

tations of the two regional flood frequency methods: Hosking & Wallis and97

4



the proposed approach. The performances of the two approaches are com-98

pared based on simulated samples of random variables in section 3. In sec-99

tion 4, the methods are applied to the real-world case study. Conclusions are100

drawn in section 5.101

2. Tested regional flood frequency analysis methods102

2.1. The index flood hypothesis103

The two approaches considered in this paper are based on the same funda-104

mental simple scaling hypothesis or index-flood principle (Dalrymple, 1960):105

in a statistically homogeneous region, all the local annual maximum peak106

discharge distributions are supposed to be identical apart from a site-specific107

scaling factor. This hypothesis is summarized in equation 1:108

Qi (F ) = µiq (F ) (1)

Where F is the probability of non-exceedance, i is the index of the site109

(i = 1, ..., s), s the total number of sites in the homogeneous region, Qi (F )110

is the discharge quantile, q (F ) is the regional dimensionless (i.e. reduced)111

quantile and µi is the index flood (or scaling factor).112

The index flood may be any constant value proportional to the expectancy113

of the local distribution. Usually, when only data from gauged sites are114

considered, the index flood is estimated by the at-site sample mean (Hosking115

and Wallis, 1997; Castellarin, 2005; Castellarin et al., 2007). A regional flood116

frequency method where the index flood is computed as the average of the117

local series of annual maxima will be called hereafter method of Hosking &118

Wallis. This, even if a likelihood based Bayesian MCMC procedure rather119
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than a L-moment based procedure, as suggested by Hosking & Wallis (1997),120

is used to calibrate the parameters of the regional growth curve. Gaume et al.121

(2010) suggested an alternative approach to account for extreme discharge122

estimates that may be available at ungauged sites. An inventory of ungauged123

extremes may includes h extreme peak discharges Qk (k = 1, .., h), each Qk124

corresponding to the largest flood at site k during a period of length nk. In125

order to include this additional information in the regional dataset, Gaume126

et al. (2010) proposed to use an index flood relation linking the index flood127

value to the catchment area S, since an average annual peak discharge can128

obviously not be computed at ungauged sites:129

µi = Sβi and µk = Sβk (2)

Where Si and Sk are the catchment areas at the corresponding sites, and130

β a coefficient to be calibrated. More complex relations based on various131

climatic and physio-geographic characteristics may be tested in the future,132

but at the price of an increased number of parameters to be calibrated. In133

the initial version of the method, the value of β was adjusted through a134

regression between the log tranform of the average annual peak discharges135

and the watershed areas at gauged sites.136

It is proposed here to calibrate β along with the parameters of the regional137

growth curves using a modified version of likelihood as described below.138

2.2. Likelihood of the observed sample139

The inference approach applied herein is directly derived from Gaume140

et al. (2010) and inspired by numerous previous works (Reis et al., 2005;141
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Renard et al., 2006; Payrastre et al., 2011): i.e. based on the likelihood of142

the available data sets and a Bayesian MCMC algorithm for the estimation143

of the parameters of the growth curve and of their posterior distribution144

according to the observed data set.145

Considering the regional sample D described above, including both (i) s146

series of gauged annual maximum discharges Qi,j, j = 1, · · · , ni the index of147

the year, and (ii) the h estimated largest peak discharges Qk over nk years148

at h ungauged sites, the standard expression of the likelihood of the regional149

sample D would be the following:150

` (D | θ) =
s∏
i=1

[
ni∏
j=1

fθ

(
Qi,j

µi

)]
h∏
k=1

[
fθ

(
Qk

µk

)] h∏
k=1

[
Fθ

(
Qk

µk

)](nk−1)

(3)

Where fθ and Fθ are respectively the probability density function and151

the cumulative probability function of the selected statistical distribution for152

the regional growth curve, and θ corresponds to the vector of parameters to153

be estimated. The GEV distribution, often used to describe peak discharge154

growth curves (Lu and Stedinger, 1992; Stedinger and Lu, 1995; Coles and155

Powell, 1996; Coles and Tawn, 1996; Heinz and Stedinger, 1998; Seidou et al.,156

2006), was selected here (Eq. 4 and 5). The vector θ comprises the position,157

scale and shape parameters (ξ, α, κ) of the GEV distribution.158

Fθ (Q) = exp

[
−
(

1− κ (Q− ξ)
α

)1/κ
]
α>0

(4)
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fθ (Q) =
1

α

(
1− κ (Q− ξ)

α

)1/κ−1

exp

[
−
(

1− κ (Q− ξ)
α

)1/κ
]
α>0

(5)

