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Abstract

An identifying code is a subset of vertices of a graph with the property that each vertex is uniquely determined
(identified) by its nonempty neighbourhood within the identifying code. When only vertices out of the code
are asked to be identified, we get the related concept of a locating-dominating set. These notions are closely
related to a number of similar and well-studied concepts such as the one of a test cover. In this paper,
we study the decision problems Identifying Code and Locating-Dominating Set (which consist in
deciding whether a given graph admits an identifying code or a locating-dominating set, respectively, with
a given size) and their minimization variants Minimum Identifying Code and Minimum Locating-
Dominating Set. These problems are known to be NP-hard, even when the input graph belongs to a
number of specific graph classes such as planar bipartite graphs. Moreover, it is known that they are
approximable within a logarithmic factor, but hard to approximate within any sub-logarithmic factor. We
extend the latter result to the case where the input graph is bipartite, split or co-bipartite: both problems
remain hard in these cases. Among other results, we also show that for bipartite graphs of bounded maximum
degree (at least 3), the two problems are hard to approximate within some constant factor, a question which
was open. We summarize all known results in the area, and we compare them to the ones for the related
problem Dominating Set. In particular, our work exhibits important graph classes for which Dominating
Set is efficiently solvable, but Identifying Code and Locating-Dominating Set are hard (whereas in
all previous works, their complexity was the same). We also introduce graph classes for which the converse
holds, and for which the complexities of Identifying Code and Locating-Dominating Set differ.

Keywords: Test cover, Separating system, Identifying code, Locating-dominating set, NP-completeness,
Approximation.

1. Introduction

This paper studies the computational complexity of problems where one wants to find a set of vertices
in a graph that uniquely identifies each vertex. In particular, we study this complexity according to the
graph class of the input. We mainly focus on identifying codes, which are subsets of vertices that identify
all vertices using the intersection of their closed neighbourhood with the code. The slightly less restrictive
concept of locating-dominating sets will also be studied.

1.1. Definitions and problems

The graph-theoretic problems we will consider are special cases of more general ones, defined on hyper-
graphs, that we shall describe first.

IMost results of this paper are from the author’s PhD thesis [28], and were found while he was a PhD student at the
LaBRI, University Bordeaux 1, 351 Cours de la Libération, 33405 Talence Cedex, France. An extended abstract of this paper
containing most results about identifying codes appeared in the proceedings of IWOCA 2013 [29].
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In this paper, to avoid confusion we will usually call hypergraphs and their vertex and edge sets H =
(I, A) and graphs G = (V,E). Given a hypergraph H, a set cover of H is a subset S of its edges such that
each vertex v belongs to at least one set S of S. We say that S dominates v. A test cover of H is a subset
T of edges such that for each pair u, v of distinct vertices of H, there is at least one set T of T that contains
exactly one of u and v. We say that T (and also T ) separates u from v. A set of edges that is both a set
cover and a test cover is called a discriminating code of H. It has to be mentioned that some hypergraphs
may not admit any set cover (if some vertex is not part of any edge) or test cover (if two vertices belong to
the same set of edges).

While set covers are a standard and widespread notion in combinatorics and theoretical computer science,
test covers are less known. They were introduced under the name of separating systems by Rényi [53] (see also
Bollobás and Scott [8] for more recent work in the same line of research). They were independetly studied
in Garey and Johnson’s book [33] under the name of test collections and further studied, see [24, 47].
Discriminating codes were more recently (and independently) introduced and studied in [12, 13]. As we
will see later, the notions of test covers and discriminating codes are very similar in nature. Due to their
properties enabling the unique identification of elements (vertices) of a system (hypergraph) using the set of
their attributes (edges), they have had a number of interesting applications in the areas of testing individuals
(such as patients or computers) for diseases or faults, see [12, 24, 47].

In this paper, we are mainly interested in special cases that can be defined over graphs rather than
hypergraphs. The notion that we will mainly study, introduced in 1998 in [40], is the one of an identifying
code. Given a graph G and a vertex v of G, we denote by N(v) and by N [v] the open and the closed
neighbourhood of v, respectively. An identifying code of G is a subset C ⊆ V (G) such that C is a dominating
set, i.e. for each v ∈ V (G), N [v] ∩ C 6= ∅ and C is a separating code, i.e. for each pair u, v ∈ V (G), if u 6= v,
then N [u] ∩ C 6= N [v] ∩ C. The minimum size of an identifying code of a given graph G will be denoted
γID(G). The notion of an identifying code is a generalization of the well-studied locating-dominating sets,
introduced three decades ago [54, 55]. Given a graph G, a locating-dominating set of G is a subset C ⊆ V (G)
which is both a dominating set and which separates all vertices that are not in the code, i.e. for each pair
u, v ∈ V (G) \ C, if u 6= v, then N(u) ∩ C 6= N(v) ∩ C. The minimum size of a locating-dominating set of a
given graph G will be denoted γLD(G). It is easily seen that any identifying code is a locating-dominating
set.

Whereas it is clear that any graph admits a (locating-)dominating set (its whole vertex set), a graph may
not admit a separating code if it contains twin vertices, i.e. vertices having the same closed neighbourhood.
In a graph containing no twins, the whole vertex set is a separating code (and therefore an identifying code);
we call such graphs twin-free.

It can be observed that a dominating set, a separating code and an identifying code of a given graph
G are exactly a set cover, a test cover and a discriminating code, respectively, of the closed neighbourhood
hypergraph of G, which is defined over V (G) and whose edge set is the collection of closed neighbourhoods
of the vertices of G.

Identifying codes, locating-dominating sets and further related notions have been studied extensively in
the literature. We refer to [45] for an on-line bibliography on these topics, which lists more than 240 papers
as of February 2013. In particular, see [2, 3, 6, 17, 28, 30, 31, 34, 43, 49, 54, 55, 56] for studies of the
computational complexity of these problems. We remark that in many of these papers, due to the similarity
between the two problems, the algorithmic properties of identifying codes and locating-dominating sets are
studied together. For the same reason, we do so as well.

One of the interests of these notions lies in their applications to the location of threats in facilities [54, 58]
and error detection in computer networks [40]. One can also mention applications to routing [44], to bio-
informatics [37] (where identifying codes are called differentiating dominating sets) and to measuring the
first-order logical complexity of graphs [41] (where locating-dominating sets are calledsieves).

For definitions of computational complexity, we refer to the books [4, 33]. Let us formally define the
decision and optimization problems (whose name is preceded by “Min”) associated with identifying codes
and locating-dominating sets:
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Id Code
INSTANCE: A graph G and an integer k.
QUESTION: Does G have an identifying code of size at most k?

Min Id Code
INSTANCE: A graph G.
SOLUTION: An identifying code C of G.
MEASURE: |C|.

Loc-Dom Set
INSTANCE: A graph G and an integer k.
QUESTION: Does G have a locating-dominating set of size at most k?

Min Loc-Dom Set
INSTANCE: A graph G.
SOLUTION: A locating-dominating set D of G.
MEASURE: |D|.