In equation 3, the first term corresponds to the probability of the gauged159

series. It is the only necessary term if continuous series of measured annual160

maximum discharges are used. The second term is the probability of the161

ungauged extremes. The third complementary term is the probability asso-162

ciated to the fact that the ungauged extreme value has not been exceeded163

during the remaining (nk− 1) years at each ungauged site. The index values164

µ can be estimated before the calibrating the regional growth curve : method165

of Hosking & Wallis and initial version of the proposed approach. Equation 2166

can be also directly introduced in the formulation of the likelihood (eq. 3)167

adding one parameter, β, to be calibrated. This replacement necessitates168

a slight but determining modification of the expression of likelihood (sec-169

tion 2.4). Depending on the option, the set of parameters to be calibrated170

will count either 3 or 4 parameters.171

2.3. Bayesian Monte Carlo Markov Chain algorithm172

The Bayesian Monte Carlo Markov Chain procedure is now relatively173

common for hydrological applications (Reis et al., 2005; Renard et al., 2006;174

Seidou et al., 2006; Ribatet et al., 2007; Neppel et al., 2010; Gaume et al.,175

2010; Payrastre et al., 2011; Viglione et al., 2013) and will only be briefly176

presented here. Part of the algorithms used is included in the R software177

library nsRFA (Viglione, 2013). Recalling the Bayes’ theorem, the likelihood178
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of the sample given the parameters of the statistical model ` (D | θ) can be179

related to the likelihood or density of probability of the parameters given the180

sample p (θ | D) (posterior distribution):181

p (θ | D) =
` (D | θ) p (θ)

p (D)
(6)

Where p (θ) is the so called prior distribution of θ, which summarizes182

any prior or alternative knowledge on the distribution of θ, and p (D) is the183

probability of the sample D which is unknown. When prior information on184

the distribution of θ does not exist, then p (θ) is often taken as uniform.185

It is the case here, which implies that p (θ | D) is proportional to ` (D | θ).186

The statistical model being chosen, it is possible to compute the probability187

density function of its parameters according to the observed data sample.188

p (θ | D) being known, or more precisely ` (D | θ) which is proportional to189

it according to our hypotheses (uniform prior), parameter sets θ will be sam-190

pled according to p (θ | D) to build their posterior distributions and compute191

the corresponding credibility limits for the discharge quantiles. The MCMC192

algorithms, combining random walk Monte Carlo methods with Markov193

chains, are a class of algorithms for the efficient sampling from multivari-194

ate random distributions (Tanner, 1996; Robert and Casella.G, 2004).195

Figure 1 illustrates the Bayes MCMC inference procedure: posterior dis-196

tributions of two of the estimated parameters for 3 different Markov chains197

run in parallel.198

2.4. Modification of the likelihood formulation199

A modification of the values of the index floods µi and µk, corresponding200

to a change of scale of the analyzed discharges, will also affect the values201
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of the optimal parameters ξ and α, the variable (Q/µ − ξ)/α remaining202

unchanged. The absolute value of the cumulative density function (eq. 4) will203

be unaffected by such a change of variable, but not the absolute value of the204

density function, due to the factor 1/α in front of the expression of the density205

(eq. 5). Any method based on the maximization of likelihood expression 3,206

will therefore tend to minimize the value of α, and hence to maximize the207

values of the indices µi = Sβi if they are calibrated. Therefore, the use208

of likelihood expression 3 in an inference procedure where the parameter β209

is adjusted will inevitably lead to biased estimates of β (over-estimations)210

and of the parameters of the regional growth curve which are linked to β.211

This is confirmed by numerical tests as illustrated in Figure 1. To avoid212

this disruptive effect, one possibility consists in including only cumulative213

densities in the likelihood expression (eq. 7).214

` (D | θ) =
s∏
i=1

[
ni∏
j=1

[
Fθ

(
QU
i,j

Sβi

)
− Fθ

(
QL
i,j

Sβi

)]]
h∏
k=1

[
Fθ

(
QU
k

Sβk

)
− Fθ

(
QL
k

Sβk

)]
h∏
k=1

[
Fθ

(
QU
k

Sβk

)](nk−1)

(7)

Where the exponents U and L indicate the upper and lower estimate for215

the considered discharge values (upper and lower guesses for an estimated216

ungauged extreme or known uncertainty range for measured discharges). It217

has been verified that equations 7 and 3 provide very close results if the218

difference between QU
i,j and QL

i,j is small. In the rest of the manuscript QU
i,j219

will be set equal to 1.01 Qi,j and QL
i,j to 0.99 Qi,j.220

Figure 1 illustrates the type of results obtained through the application of221
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the MCMC algorithm using either expressions 3 or 7 of the likelihood, when222

the index flood relation is directly introduced in the likelihood formulation223

and the parameter β is calibrated along with the parameters of the regional224

growth curve. The simulated regional data sample is described in section 3.225

These results show the tremendous under-estimation of the parameter α of226

the regional growth curve when equation 3, containing density functions,227

is used. The assessment seems correct with equation 7, even if affected228

by uncertainties, due to the finite number of records (i.e. to the limited229

information content of the data set).230

2.5. MCMC convergence diagnosis231

Like for any other optimization method, convergence of the MCMC al-232

gorithm towards the posterior distribution of the model parameters may233

sometimes be difficult to reach, especially when the number of parameters to234

be calibrated is increased. For the inference on a single data set, convergence235