Problems associated with set covers, test covers, discriminating codes, dominating sets and vertex covers
are defined analogously, hence we skip their definitions.

When measuring the quality of an approximation algorithm for a minimization problem P (with running
time polynomial in the size of the instance), we consider its performance ratio, i.e. the guaranteed quantity

α = max
{
|SOLIP

|
OPT (IP )

}
over all instances IP of P (where SOLIP is a solution to P given by the algorithm

applied on instance IP , and OPT (IP ) denotes the size of an optimal solution of P for IP ). We say that P
is α-approximable and that the algorithm is an α-approximation algorithm.

We recall that the class APX is the class of all optimization problems that are c-approximable for some
constant c. Following terminology from e.g. [22], we also refer to the class log-APX as the class of all
optimization problems that are f(n)-approximable, where n is the size of the instance and f is a poly-
logarithmic function.

In this paper, we will study specific graph classes, of which many are standard, such as bipartite graphs,
planar graphs or graphs of given maximum degree. Bipartite graphs which do not have any induced cycle of
length more than 4 are called chordal bipartite (note that they are in general not chordal). Complements of
bipartite graphs are called co-bipartite graphs. A class containing co-bipartite graphs is the one of asteroidal
triple-free graphs (which we do not define here); in turn, Dominating Shortest Path graphs, introduced
in [42], are those graphs admitting a dominating set whose vertices are the ones of a shortest path between
two vertices of the graph; this class includes all asteroidal triple-free graphs. Interesting superclasses of
co-bipartite graphs are quasi-line graphs (graphs for which each vertex neighbourhood can be partitioned
into two cliques) and its superclass, the claw-free graphs (graphs having no K1,3 as an induced subgraph).
Split graphs are those whose vertex set can be partitioned into a clique and an independent set.

1.2. A few observations

We remark a few facts that are useful in the studied context. We now show, in a series of easy observations
and reductions, that test covers and discriminating codes are very close to each other.

Observation 1. Let H be a hypergraph admitting a set cover and a test cover. If C is a test cover of H,
then there is an edge X of H such that C ∪ {X} is a discriminating code of H.

Proof. If C is not a discriminating code already, then C is not a set cover; that means at most one vertex of
H, say v, is not dominated (if there were two, they would not be separated). Let X be an edge containing
v (it exists since H admits a set cover). Then C ∪ {X} is a discriminating code.

We remark that Observation 1 holds, of course, in the same way for separating codes and identifying
codes as they are special cases of the corresponding hypergraph problems. We can use Observation 1 to
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define the following simple reductions. These reductions will show that problems Min Test Cover and
Min Discriminating Code are computationally almost equivalent.

Reduction 2 (Min Test Cover → Min Discriminating Code). Given a hypergraph H = (I, A), we
construct in polynomial time the hypergraph H ′ = (I ′, A′), where I ′ = I ∪ {x} and A′ = A ∪ {I ′}.

Reduction 3 (Min Discriminating Code → Min Test Cover). Given a hypergraph H = (I, A), we
construct in polynomial time the hypergraph H ′′ = (I ′′, A′′), where I ′′ = I ∪ {y} and A′′ = A.

Proposition 4. In Reduction 2, H has a test cover of size k if and only if H ′ has a discriminating code of
size k + 1. In Reduction 3, H has a discriminating code of size k if and only if H ′′ has a test cover of size
k.

Proof. For the first claim, if H has a test cover T of size k, then T ∪ {I ′} is a discriminating code of H ′. If
H ′ has a discriminating code T ′ of size k+ 1, then it has to contain edge I ′ as otherwise x is not dominated.
Then T ′ \ {I ′} is a test cover of H since I ′ does not separate any pair of vertices.

For the second claim, it is clear that any discriminating code of H is a test cover of H ′′, leaving only
y undominated. Now, in any test cover T of H ′′, y must be undominated; hence all other vertices are
dominated, and T is a discriminating code of H.

Proposition 4 shows that the complexities of finding optimal discriminating codes and test covers are
essentially the same (for general hypergraphs). In fact, similar reductions could also be done for more special
cases such as identifying codes and separating codes in graphs.

We now show a way to relate (non-)approximability results of Min Id Code and Min Loc-Dom Set.
The following theorem was given in [34].

Theorem 5 ([34]). Let G be a graph having a locating-dominating set D. If G is twin-free, one can construct
using D an identifying code C of G with |C| ≤ 2|D|.

We observe that the reverse constructions are trivial, since any identifying code is a locating-dominating
set. Hence Theorem 5 shows:

1

2
OPTID(G) ≤ OPTLD(G) ≤ OPTID(G) ≤ 2OPTLD(G)

Using Theorem 5 and these inequalities, we can link the complexity of approximating Min Loc-Dom
Set and Min Id Code in the following two corollaries:

Corollary 6. Any α-approximation algorithm for Min Loc-Dom Set can be transformed into a 2α-
approximation algorithm for Min Id Code, and vice-versa.

Corollary 7. If it is NP-hard to α-approximate Min Id Code, then it is NP-hard to α
2 -approximate Min

Loc-Dom Set. If it is NP-hard to α-approximate Min Loc-Dom Set, then it is NP-hard to α
2 -approximate

Min Id Code.

We remark that, in the previous corollary, α
2 -approximation hardness only makes sense if α ≥ 2.

1.3. Related work

It is well-known that Min Set Cover is an NP-hard problem [33], and that it is even log-APX-hard [52]
(whereas logarithmic factors are tractable [39]); this even holds for the special case of Min Dominating Set
[19, 35, 36]. The same properties hold for Min Test Cover [24] (and by Proposition 4, using Reduction 2
this result transfers to Min Discriminating Code) and Min Id Code (see [6, 43, 56], for different proofs).
Min Discriminating Code was shown to be NP-hard, even when the bipartite incidence graph of the input
hypergraph is planar [13].

Regarding the behaviour of the graph-theoretic problems of our interest when the instances are restricted
to belong to specific graph classes, much is known for Dominating Set and Min Dominating Set: the NP-
completeness of Dominating Set holds for many classes of graphs such as (chordal) bipartite graphs, split
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graphs, line graphs or planar graphs but not for strongly chordal graphs, directed path graphs (which include
the more famous interval graphs), or graphs having a dominating shortest path (see e.g. [25] for an on-line
database, and [20, 35, 36] for surveys and summaries). The log-APX-completeness of Min Dominating Set
is known to hold even for bipartite graphs and split graphs [19], however it does not hold for planar graphs
or unit disk graphs (in which Min Dominating Set admits PTAS algorithms [5, 50]) or in (bipartite)
graphs of bounded maximum degree (at least 3), where it is APX-complete [19].