problems may be solved by tunning the MCMC algorithm: better selection236

of the parameter starting values, adjustment of the Monte Carlo Markov237

chain random search controling factors. The tests presented hereafter im-238

plied repeated applications of the MCMC algorithm on a large number of239

data samples. It was therefore necessary to strengthen the algorithm to en-240

sure rapid convergence in most cases, to verify automatically the convergence241

of the MCMC algorithm for each run and to avoid introducing results corre-242

sponding to insufficient convergence or convergence failures in the analysis.243

Among the large number of methods developed for convergence monitoring244

of MCMC algorithms (Cowles and Carlin, 1996; Salaheddine et al., 2006), the245

popular Gelman & Rubin test has been selected (Gelman and Rubin, 1992).246
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It consists in running several Markov chains in parallel and in computing247

the evolution during the iterations of the square root of the ratio between248

average within-chain and average between-chains variance of the likelihood.249

This ratio should ideally be equal to 1 if convergence is achieved.250

The test was applied herein with two chains and a threshold value of251

1.05. Figure 2 shows the evolution of the Gelman & Rubin criterion with252

the number of iterations when MCMC algorithms are run on synthetic data253

samples presented in section 3. To achieve fast convergence, a first MCMC254

chain was systematically run with a limited number of iterations (30000)255

to explore the shape of likelihood function in the vicinity of the parameter256

values maximizing the likelihood and evaluate the covariance matrix of the257

parameters (important controling factor of the MCMC chain). Figure 2258

shows that the convergence is rapidly achieved with the reference approach,259

when it appears to be more difficult with the proposed approach. According260

to the conducted tests, the maximum iteration number was set to 100 000261

and the various MCMC outputs computed on the basis on the last 30 000262

iterations. This number of iterations was sufficient to ensure the convergence263

of the MCMC algorithm for all the simulations presented in this paper.264

3. First test of the two methods265

The two regionalisation approaches (standard and proposed) have been266

first tested for the statistical analysis of simulated random data sets to eval-267

uate their performances, before their application to a real-world case study268

(statistical analysis of data samples available in the Ardèche region, South of269

France). A special emphasis has been put on (i) the validation the credibility270
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intervals computed with the MCMC procedure and (ii) the analysis of the271

sensitivity to regional variability in the index flood relation.272

3.1. Method273

(i) Monte Carlo simulation procedure.274

The test set is composed of 1000 simulated random samples drawn from275

a regional GEV distribution (ξ=3.34, α=2.24, κ=-0.16) and with an index276

flood relation (β=0.76) adjusted on the Ardèche set analysed in section 4.277

The samples have the same characteristics as the Ardèche regional gauged278

sample: catchment areas and record lengths, see table 1.279

Both regionalisation approaches are then applied to each simulated dataset,280

including the estimation of the posterior distribution of parameters thanks281

to the Bayesian MCMC procedure. The cases for which convergence of the282

MCMC algorithm is not achieved, according to the Gelman & Rubin test,283

are discarded. The posterior distribution of the 100-year quantile is then284

built, and the corresponding maximum likelihood value Q̂ML
i (0.99) (mode of285

this posterior distribution since no prior information is considered) and 90%286

centered credibility interval
[
Q̂5
i (0.99) , Q̂95

i (0.99)
]

are obtained for each site287

and each dataset. The final result is a set of 1000 (or less if some MCMC288

chains did not converge which did not happen here) of maximum likelihood289

quantiles Q̂ML
i (0.99) and corresponding 90% credibility intervals. They will290

be shown as box plots.291

(ii) Reliability of the computed credibility intervals.292

Monte Carlo simulations enable to test the relevance of the posterior dis-293

tributions of the discharge quantile Q̂i (0.99) obtained through the Bayesian294
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MCMC procedure. The real quantile value Qi (0.99) is known, and its prob-295

ability of non-exceedance F̂ (Qi (0.99)) can be computed according to the296

computed posterior distribution of the discharge quantile Q̂i (0.99) for each297

simulated sample. If these posterior distributions of the estimated discharge298

quantiles Q̂i (0.99) are unbiased - i.e. reflect the correct density of prob-299

ability of the real quantile Qi (0.99), the values of F̂ (Qi (0.99)) estimated300

for the 1000 samples should be uniformly distributed over [0, 1]. Figure 3301

illustrates how the distributions of F̂ (Qi (0.99)) should be interpreted. For302

instance in case (c), the real quantile value has an estimated probability of303

non-exceedance close to 0 or 1 for too many cases : the real quantile lies too304

often at the margins of the computed posterior distribution for the estimated305

quantiles, sign that the variance of the computed distribution is too low and306

that the computed intervals are too narrow. Likewise, case (d) illustrates the307

case of an overestimation of the variance of the posterior distributions and308

resulting too large credibility intervals. Case (b) reveals an underestimation309

of the quantiles.310

(iii) Introduction of regional variability in the index flood relation.311

The Monte Carlo simulations have been repeated with the introduction of a312

regional variability in the index flood relation to test the robustness of the313

new proposed method. For each generated sample, the index flood value314

at site i, µi = Sβi was replaced by a random value drawn from a lognormal315

distribution with mean Sβi and standard deviation δ∗Sβi , δ being successively316

set to 0.1 and 0.3. Statistical tests indicate that values of δ equal to 0 or 0.1317

are compatible with the gauged sample available in the Ardèche region.318
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3.2. Results319

(i) Case of homogeneous data sets320

Figure 4 presents the inference results based on 1000 simulated samples,321

without introduction of regional variability in the index flood relation. The322

fluctuations of the maximum likelihood estimates Q̂ML
i (0.99) (respectively323

q̂ML (0.99) for the regional growth curve), and associated 90% credibility324

upper and lower bounds
[
Q̂5
i (0.99) , Q̂95

i (0.99)
]
, are presented both, for the325

estimates corresponding to each gauged watershed area of the region and for326

the regional growth curve. In order to facilitate comparisons, all estimations327

have been divided by the real quantile value Qi (0.99) (or q (0.99)). Therefore328

the position of the real quantile is 1 for all the box plots.329

Figure 4.a and b appear overall very similar except for the regional growth330

curves: the maximum likelihood estimates and the width of computed cred-331

ibility intervals fluctuate in similar ranges, particularly for the larger catch-332

ment areas. The uncertainties increase logically in the proposed method for333

smaller catchment areas, because the sensitivity of the index flood to the334

value of the parameter β is increasing with the watershed area according to335

equation 2. Conversely, the smallest areas have a lower weight in the de-336

termination of the index flood relation and as a consequence the calibrated337

index flood values are less accurate for lower surfaces.338

The regional growth curves have different significations in both methods:339

distribution of the reduced discharges (values divided by the expectancy of340

the distribution) in the method of Hosking & Wallis and distribution of the341

discharges for a 1 km2 watershed in the proposed approach. This is largely in342

the extrapolation range of the index flood relation for low values of watershed343
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areas and explains the large uncertainties for the estimated quantiles for the344

regional growth curve in the proposed approach.345

An in depth analysis of both figures reveals nevertheless some differences346

of the two regionalisation approaches: the median values of the maximum347

likelihood and 5% and 95% credibility bounds for the 100-year quantile are348

slightly lower when the standard Hosking & Wallis method is used, but the349

uncertainties affecting these estimates (widths of the box plots) appear larger350

except for the smallest considered watershed area (63 km2). The median351

maximum likelihood estimated value lower than 1 for the standard method352

suggests also that it is slightly biased.353

The reliability tests conducted on the computed credibility intervals indi-354

cate furthermore that, while the intervals seem correctly estimated with the355

proposed method (Fig. 5.e and f) with the exception of the smallest watershed356

area where a tendency to the overestimation of the quantile appears. The357

credibility intervals computed with the standard method appear too narrow358

(Fig. 5.a and b). A complementary test presented in appendix Appendix A359

indicates that a 20% to 40% underestimation affects the computed widths of360

credibility intervals in this case study: a correction factor m equal to 1.2 to361

1.4 should be applied to the standard-deviation of the posterior distributions362

of Q̂i (0.99) to obtain a uniform distribution of F̂ (Qi (0.99)) (Fig. 5.c and363

d). This under-estimation of the variance of the posterior distributions of364

Q̂i (0.99) for the standard method is logical since the uncertainty associated365

with the estimation of the local sample means is not accounted for in the ex-366

pression of the likelihood. Its effect on the quantile estimations can therefore367

not be evaluated by the Bayesian MCMC procedure.368
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The origins of the observed limited biases - tendency to underestimate369

the quantile on average for the standard method and to overestimate the370

quantile for the smaller areas for the proposed approach - are difficult to371

depict.372

These results are overall extremely satisfactory. When the regional sam-373

ple corresponds to the proposed statistical model (regional growth curve of374

the GEV type and power-law linking the index flood and the area of the375

watershed), the proposed approach appears consistent and accurate. The376

parameters of the regional statistical model seem correctly retrieved from377

samples with only a slight bias in the estimation of the parameter β af-378

fecting the estimates of the discharge quantiles of the watersheds with the379

smallest areas. In the standard method, an additional source of uncertainty380

seems to be introduced by the computation of local sample means, estimates381

of the local sample expectancies, leading to an unexplained minor but de-382

tectable underestimation of the quantiles and to an increase of the estimation383

uncertainties of these quantiles if compared to the proposed method. The384

credibility intervals computed through the MCMC algorithm underestimate385

in this case the uncertainties associated to the calculated quantiles.386

The additional parameter β appears to be a factor of stabilization rather387

than a source of further uncertainties in a flood frequency analysis. Fixing388

an index flood relation seems to help to filter out the variability of the local389

sample means due to sampling fluctuation. This is an unexpected result.390

The proposed approach, initially designed to introduce ungauged extremes in391

flood frequency analysis, is as efficient, if not more efficient than the standard392

approach when applied to gauged series. To be really able to draw such a393
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conclusion, it is necessary to consider that the regional data set may not394