In comparison, much less is known about problems Id Code, Min Id Code, Loc-Dom Set and Min
Loc-Dom Set; extending this knowledge is the main goal of this paper. It is known that, in general, Id
Code and Loc-Dom Set are NP-complete [17, 15]. This result holds even for bipartite graphs [17], and for
Id Code it holds for planar graphs of maximum degree 3 [2, 3], planar bipartite unit disk graphs [49], line
graphs [30], split graphs [28, 31], and, interestingly, interval graphs [28, 31]. Regarding the minimization
problems, log-APX-completeness of Min Id Code and Min Loc-Dom Set is known only for general
graphs [6, 43, 56], and the two problems are APX-complete for graphs of bounded maximum degree at
least 8 and 5, respectively [34].

1.4. Our contribution and structure of the paper

We extend the knowledge about the computational complexity of Id Code, Loc-Dom Set, Min Id
Code and Min Loc-Dom Set when these problems are restricted to specific classes of graphs. We compare
these results to the corresponding ones for Dominating Set and Min Dominating Set; see Tables 1 and 2
for a summary of many known complexity results for these problems when instances are restricted to belong
to some standard graph classes. These tables also indicate graph classes where the complexity of Min Id
Code or Min Loc-Dom Set is unknown, giving rise to interesting open problems.

graph class Id Code Loc-Dom Set Dominating Set

bipartite NP-c [17] NP-c [17] NP-c [7, 11]

chordal bipartite NP-c [Th. 31] NP-c [Th. 33] NP-c [48]

planar max. degree 3 NP-c [3] NP-c [Th. 29] NP-c [33, 57]

planar bipartite max. degree 3 NP-c [Th. 26] NP-c [Th. 29] NP-c [57]

(planar) line NP-c [30] OPEN NP-c [59]

planar bipartite unit disk NP-c [49] NP-c [49] NP-c [14]

bounded tree-width/clique-width P [46] P [46] P [21, 16]

line of bounded tree-width P [30] P [30] P [21]

split NP-c [31] NP-c [Co. 21] NP-c [7]

undirected path NP-c [31] OPEN NP-c [9]

interval, directed path NP-c [31] OPEN P [9]

strongly chordal NP-c [31] OPEN P [26]

permutation OPEN OPEN P [27]

AT-free, DSP NP-c [31] NP-c [Co. 21] P [42]

co-bipartite NP-c [Co. 21] NP-c [Co. 21] P [42]

(planar) SC1 P [Th. 35] P [Th. 36] NP-c [Th. 37]

(planar) SC2 NP-c [Th. 40] P [Th. 39] P [Th. 39]

Table 1: Comparison of complexities of decision problems Id Code, Loc-Dom Set and Dominating Set for selected graph
classes. Underlined entries are new results proved in this paper. The abbreviations “P”, “NP-c”, “DSP” and “AT-free” stand
for “polynomial-time solvable”, “NP-complete”, “Dominating Shortest Path” and “asteroidal triple-free”, respectively. SC1-
and SC2-graphs will be defined in Section 4. Definitions of graph classes that are not defined in this paper can be found in
[10, 25].

We will show in Section 2 that Min Id Code and Min Loc-Dom Set are log-APX-complete even for
bipartite, split and co-bipartite graphs using approximation-preserving reductions from Min Discriminat-
ing Code. Prior, three different papers [6, 43, 56] showed that Min Id Code is log-APX-complete, but
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Min Id Code Min Loc-Dom Set Min Dominating Set

graph class LB UB LB UB LB UB

in general log-APX-h O(lnn) log-APX-h O(lnn) log-APX-h O(lnn)
[6, 43, 56] [24] [56] [34, 56] [52] [39]

bipartite log-APX-h O(lnn) log-APX-h O(lnn) log-APX-h O(lnn)
Co. 15 [24] Co. 15 [34, 56] [19, 52] [39]

split, chordal log-APX-h O(lnn) log-APX-h O(lnn) log-APX-h O(lnn)
Co. 18 [24] Co. 18 [34, 56] [19, 52] [39]

planar NP-h 7 NP-h 7 NP-h PTAS
(∗) [3] [55] Th. 29 [55] [33] [5]

line APX-h 4 OPEN 8 APX-h 2
(∗) [28] [30] [30]+Co. 6 [18, 59] [59]

K1,`-free log-APX-h O(lnn) log-APX-h O(lnn) APX-h `− 1
(` ≥ 3) Co. 21 [24] Co. 21 [34, 56] [18, 59] [19]

max. degree ∆ APX-h O(ln ∆) APX-h O(ln ∆) APX-h O(ln ∆)
∆ ≥ 8: [34] [24] ∆ ≥ 5:[34] [34, 56] ∆ ≥ 3: [51] [39]

max. degree ∆ ≥ 3 APX-h O(ln ∆) APX-h O(ln ∆) APX-h O(ln ∆)
and bipartite Th. 27 [24] Th. 29 [34, 56] [19] [39]

unit disk NP-h O(lnn) NP-h O(lnn) NP-h PTAS
(∗) [49] [24] [49] [34, 56] [14] [38]

co-bipartite, log-APX-h O(lnn) log-APX-h O(lnn) P
AT-free, DSP Co. 21 [24] Co. 21 [34, 56] [42]

strongly chordal NP-h O(lnn) OPEN O(lnn) P
(∗) [31] [24] [34, 56] [26]

undirected path NP-h O(lnn) OPEN O(lnn) NP-h O(lnn)
(∗) [31] [24] [34, 56] [9] [39]

interval, (∗) NP-h O(lnn) OPEN O(lnn) P
directed path [31] [24] [34, 56] [9]

permutation OPEN O(lnn) OPEN O(lnn) P
(∗) [24] [34, 56] [27]

Table 2: Comparison of complexity lower bounds,“LB”, and upper bounds on approximation ratios, “UB”, (as functions of
the order n of the input graph) of optimization problems Min Id Code, Min Loc-Dom Set and Min Dominating Set for
selected graph classes. Underlined entries are new results proved in this paper. Graph classes for which the precise complexity
class of Min Id Code or Min Loc-Dom Set is not fully determined are marked with (∗) (note that for all graph classes
except, up to our knowledge, undirected path graphs, the complexity class of Min Dominating Set is fully determined).
The abbreviations “NP-h”, “APX-h”, “log-APX-h”, “DSP” and “AT-free” stand for “NP-hard”, “APX-hard”, “log-APX-hard”,
“Dominating Shortest Path” and “asteroidal triple-free”, respectively. Definitions of graph classes that are not defined in this
paper can be found in [10, 25].

only in general graphs. Moreover, the proofs of [6, 43, 56] are relatively involved, while we use the intuitive
proximity between Min Discriminating Code and Min Id Code to design much simpler reductions.
Note that on co-bipartite graphs, Min Dominating Set is in fact trivially solvable in polynomial time; in
contrast, our result shows that Min Id Code and Min Loc-Dom Set are computationally very hard on
this class. As we will see, this result shows similar contrasts, with the complexity of Min Dominating Set
for Dominating Shortest Path graphs and (`-)claw-free graphs.