follow perfectly the simple suggested index flood relation. How does the395

method resist to some regional variability in the index flood relation? It is396

the focus of the next section.397

(ii) Impact of some regional variability in the index flood relation398

Without surprise, the introduction of variability in the index flood rela-399

tion increases both, the estimated credibility intervals and the uncertainties400

affecting the estimates of the maximum likelihood, 5% and 95% credibility401

bound estimates (Fig. 6).402

The effect remains nevertheless limited when the variability is relatively403

low (Fig. 6.a). The results obtained for δ = 0.1 do not differ much from the404

results obtained in the ideal case (δ = 0 in Fig. 4.b). The maximum likelihood405

estimate is still unbiased and it could be verified that the credibility intervals406

were also only slightly biased. Uncertainties increase drastically when the407

regional variability is increased (Fig. 6.b), but still with a limited bias, on408

average, on the maximum likelihood estimate of the quantile (overestimation)409

and some bias appearing in the estimated credibility intervals. Of course, the410

biases on the individual local estimates can be significant as shown by the411

widths of the box plots.412
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These results finally suggest that the proposed approach may resist to a413

certain level of heterogeneity of the proposed index flood relationship in the414

considered region. Important heterogeneities should nevertheless be avoided415

through a careful selection of the regional data set based on the plot of416

the local sample means versus watershed areas (Gaume et al., 2010). This417

poses an additional constraint to the delineation of homogeneous regions if418

compared to the method of Hosking & Wallis, limiting the size of the regional419

gauged sets, but opening the possibility to valuate the ungauged extremes.420

This constraint should be kept in mind for a fair comparison of both methods.421

4. Application to a real-world example with ungauged extremes:422

the Ardèche area in France423

4.1. The Ardèche data set424

The Ardèche case study had already been selected by Gaume et al. (2010)425

for the initial tests of the regionalisation method involving ungauged ex-426

tremes. It has been again used here to illustrate the changes introduced427

by the new inference procedure including the calibration of the index flood428

relationship.429

The Ardèche region is located in the southeast of Massif Central in south-430

ern France (Fig. 7). It is one of the areas in Europe exposed to the most431

frequent and severe flash floods (Gaume et al., 2009). The region includes six432

main rivers: the Ardèche River 2380 km2, Ouvèze River 120 km2, Eyrieux433

River 860 km2, Doux River 630 km2, Ay River 110 km2 and Cance River434

380 km2. Five stream gauges provide accurate, continuous and long series435

of discharges in the region. The gauged dataset of annual maximum peak436
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discharges counts 168 records. The situation of the 5 gauging stations is437

reported in figure ?? and the characteristics of corresponding samples are438

presented in table 1.439

Using the large set of documentary sources available in the region, un-440

gauged largest peak discharge estimates over the last 50 years could be re-441

trieved at 14 additional sites (Fig. 8). Similarly, information on the 50 years442

preceding the gauging period could be found at 4 of the gauged sites. The443

set of ungauged extremes is finally composed of 18 maximum values over 50444

years, that is equivalent to 900 censored records, six times more than the445

regional gauged data set (Table 2). Note that the selected set of ungauged446

extremes has been reduced if compared to the set used by Gaume et al.447

(2010). A minimum distance between sites on the same stream has for in-448

stance been imposed to avoid redundancy (see appendix Appendix B for a449

short discussion about the sampling of extremes).450

The homogeneity of the growth curves within the region has been tested451

using the Hosking & Wallis heterogeneity measure (Hosking and Wallis,452

1997). The H1 value based on the 5 gauged series is equal to 2.7, which453

suggests that the region is possibly heterogeneous. Homogeneity has never-454

theless been assumed to proceed with the computations. The influence of455

regional heterogeneities in the growth curves on the inference results will be456

studied in a future publication.457

Provided the preceding assumption, this case study finally offers an inter-458

esting opportunity to apply and compare the approaches described above, in459

two different contexts: (i) regional dataset limited to gauged sites, and (ii)460

availability of information on the largest discharge at ungauged sites.461
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4.2. Results and discussion462

Figure 8 and table 3 summarize the results obtained for the Ardèche case463

study. They should be interpreted at the light of the conclusions drawn in the464

previous section. The presented results correspond to the two extreme gauged465

catchment surfaces in the region: 63 km2 (Borne watershed at Puylaurens),466

and 2240 km2 (close to the outlet of the entire Ardèche watershed at Saint467

Martin).468

The two methods - Hosking & Wallis and the proposed approach - lead469

to close results when applied to the gauged data set (Table 3, cases a and470

b). The widths of the estimated credibility intervals are slightly larger in471

the case of the proposed approach, but these intervals are underestimated by472

about 20% in the reference approach according the previous results. The un-473

derestimation of the quantiles is not systematic when the reference approach474

is used as illustrated by table 3. The inference results are depending on the475

characteristics of the sample.476

The main advantage of the proposed approach lies in the possibility to in-477

corporate information on ungauged extremes in the analysis. In the Ardèche478

case, the ungauged extremes appear consistent with the gauge series and the479

GEV distribution (Fig. 8). Their incorporation in the statistical inference480

leads to a clear reduction of the credibility intervals that are divided by a481

factor of about 2. This confirms the possible great value of the proposed ap-482

proach in regions for which information on extremes floods at ungauged sites483

is available. The assumption of homogeneity of the index flood relationship484

limits the number of gauged sites that can be included in the homogeneous485

region. But, the extremes at ungauged sites represent a potentially large ad-486

21



ditional source of information (equivalent to 900 records in the present case),487