In Section 3, we show that Min Id Code and Min Loc-Dom Set are APX-complete for bipartite graphs
of maximum degree 3, answering a question from [34] and improving one of the results therein. Along the
way, we obtain that the two problems are NP-hard for the same classes with the additional restriction of
planarity (this improves three results from [2, 3, 49]), as well as for chordal bipartite graphs.

Finally, in Section 4, we exhibit two classes of graphs, which we call SC1- and SC2-graphs. For SC1-
graphs, Dominating Set is NP-complete, but Id Code and Loc-Dom Set are solvable in polynomial
time; for SC2-graphs, Dominating Set and Loc-Dom Set are solvable in polynomial time, but Id Code
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is NP-complete. These results are interesting because, until now, all known results for given graph classes
were showing that Id Code and Loc-Dom Set were at least as hard as Dominating Set, and that the
complexities of Id Code and Loc-Dom Set were the same.

2. Bipartite, co-bipartite and split graphs

In this section, we provide three similar reductions from Min Discriminating Code to Min Id Code
for bipartite, split and co-bipartite graphs showing that Min Id Code is log-APX-complete in these three
classes of graphs. Previously, only log-APX-completeness for general graphs was known. We begin with
preliminary considerations that will be used in all three reductions.

2.1. Useful definitions, bounds and constructions
In this section, we will use the framework of AP-reductions, introduced in [22] and which is now accepted

as one of the most suitable kind of reductions for preserving approximability factors [4, Chapter 8.6].

Definition 8 ([4, Definition 8.3]). Let P and Q be two optimization problems. An AP-reduction from P to
Q is a triple (f, g, α) where f, g are functions and α is a positive constant, with the following properties:

1. Function f maps any instance IP of P together with any c > 1 to an instance f(IP , c) of Q.

2. For any instance IP of P , for any c > 1, and for any solution SOLf(IP ,c) of f(IP , c), function g maps
(IP , r, SOLf(IP ,c)) to a solution g(f(IP , c), SOLf(IP ,c)) of IP .

3. For any instance IP of P , for any c > 1, if IP has a solution, then f(IP , c) has a solution.

4. For any fixed c > 1, f(·, c) and g(·, ·, c) are computable in polynomial time.

5. For every instance IP of P , for any c > 1,and for any solution SOLf(IP ,c) of f(IP , c), if:

max

{ |SOLf(IP ,c)|
OPTQ(f(IP , c))

,
OPTQ(f(IP , c))

|SOLf(IP ,c)|

}
≤ c, then:

max

{ |g(f(IP , c), SOLf(IP ,c))|
OPTP (IP )

,
OPTP (IP )

|g(f(IP , c), SOLf(IP ,c))|

}
≤ 1 + α(c− 1).

We will use AP-reductions together with the following theorem:

Theorem 9 ([22]). Any optimization problem P with instance IP that is log-APX-hard with respect to
AP-reductions is NP-hard to approximate within a factor c ln(|IP |), for some constant c > 0.

We will also use the following bounds on the size of a minimum discriminating code:

Theorem 10 ([12]). Let H = (I, A) be a hypergraph admitting a discriminating code, C. Then |C| ≥
log2(|I|+ 1). If C is inclusion-wise minimal, then |C| ≤ |I|.

We now describe two constructions, that ensure that the vertices of some vertex set A are correctly
identified using the vertices of another set L.

Construction 11 (bipartite logarithmic identification of A over (A,L)). Given two sets of vertices A and
L with |L| ≥ dlog2(|A| + 1)e, the bipartite logarithmic identification of A over (A,L), denoted LOG(A,L),
is the graph of vertex set A ∪ L and where each vertex of A has a distinct nonempty subset of L as its
neighbourhood.

The next construction is similar, but makes sure that each vertex of A has at least two neighbours in L.

Construction 12 (non-singleton bipartite logarithmic identification of A over (A,L)). Given two sets of
vertices A and L with |A| ≤ 2|L| − |L| − 1,1 the non-single bipartite logarithmic identification of A over
(A,L), denoted LOG∗(A,L), is the graph of vertex set A ∪ L and where each vertex of A has a distinct
subset of L of size at least 2 as its neighbourhood.

1There are exactly 2|L| − |L| − 1 distinct subsets of L with size at least 2.
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2.2. Bipartite graphs

We first give a reduction to Min Id Code for bipartite graphs.

Reduction 13 (Min Discriminating Code → Min Id Code for bipartite graphs). Given an instance
(I, A) of Min Discriminating Code, we construct in polynomial time the following bipartite graph G(I, A)
on |I|+ |A|+ 9dlog2(|A|+ 1)e+ 3 vertices, with vertex set:

V (G(I, A)) = I ∪A ∪ {x, y, z} ∪ {aj , bj , cj , dj , ej , fj , gj , hj , ij | 1 ≤ j ≤ dlog2(|A|+ 1)e},

and edge set:

E (G(I, A)) = {x, y} ∪ {y, z} ∪ {{z, i} | i ∈ I}
∪ E (B(I, A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , bj}, {bj , cj}, {aj , dj}, {dj , gj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {{dj , ej}, {ej , fj}, {gj , hj}, {hj , ij} | 1 ≤ j ≤ dlog2(|A|+ 1)e} .

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L)) denotes the bipartite loga-
rithmic identification of A over (A,L) (see Construction 11).

The construction is illustrated in Figure 1.

a`

a1

..
.

b`

c`

d`

g`
h`

i`e`
f`

b1
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Figure 1: Reduction from Min Discriminating Code to Min Id Code (with ` = dlog2(|A|+ 1)e).

Theorem 14. Let (I, A) be an instance of Min Discriminating Code, and G(I, A), the bipartite graph
constructed using Reduction 13. Then, (I, A) has a discriminating code of size at most k if and only if
G(I, A) has an identifying code of size at most k + 6dlog2(|A| + 1)e + 2, and one can construct one using
the other in polynomial time.

Proof. Sufficient side (⇒) Let D ⊆ A be a discriminating code of (I, A), |D| = k. We define C(D) as
follows:

C(D) = D ∪ {x, z} ∪ {aj , cj , dj , fj , gj , ij | 1 ≤ j ≤ dlog2(|A|+ 1)e}.

One can easily check that C(D) has size k+ 6dlog2(|A|+ 1)e+ 2, and is clearly a dominating set. To see
that it is an identifying code of G(I, A), observe that vertex z separates all vertices of I from all vertices
which are not in I ∪ {z}. Vertex z itself is the only vertex dominated only by z (each vertex of I being
dominating by some vertex of D); y is dominated by both x, y and x, only by itself. Since D a discriminating
code of (I, A), all vertices of I are dominated by a distinct subset of D. Furthermore, due to the bipartite
logarithmic identification of A over (A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}) (and since each vertex aj belongs to
the code), all vertices of A are dominated by a unique subset of {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}. Finally, it is
easy to check that all vertices of type aj , bj , cj , dj , ej , fj , gj , hh, ij are correctly separated.
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Necessary side (⇐) Let C be an identifying code of G(I,A), |C| = k + 6dlog2(|A| + 1)e + 2. We first
“normalize” C by constructing an identifying code C∗ of G(I, A), |C∗| ≤ |C|, such that the two following
properties hold:

|C∗ ∩ {V (G(I, A)) \ {I ∪A}}| = 6dlog2(|A|+ 1)e+ 2 (1)

|C∗ ∩ I| = ∅. (2)

To get Condition (1), we replace |C ∩ {V (G(I, A)) \ {I ∪ A}}| by {x, z} ∪ {aj , cj , dj , fj , gj , ij | 1 ≤ j ≤
dlog2(|A|+1)e} to get code C′ (whose structure is similar to the one of the code constructed in the (⇒) part of
the proof). Observe that |C′| ≤ |C|. Indeed, we already had |C∩{V (G(I,A))\{I∪A}}| ≥ 6dlog2(|A|+1)e+2.
To see this, note that vertex z is the only one separating {x, y}, and |C∩{x, y}| ≥ 1 since C must dominate x.
Similarly, for any j ∈ {1, . . . , log2(|A|+ 1)}, vertices aj , dj , gj are the only ones separating {bj , cj}, {ej , fj}
and {hj , ij}, respectively, and |C ∩ {bj , cj}| ≥ 1, |C ∩ {ej , fj}| ≥ 1 and |C ∩ {hj , ij}| ≥ 1, since C must
dominate cj , fj and ij , respectively.

To fulfill Condition (2), we replace each vertex i ∈ I ∩C′ by some vertex in A. If C′ \{i} is an identifying
code, we may just remove i from the code. Otherwise, note that i is not needed for domination since all
vertices of I are dominated by z and all vertices of A are dominated by some vertex in {aj | 1 ≤ j ≤
dlog2(|A| + 1)e}. Hence, i separates i itself from some other vertex i′ in I (indeed, one can check that
all other types of pairs which could be separated by i are actually already separated by some vertex of
C′ ∩ (V (G(I, A)) \ I). But then, the pair {i, i′} is unique (suppose i separates i itself from two distinct
vertices i′ and i′′ of I, then i′ and i′′ would not be separated by C′, a contradiction). Since (I, A) admits a
discriminating code, there must be some vertex a of A separating i from some i′. Hence we replace i by a.
Doing this for every i ∈ C′ ∩ I, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof, one can easily
check that after these two modifications performed on code C, the obtained code C∗ is still an identifying
code.

By Condition (2), we have |C∗ ∩A| ≤ |C| − 6dlog2(|A|+ 1)e+ 2 = k.
To finish the proof, we claim that C∗ ∩ A is a discriminating code of (I, A). This is easy to observe, as

all pairs {I, I ′} of I are separated by C∗. By Condition (1), they must be separated by some vertex of A
(note that z is adjacent to all vertices of I). Hence C∗ ∩A is a discriminating code of (I, A).

Theorem 14 proves that Id Code for bipartite graphs is NP-hard. In fact, Reduction 13 also preserves
approximation ratios up to a constant factor, as shown by the following corollary.

Corollary 15. Reduction 13 is an AP-reduction with parameter α = 8 and Min Id Code, Min Loc-Dom
Set for bipartite graphs are log-APX-complete.

Proof. We will use Theorem 14 to show that any c-approximation algorithm A for Min Id Code for
bipartite graphs can be transformed into a 7c-approximation algorithm for Min Discriminating Code,
and 7c ≤ 1 + c(8 − 1); therefore, by Definition 8, we have an AP-reduction with α = 8. Since Min
Discriminating Code is log-APX-complete by [24] together with Proposition 4 and Min Id Code is
known to be in log-APX, we get the claim for Min Id Code. Corollary 7 immediately implies the claims
for Min Loc-Dom Set.

Let (I, A) be an instance of Min Discriminating Code with optimal value OPT, and let G(I, A) be
the bipartite graph constructed using Reduction 13. By Theorem 14, we have:

γID(G(I, A)) ≤ OPT + 6dlog2(|A|+ 1)e+ 2. (3)

Let C be an identifying code of G(I, A) computed by A . We have:

|C| ≤ cγID(G(I, A)). (4)
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By Theorem 14, we can compute in polynomial time a discriminating code D of (I, A). Using Inequali-
ties 3 and 4 together with the fact that dlog2(|A|)e ≤ OPT ≤ |D| (Theorems 10 and 10), we get:2

|D| ≤ |C| − 6dlog2(|A|+ 1)e − 2

≤ cγID(G(I, A))− 6dlog2(|A|+ 1)e − 2

≤ c(OPT + 6dlog2(|A|+ 1)e+ 2)− 6dlog2(|A|+ 1)e − 2

≤ cOPT + (c− 1)(6dlog2(|A|+ 1)e+ 2)

≤ cOPT + (c− 1)(6dlog2(|A|)e+ 8)

≤ cOPT + (c− 1)(6OPT + 8)

≤ (7c− 6)OPT + 8

≤ 7cOPT.

2.3. Split graphs

In this section, we use a reduction from Min Discriminating Code to Min Id Code for split graphs
similar to Reduction 13.

Reduction 16 (Min Discriminating Code → Min Id Code for split graphs). Given an instance (I, A)
of Min Discriminating Code, we construct in polynomial time the following split graph Sp(I, A) on
|I| + |A| + 6dlog2(|A| + 1)e + 1 vertices, with vertex set V (Sp(I, A)) = K ∪ S (K is a clique and S, an
independent set). More specifically:

K = I ∪ {u} ∪ {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}
S = A ∪ {v} ∪ {sj , tj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}.

Sp(I, A) has edge set:

E (Sp(I, A)) = {u, v}
∪ E (B(I, A))

∪ E (LOG∗(A, {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}))
∪ {{kj , sj}, {kj , tj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {a, b | a, b ∈ K, a 6= b},

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG∗(A,L)) denotes the non-singleton
bipartite logarithmic identification of A over (A,L) (see Construction 12).

The construction is illustrated in Figure 2.

Theorem 17. Let (I, A) be an instance of Min Discriminating Code, and Sp(I, A), the split graph
constructed using Reduction 16. Then, (I, A) has a discriminating code of size at most k if and only if
Sp(I, A) has an identifying code of size at most k + 4dlog2(|A| + 1)e + 1, and one can construct one using
the other in polynomial time.

The proof of Theorem 17 being very similar to the one of Theorem 14, we delay it to the appendix. As
Theorem 14 for bipartite graphs, Theorem 17 shows that Id Code for split graphs is NP-hard; moreover,
Reduction 16 preserves approximation ratios up to a constant factor (the proof being the same as the one
of Corollary 15, we omit it).

Corollary 18. Reduction 16 is an AP-reduction with parameter α = 6 and Min Id Code, Min Loc-Dom
Set for split graphs are log-APX-complete.

2For the last line inequality, we assume here that OPT ≥ 2.
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Figure 2: Reduction from Min Discriminating Code to Min Id Code (with ` = 2dlog2(|A|+ 1)e).