that may reduce significantly the uncertainties attached to estimated high488

return period quantiles.489

Figure 9 compares the modelled relation between average discharges and490

watershed areas and the observed locally estimated mean discharges at the491

light of the proposed Lognormal model to reproduce regional variability in492

the index flood relationship. This illustrates the consistency of the proposed493

index flood relation with the observed data. The second smallest watershed,494

the Eyrieux, appears to have relatively smaller empirical mean discharge495

and could be possibly regarded as non-consistent with the other sites as far496

as the index flood relation is considered. This low mean value may never-497

theless be attributed to sampling fluctuation but may likewise be explained498

by the fact that this site is located further North and less influenced by the499

Mediterranean climate. This last comment illustrates that any regional flood500

frequency method is based on homogeneity hypotheses that can hardly be501

verified. It is therefore certainly sound to test the robustness of the obtained502

inference results to different hypotheses and region delineations. In this per-503

spective, the proposed approach enriches the available panel of methods and504

possible hypotheses.505

Finally, the same Monte Carlo simulations as the ones used in section 3506

were conducted with generated samples including 18 ungauged sites where507

only the highest discharge over 50 years is known to verify if the conclu-508

sions drawn on the real-world example can be generalized (Fig. 10.d). In509

fact, the results of an anlysis conducted on one single data set may be at-510

tributed to sampling variability. On average, the credibility intervals appear511
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to be divided by two on a sample of 1000 simulated datasets when the ”un-512

gauged” extremes are taken into account, which is the order of magnitude513

obtained for the Ardèche data set. 100-year quantile estimates based on514

the L-moments (standard method suggested by Hosking & Wallis) have also515

been computed for sake of verification (Fig. 10.a). L-moment and maximum516

likelihood based estimates appear to have similar performances on this data517

sample (figures 10.a and b). The L-moment estimates exhibit a slightly lower518

dispersion (L-moment are less sensitive to sampling variability) but a higher519

bias.520

5. Conclusions521

The approach initially proposed by Gaume et al. (2010), aiming at incor-522

porating information on ungauged extremes in regional flood frequency anal-523

yses, has been consolidated and thoroughly tested. The proposed method524

and algorithm, after some necessary adjustments, in particular of the formu-525

lation of the likelihood, appear to be able to estimate accurately quantiles526

and their uncertainty bounds on the basis of a regional sample combining527

continuous gauged series and ungauged censored data. The introduction of528

an index flood relationship and of an additional parameter to be calibrated,529

proved to be a stabilization factor rather than a factor of complexity and530

a source of uncertainty. The method shows a relative robustness to some531

regional variability in the index flood relation. The additional homogeneity532

constraint limits the possible extent of homogeneous regions if compared to533

the reference approach, but this is compensated by the additional informa-534

tion brought by the estimated ungauged extremes. In the case of the Ardèche535
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region the ungauged data set represents 900 censored recording station-years:536

six times the amount of the available regional gauged series. Its incorpora-537

tion in the regional flood frequency analysis led to a division by two of the538

estimated 100-year quantile 90% credibility intervals.539

Uncertainties on the extreme peak discharge estimates were not consid-540

ered herein and the ungauged extreme dataset that could be retrieved in the541

Ardèche region may appear as particularly rich if compared to what could542

reasonably be obtained in other regions. Previous works, conducted on the543

usefulness of historic records in flood frequency studies, indicated that the544

accuracy level of the estimated extreme discharges and the number of ex-545

tremes for which an estimated discharge is available, have little influence on546

the inference results when the historic period of record if fixed Payrastre547

et al. (2011). It remains to be confirmed that the same conclusion holds for548

ungauged extremes when included in regional flood frequency analyses.549

In the same line of thoughts, the possible variability in the growth curves550

in a region considered as homogeneous has not been considered yet. Its551

influence could be evaluated in the same manner as the influence of variability552

in the index flood relation has been considered in section 3. It may modify553

partly the judgment on the relative efficiency of the various tested regional554

flood frequency analysis methods.555

Finally, it is important to keep the conclusion of section 4 in mind. All556

the regional flood frequency methods are based on homogeneity hypotheses557

that can hardly be verified. It is therefore certainly sound to test the ro-558

bustness of the obtained inference results to different hypotheses and region559

delineations: to combine various methods. In this perspective, the proposed560
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approach does not replace but enriches the available panel of methods and561

possible hypotheses. It may lead, as shown herein, to quantile estimates that562

are theoretically equally or even more accurate than the estimates obtained563

with standard methods. Its main constraint may also be considered as an564

advantage: the two necessary homogeneity hypotheses limit the extent of565

homogeneous regions that may be, on the other hand, hydrologically more566

consistent and less questionable than in standard regional flood frequency567

analyses.568
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Appendix A. Method for the evaluation of the underestimation