2.4. Co-bipartite graphs

We now prove that Min Id Code is log-APX-complete even for co-bipartite graphs, that is, graphs whose
vertex set can be partitioned into two cliques. Note that this class (when assumed to be connected) is a
subclass of Dominating Shortest Path graphs (a class containing the more well-known asteroidal triple-free
graphs) since any pair of adjacent vertices belonging each to a distinct one among the two cliques, forms a
dominating shortest path. This is particularly interesting since Dominating Set is solvable in polynomial
time for Dominating Shortest Path graphs [42]. Any co-bipartite graph is also trivially quasi-line, and, in
turn, claw-free. Hence our result contrasts again with the complexity of Min Dominating Set, which is
approximable within a factor of ` − 1 for `-claw-free graph3 for any fixed `, as shown in [19] using a short
argument.

Reduction 19 (Min Discriminating Code→Min Id Code for co-bipartite graphs). Given an instance
(I,A) of Min Discriminating Code, we construct in polynomial time the following co-bipartite graph
G(I, A) on |I|+ |A|+ 6dlog2(|A|+ 1)e vertices, with vertex set V (G(I, A)) = K1 ∪K2, where K1 and K2

are two cliques over the following sets of vertices:

K1 = I ∪ {aj , bj , cj | 1 ≤ j ≤ dlog2(|A|+ 1)e}

K2 = A ∪ {dj , ej , fj | 1 ≤ j ≤ dlog2(|A|+ 1)e}.

G(I, A) has edge set:

E (G(I, A)) = E (B(I, A))

∪ E (LOG(A, {aj | 1 ≤ j ≤ dlog2(|A|+ 1)e}))
∪ {{aj , dj}, {bj , dj}, {bj , ej}, {bj , fj}, {cj , fj} | 1 ≤ j ≤ dlog2(|A|+ 1)e}
∪ {x, y | x, y ∈ K1} ∪ {x, y | x, y ∈ K2}.

where B(I, A) denotes the bipartite incidence graph of (I, A) and E (LOG(A,L)) denotes the bipartite loga-
rithmic identification of A over (A,L) (see Construction 11).

The construction is illustrated in Figure 3.
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Figure 3: Reduction from Min Discriminating Code to Min Id Code (with ` = dlog2(|A|+ 1)e).

Theorem 20. Let (I, A) be an instance of Min Discriminating Code, and G(I, A), the bipartite graph
constructed using Reduction 19. Then, (I, A) has a discriminating code of size at most k if and only if
G(I, A) has an identifying code of size at most k + 5dlog2(|A| + 1)e − 2, and one can construct one using
the other in polynomial time.

Once again, the proof of Theorem 20 being very similar to the one of Theorem 14, we delay it to the
appendix. Again, we can show that Reduction 19 also preserves approximation ratios up to a constant factor
(the proof being the same as the one of Corollaries 15 and 18, we omit it).

Corollary 21. Reduction 19 is an AP-reduction with parameter α = 7 and Min Id Code, Min Loc-Dom
Set for co-bipartite graphs (and hence for quasi-line graphs, asteroidal triple-free graphs and Dominating
Shortest Path graphs) are log-APX-complete.

3. Reductions for (planar) bipartite graphs of bounded maximum degree and chordal bipartite
graphs

In this section, we improve the NP-completeness results for various subclasses of planar graphs from [2],
[3] and [49] by showing that Id Code and Loc-Dom Set are NP-complete for planar bipartite graphs of
maximum degree 3. We also improve and extend the APX-hardness results for Min Id Code and Min Loc-
Dom Set for non-bipartite graphs of maximum degree at least 8 and 5, respectively, from [34] by showing
that they are APX-hard even for bipartite graphs of maximum degree 3 (the authors of [34] asked whether
their result could be extended to bipartite graphs, hence our result answers their question in positive).
Finally, we show that Id Code and Loc-Dom Set are NP-complete for chordal bipartite graphs. Note that
the class of chordal bipartite graphs is interesting for the following reason: Dominating Set is NP-complete
for this class [48], but the related problem Total Dominating Set is polynomial-time solvable [23].

3A graph is `-claw-free if it has no K1,` as an induced subgraph — hence 3-claw-free means claw-free.
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3.1. Definition of L-reductions

The following type of reductions, called L-reductions (for “linear reductions”) was introduced in [51];
they are now widely used to prove APX-hardness of optimization problems.

Definition 22 ([51]). Let P and Q be two optimization problems. An L-reduction from P to Q is a four-
tuple (f, g, α, β) where f and g are polynomial time computable functions and α, β are positive constants
with the following properties:

1. Function f maps instances of P to instances of Q and for every instance IP of P :

OPTQ(f(IP )) ≤ α ·OPTP (IP ).

2. For every instance IP of P and every solution SOLf(IP ) of f(IP ), g maps the pair
(f(IP ), SOLf(IP )) to a solution SOLIP of IP such that:

|OPTP (IP )− |SOLIP || ≤ β · |OPTQ(f(IP ))− |SOLf(IP )||.

L-reductions are useful due to the following fact:

Theorem 23 ([51]). Let P and Q be two optimization problems. If there exists an L-reduction from P to
Q with parameters α and β and Q has a (1 + ε)-approximation algorithm for some ε > 0, then P has a
(1 + αβε)-approximation algorithm.

This can be used to derive hardness results in the following way:

Corollary 24 ([51]). Let P and Q be two optimization problems. If there exists an L-reduction from P to
Q with parameters α and β and it is NP-hard to approximate P within ratio rP = 1 + δ, then it is NP-hard
to approximate Q within ratio rQ = 1 + δ

αβ .

3.2. Reductions from Min Vertex Cover

We first present a reduction from Min Vertex Cover to Min Id Code. It consists in a very simple
edge-gadget.

Reduction 25 (Min Vertex Cover → Min Id Code). Given a graph G, we construct the graph G′ on
vertex set

V (G′) = V (G) ∪ {pe, qe | e ∈ E(G)},

and edge set

E(G′) ={{x, pe}, {y, pe}, {pe, qe} | e = {x, y} ∈ E(G)}.

The construction is illustrated in Figure 4.

pe

qe

x y

Figure 4: Reduction gadget for edge e = {x, y} in Reduction 25 from Min Vertex Cover to Min Id Code. The original
vertices of G, x and y, are circled.

For the following claims, let G be a graph and G′, the graph obtained from G using Reduction 25.

Claim A. Let N be a vertex cover of G. Using N , one can build an identifying code of G′ of size at most
|N |+ |E(G)|.
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Proof. First of all, we may assume that G has no vertex of degree less than 2, as isolated vertices can be
removed from the graph without any consequence on any vertex cover, and a vertex of degree 1 may never
belong to any optimal vertex cover. In the latter case, removing that vertex and its neighbour, one gets a
computationally equivalent instance (where the size of the vertex cover is required to be one less).

Now, let C = N ∪ {pe | e ∈ E(G)}. We can easily check that C is an identifying code of G′: any original
vertex x of G is dominated by the unique set of vertices {pe | x ∈ e, e ∈ E(G)} (this set having at least two
elements by the first paragraph of the proof). For each edge {x, y} = e ∈ E(G), vertex pe is dominated by
itself and at least one of x, y; qe is dominated by pe only.

Claim B. Let C be an identifying code of G′. One can use C to build a vertex cover of G of size at most
|C| − |E(G)|.

Proof. We observe that for each edge e = {x, y} of G, one of pe, qe belongs to C, since C has to dominate qe.
Moreover, one of x, y belongs to C since pe, qe need to be separated by C. Hence, the restriction of the code
to the original vertices of G, C ∩ V (G), is a vertex cover of G with size at most |C| − |E(G)|.

In what follows, let τ(G) denote the minimum size of a vertex cover of G. The previous claims are
enough to give a new proof that Id Code is NP-complete:

Theorem 26. Id Code is NP-complete, even for planar bipartite graphs of maximum degree 3.

Proof. We apply Reduction 25 to Vertex Cover for planar graphs of maximum degree 3, which is known
to be NP-complete [32]. Given a planar graph G of maximum degree 3, it is easy to check that G′ is planar,
has maximum degree 3, and is bipartite, since the edge gadget for edge e = {x, y} is bipartite, with x, y in
the same part. Now, Claims A and B applied to an optimal vertex cover and an optimal identifying code
show that γID(G′) = τ(G) + |E(G)|, completing the proof.

In fact, we can show that Reduction 25 applied to Min Vertex Cover for graphs of maximum degree 3
is an L-reduction.

Theorem 27. Reduction 25 applied to graphs of maximum degree 3 is an L-reduction with parameters α = 4
and β = 1. Therefore, Min Id Code is APX-complete, even for bipartite graphs of maximum degree 3.

Proof. Let G be a graph of maximum degree 3 and G′ the graph constructed from G using Reduction 25.
We have to prove Properties 1 and 2 from Definition 22.

First of all, by Claim A, given an optimal vertex cover N ∗ of G, we can construct an identifying code C
with γID(G′) ≤ |C| ≤ |N ∗|+|E(G)| = τ(G)+|E(G)|. Similarly, by Claim B, given an optimal identifying code
C∗ of G′, we can construct a vertex cover N of G such that τ(G) ≤ |N | ≤ |C∗| − |E(G)| = γID(G)− |E(G)|.
Hence we have:

γID(G′) = τ(G) + |E(G)|. (5)

Property 1. Since G has maximum degree 3, each vertex can cover at most three edges, hence we have

τ(G) ≥ |E(G)|
3 , so |E(G)| ≤ 3τ(G). Using Equality (5), we get:

γID(G′) = τ(G) + |E(G)| ≤ 4τ(G),

which proves Property 1 of Definition 22.

Property 2. Let C be an identifying code of G′. Using Claim B applied to C, we obtain a vertex cover
N with |N | ≤ |C| − |E(G)|. By Equality (5), we have −τ(G) = |E(G)| − γID(G′). So we obtain:

|N | − τ(G) ≤|C| − |E(G)|+ |E(G)| − γID(G′)

|τ(G)− |N || ≤|γID(G′)− |C||,
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which proves Property 2 of Definition 22.
For the second part of the statement, note that Min Vertex Cover is known to be APX-complete, even

for graphs of maximum degree 3 [19]. By construction and as observed in the proof of Theorem 26, the graphs
built from graphs with maximum degree 3 in Reduction 25 are bipartite and of maximum degree 3.

A similar, slightly more involved, reduction from Min Vertex Cover to Min Loc-Dom Set is as
follows:

Reduction 28 (Min Vertex Cover → Min Loc-Dom Set). Given a graph G, we construct the graph
G′ on vertex set

V (G′) = V (G) ∪ {qe, re, se, te, ue | e ∈ E(G)},

and edge set

E(G′) ={{x, re}, {y, se}, {re, te}, {te, se}, {ue, re}, {ue, se},
{qe, te}, {qe, ue} | e = {x, y} ∈ E(G)}.

The construction is illustrated in Figure 5.

x re
qe

se
y

te

ue

Figure 5: Reduction gadget for edge e = {x, y} in Reduction 28 from Min Vertex Cover to Min Loc-Dom Set. The original
vertices of G, x and y, are circled.

For the following claims, let G be a graph and G′, the graph obtained from G using Reduction 28.

Claim C. Let N be a vertex cover of G. Using N , one can build a locating-dominating set of G′ of size at
most |N |+ 2|E(G)|.

Proof. Once again, we assume that G has minimum degree 2.
First, let D = N . Then, for each edge e = {x, y} ∈ E(G), if x ∈ N , put vertices se, te into D. Otherwise,

put vertices re, te into D.
We can check that D is a locating-dominating set of G′. Recall that we need separation only for vertices

in V (G′) \ D. If an original vertex x of G does not belong to N , all its neighbours in G belong to N ; hence
x is dominated by two or three vertices from D of the form se, hence x is separated from every other vertex.
Moreover, for each edge e of G, vertices qe, re, se, ue are separated from all vertices of V (G′)\{qe, re, se, te, ue}
by either re, se or te; finally, it is easy to check that they are correctly separated from each other.

Claim D. Let D be a locating-dominating set of G′. For each e ∈ E(G), we have:

|D ∩ {qe, re, se, te, ue}| ≥ 2.

Proof. Note that N(te) = N(ue), hence one of them (say te) belongs to D. Now, ue needs to be dominated,
hence one of qe, re, se, ue, belong to D.

Claim E. Let D be a locating-dominating set of G′. For each e = {x, y} ∈ E(G), we have:

|D ∩ {x, y, qe, re, se, te, ue}| ≥ 3.
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Proof. By contradiction, suppose |D ∩ {x, y, qe, re, se, te, ue}| = 2. By the same argument as in the proof of
Claim D, we can assume te ∈ D, and |D ∩ {qe, re, se, ue}| = 1. We derive a contradiction for each case: if
qe or ue belong to D, re, se are not separated. If re ∈ D, qe, se are not separated. If se ∈ D, qe, re are not
separated.

Claim F. Let D be a locating-dominating set of G′. From D, we can build a locating-dominating set D′
with |D′| ≤ |D| such that for each e = {x, y} ∈ E(G), we have |D′ ∩ {qe, re, se, te, ue}| = 2.

Proof. Let e = {x, y} ∈ E(G). Assume that |D ∩ {qe, re, se, te, ue}| ≥ 3. By the same argument as in
the previous proofs, we may also assume that te ∈ D. If neither re nor se belongs to the solution, then
D ∩ {qe, re, se, te, ue} = {qe, te, ue}. Then, observe that D′ := D \ {ue} is still a locating-dominating set, as
ue is now the only vertex out of the solution dominated only by qe, and ue was not involved in the separation
of re, se, being their common neighbour. Now, either |D′ ∩{qe, re, se, te, ue}| = 2 and we are done, or one of
re, se belongs to D′ (say, re ∈ D′, the other case following by symmetry). We let D′′ := (D′\{qe, se, ue})∪{y}.
Now, vertices qe, se, ue are separated; the only problem could come from the separation of x and ue, however,
since we repeat the operation for each original edge e of G, in the end either x belongs to D′′, or all its
neighbours (at least two) do, and x, ue are separated.