factor for the computed credibility intervals

In many cases, the proposed reliability test for the computed credibility

intervals presented in section 3.1 indicates that the intervals are too narrow

(Fig. 5). This is due the fact that some sources of uncertainties are not

accounted for in the bayesian MCMC framework used to compute these in-

tervals. The following procedure is proposed to evaluate the underestimation

factor m of the computed intervals. Based on the hypothesis that the shapes

of the posterior distribution of the discharge quantiles Q̂i(0.99) are correct

and that only their dispersion is underestimated, the procedure to evaluate

the underestimation factor m is the following.
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The distance between the real quantile value Qi(0.99) and the median

value of the computed posterior distribution Me
(
Q̂i(0.99)

)
is artificialy re-

duced by the factor m : the probability of non-exceedance F̂m (Qi(0.99))

(eq. A.1) is computed rather than the probability F̂ (Qi(0.99)) based on the

MCMC results for each simulated sample.

F̂m (Qi(0.99)) = F̂
(
Me

(
Q̂i(0.99)

)
+ 1/m

[
Qi(0.99)−Me

(
Q̂i(0.99)

)])
(A.1)

The factor m leading to the distribution of F̂m (Qi(0.99)) closest to a

uniform distribution for the 1000 simulated samples, gives an estimate of the

underestimation factor of the credibility intervals.

Appendix B. Sampling ungauged extremes in a region

The regional samples of ungauged extremes must be carrefully built to

avoid introducing bias into the statistical analysis. At least, the extreme

data collation method must seek to meet three conditions: (i) be based on

an explicit sampling strategy that can be translated into the likelihood for-

mulation, (ii) be comprehensive fo each selected location, (iii) limit possible

dependencies between records and samples. The next three sections explain

how these three conditions were accounted for to build the Ardèche regional

sample of ungauged extreme floods.

Appendix B.1. Explicit and systematic sampling method for regional extremes

Isolated extreme discharge values are often reported but can not be di-

rectly integrated in regional flood frequency analyses if their representative-

ness is unknown. Over which period of time can it be asserted that a larger
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flood event did not occur at the same site ? And, even more crucial, these

values have been reported because they appear as extreme, i.e. this means

implicitly that they seem large if compared the known flood events observed

in neighbouring comparable catchments. Over how many years and for how

many similar catchments (station) could it be finally asserted that the con-

sidered extreme discharge value - or rescalled discharge value - has not been

exceeded ? Large uncertainties concerning the record length (station.years)

corresponding to each extreme may drastically reduce their added value in

regional flood frequency analyses as illustrated by the Slovakian test case in

Gaume et al. (2010). An inventory of regional extremes should therefore be

based, if possible, on a systematic data mining procedure. The various sites

in a region where information on extremes may be available should be de-

termined a priori: typically significant towns along rivers where large flloods

may have induced damages and may have been reported. An inventory of

past large floods should be realized at each of these sites based on local mem-

ory and archives and it must at least be verified that some given threshold

values have or have not been exceeded at the considered sites in the recent

past: non-exceedance is a statistically valuable information.

Appendix B.2. Comprehensiveness

Collation of extreme events over a given period of time provide censored

data sets: only discharges exceeding a given threshold, that depends on the

site and the considered period, are documented. Flood events exceeding the

threshold should be exhaustively listed at each site over the considered past

period for a correct statitical inference. To be on the safe side, it is generally

preferable to limit the considered past period of time and to raise the thresh-
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old value to ensure exhaustiveness, even if this limits the information content

of the inventories of large or extreme floods. For this reason, the collation

period has been limited in the Ardèche to the last 50 years (typical depth

of local memory). Likewise, the inventory has been limited to the largest

known flood event at each ungauged site. This last choice facilitates also the

computation of the plotting positions for the ungauged extremes, which can

become tricky: the return periods of the ungauged extremes reported on the

cumulated distribution plots are estimated through Monte Carlo simulations

(Gaume et al., 2010).

Appendix B.3. Indepedency

Likelihood formulations and the computation of the credibility intervals

are based on the assumption of independence between the various recorded

maximum annual peak discharges. But, extreme peak discharges induced by

the same rainfall event sometimes occur at the same date at nearby ungauged

sites, suggesting at least weak depedencies in the inventory of ungauged

extremes. To prevent any effect of these dependencies on the results and

especially to limit the risk of underestimation of the credibility intervals due

to an implicite overrating of the information content of the ungauged extreme

inventory neglecting depedencies, the data set had to be refined. When the

largest reported flood occurred at the same date at close ungauged sites, one

randomly selected site has been kept in the final ungauged data set. Keeping

the largest value would have introduced a sampling bias. The refinement of

the Ardèche ungauged extreme set led to eliminate more than half of the

records initially used by Gaume et al. (2010), hence resulting in a slight

increase only of the computed credibility intervals.
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7 The Ardèche region, location of the 5 gauged sites (triangles)

and the 18 sites where ungauged extremes were retrieved (dots). 43

35



8 Results of the Bayesian MCMC regional flood frequency infer-
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Figure 1: Posterior distributions for the parameters α and β. Calibration of a regional

growth curve and an index flood relation, based on a simulated sample of 1000 records:

α = 2.24, ξ = 3.34, k = −0.16 and β = 0.76. (a) totally biased result with the standard

likelihood expression 3 and (b) correct result with likelihood expression 7.
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a) b)

Figure 2: Gelman & Rubin’s convergence diagnosis with the regional data sets of the

Ardèche: a) reference approach; and b) proposed approach.

Table 1: The sample size and the surface of the gauging stations in the regional Ardèche.

Station River name Period of data N(year) S (km2)

Beauvene Eyrieux 1969-1998 30 392

Vogüe Ardèche 1966-2003 38 636

Chambonas Chassezac 1971-1997 27 507

St.Laurent Borne 1968-1997 30 63

St.Martin Ardèche 1963-2005 43 2240
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Figure 3: Posterior distributions of F̂ (Qi (0.99)): (a) perfect credibility intervals, (b)

tendency to over-estimate the quantile, (c) too narrow estimated credibility intervals, (d)

too large estimated credibility intervals.
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Figure 4: Estimates of the 100-year quantile through Bayesian MCMC regional flood

frequency inferences conducted on 1000 different samples: (a) Method of Hosking & Wallis

and (b) proposed method. Box plots of the 1000 maximum likelihood and 5% and 95%

credibility bounds for each considered watershed area. All the values have been divided

by the real 100-year quantiles Q̂i (0.99).
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Figure 5: Distributions of the values of F̂ (Qi (0.99)) estimated for the 1000 simulated

samples: (a,b) Method of Hosking & Wallis, (c,d) Hosking& Wallis with correction factor

m for the posterior distributions and (e,f) proposed method.
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Figure 6: Results of Bayesian MCMC regional flood frequency inferences conducted on

1000 samples with the proposed method when a regional variability in the index flood

relation is introduced: (a) δ = 0.1, (b) δ = 0.3.
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Figure 7: The Ardèche region, location of the 5 gauged sites (triangles) and the 18 sites

where ungauged extremes were retrieved (dots).
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Table 2: Detail of the extreme floods reported to be the highest ones in the last 50 years

(or last 50 years before the gauged period)

Location River name Date Q (m3/s) S (km2)

Pont de Rolandy Ardèche 22/09/1992 1150 150

Aubenas Ardèche 26/09/1992 2200 480

Sauze St.Martin Ardèche 30/09/1958 4500 2240

Rosieres Beaune 04/10/1958 1820 210

Joyeuse Beaune 30/09/1958 1000 100

Chambon Borne 30/09/1958 100 11

Vans Boudaric 03/11/1989 130 6

Burzet Bourges 22/09/1992 350 47

Chambonas Chassezac 21/09/1980 3360 510

Dorne Dorne 03/08/1963 630 78

Lamastre Doux 03/08/1963 970 242

Pont de Cesar Doux 03/08/1963 1500 635

Barrage des Collanges Eyrieux 03/081963 1685 343

Meyras Fontoliere 22/09/1992 900 130

Meysee Lavezon 30/09/1960 500 56

Rieut ord Loire 01/09/1992 444 62

Pouzin Ouveze 10/08/1967 700 140

Saliouse Saliouse 21/09/1980 300 61
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Table 3: Comparison the credibility intervals (CI) at St. Laurent and St.Martin gauging

stations to three cases corresponding to return periods T=100 years.

Surface Ncont Nhist Case Q̂5
i (0.99) Q̂ML

i (0.99) Q̂95
i (0.99)

(km2) (years) (years) (m3/s) (m3/s) (m3/s)

168 0 (a) 423.8 520.9 712.5

63 168 0 (b) 382.3 479.5 682.1

166 900 (c) 442.8 500.4 574.2

168 0 (a) 5538.6 6806.8 9310.8

2240 168 0 (b) 5892.4 7602.2 10747.6

166 900 (c) 5477.3 6560.0 7847.1
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Figure 8: Results of the Bayesian MCMC regional flood frequency inferences conducted

on the Ardèche dataset. Results provided for the Ardèche at Saint Martin (2240 km2):

(a) Method of Hosking & Wallis and (b) proposed approach including ungauged extremes.

Statistical distributions corresponding to the maximum likelihood (continuous line) and

5% and 95% credibility bounds (dotted lines). Gauged values (crosses) and ungauged

extremes (dots).
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Figure 9: Calibrated relation between average discharges and watershed areas, sample

mean discharges and variation ranges corresponding to the tested lognormal random mod-

els.
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Figure 10: Maximum likelihood estimate and 5% and 95% bounds of the computed credi-

bility intervals for 4 tested methods on 1000 simulated samples having the same character-

istics as the Ardèche data sample (St Martin case): (a) method of Hosking and Wallis with

L-moments, (b) method of Hosking and Wallis used in this paper, (c) proposed method

applied on gauged series only, (d) proposed method with 18 ungauged extremes.
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