Claim G. Let D be a locating-dominating set of G′. One can use D to build a vertex cover of G of size at
most |D| − 2|E(G)|.

Proof. Use Claim F to build code D′′ such that |D′′| ≤ |D| and for each e = {x, y} ∈ E(G), we have
|D′′ ∩ {qe, re, se, te, ue}| = 2. By this property and Claim E, we have |D′′ ∩ {x, y}| ≥ 1. Hence N =
D′′ \ {qe, re, se, te, ue | e ∈ E(G)} is a vertex cover of G with |N | ≤ |D′′| − 2|E(G)| ≤ |D| − 2|E(G)|.

We are now ready to prove the following:

Theorem 29. Reduction 28 applied to graphs of maximum degree 3 is an L-reduction with parameters α = 7
and β = 1. Therefore, Min Loc-Dom Set is APX-complete, even for bipartite graphs of maximum degree 3,
and Loc-Dom Set is NP-complete, even for planar bipartite graphs of maximum degree 3.

Proof. Once again, applying Reduction 28 to Vertex Cover for planar graphs of maximum degree 3,
Claims C and G show that:

γLD(G′) = τ(G) + 2|E(G)|, (6)

proving the NP-completeness part of the statement.
For showing that we have an L-reduction, let G be a graph of maximum degree 3 (and minimum

degree 2) and G′ the graph constructed from G using Reduction 28. We have to prove Properties 1 and 2
from Definition 22.

Property 1. Again, we have τ(G) ≥ |E(G)|
3 , so |E(G)| ≤ 3τ(G). Using Equality (6), we get:

γLD(G′) = τ(G) + 2|E(G)| ≤ 7τ(G),

which proves Property 1 of Definition 22.

Property 2. Let D be a locating-dominating set of G′. Using Claim G applied to D, we obtain a vertex
cover N with |N | ≤ |D| − 2|E(G)|. By Equality (6), we have −τ(G) = 2|E(G)| − γLD(G′). So we obtain:

|N | − τ(G) ≤|D| − 2|E(G)|+ 2|E(G)| − γLD(G′)

|τ(G)− |N || ≤|γLD(G′)− |D||,

which proves Property 2 of Definition 22.
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3.3. Reductions from Min Dominating Set

We now give another reduction, this times from Min Dominating Set to Min Id Code.

Reduction 30 (Min Dominating Set → Min Id Code). Given a graph G, we construct the graph G′

on vertex set
V (G′) = V (G) ∪ {ax, bx, cx, dx, ex | x ∈ V (G)},

and edge set

E(G′) = E(G) ∪ {{x, ax}, {x, ex}, {ax, bx}, {ax, cx}, {ax, dx}, {ex, bx}, {ex, cx}, {ex, dx} | x ∈ V (G)}.

The construction is illustrated in Figure 6.

x

ax

bx cx dx

ex

G

..
.

Figure 6: Reduction from Min Dominating Set to Min Id Code.

Even though Reduction 30 can be shown to be an L-reduction when applied to Min Dominating Set
for graphs of bounded maximum degree, we use it only as a classical reduction between decision problems,
as the reduction would not strengthen our previous non-approximability results.

Theorem 31. Id Code is NP-complete, even for chordal bipartite graphs.

Proof. We apply Reduction 30 to the class of chordal bipartite graphs, for which Dominating Set is known
to be NP-complete [48]. Given a chordal bipartite graph G, it is easy to check that the parts added to G to
construct G′ do not add any induced cycle of length more than 4. We now show that G has a dominating
set of size at most k if and only if G′ has an identifying code of size at most k + 3|V (G)|.

Sufficient side (⇒) Let D be a dominating set of size k. Consider the code C = D ∪ {{ax, bx, cx} | x ∈
V (G)}. One can easily check that each pair x, y of original vertices of G are separated by ax and ay, and
x is separated from ay, by, cy, dy by at least one of ay, by. For each original vertex x of G, since D is a
dominating set of G, x and dx are separated by the vertex of D that dominates x. Vertices ax, bx, cx, dx are
easily seen to be separated among themselves by one of ax, bx, cx, as well as ax, bx, cx are separated from x
by at least one of bx, cx.

Necessary side (⇐) Let C be an identifying code of G′ of size k+3|V (G)|. Observe that vertices bx, cx
and dx have the same open neighbourhoods, so |C ∩{bx, cx, dx}| ≥ 2. For the same reason, |C ∩{ax, ex}| ≥ 1.
Without loss of generality, we may assume that C ∩ {bx, cx, dx} = {bx, cx} and C ∩ {ax, ex} = {ax}. Now,
since C is an identifying code, x and ex are separated, that is, C ∩ (N [x]∪{dx} \ {ax, ex})) 6= ∅. We build D
as follows: first, D = C ∩ V (G). For each x such that x, dx are separated by dx in C, add x to D. It is easy
to observe that D is a dominating set, and by the first part of the proof, that |D| ≤ |C| − 3|V (G)| = k.

A similar reduction to Min Loc-Dom Set can be given:

Reduction 32 (Min Dominating Set → Min Loc-Dom Set). Given a graph G, we construct the graph
G′ on vertex set

V (G′) = V (G) ∪ {ax, bx, cx, dx | x ∈ V (G)},
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and edge set

E(G′) = E(G) ∪ {{x, ax}, {x, dx}, {ax, bx}, {ax, cx}, {dx, bx}, {dx, cx} | x ∈ V (G)}.

The construction is illustrated in Figure 7.

x

ax

bx cx

dx
G

..
.

Figure 7: Reduction from Min Dominating Set to Min Loc-Dom Set.

Again, similar arguments than for Reduction 30 apply to Reduction 32, leading to the following result:

Theorem 33. Loc-Dom Set is NP-complete, even for chordal bipartite graphs.

4. Further classes of graphs for which the complexities of Dominating Set, Id Code and Loc-
Dom Set differ

An interesting question is for which classes of graphs the complexities of the decision problems Domi-
nating Set, Id Code and Loc-Dom Set differ. We saw in Subsection 2.4 that for co-bipartite graphs, Id
Code and Loc-Dom Set are hard, but Dominating Set is trivially solvable in polynomial time.4 Such
a result was not known prior to the author’s PhD thesis [28], from which many results of this paper are
taken. In [28, 31], it was also proved that Id Code is NP-complete for the class of interval graphs, whereas
Dominating Set is linear-time solvable in that class [9].

In this section, we define a subclass of bipartite graphs for which the converse holds: Dominating Set is
NP-complete, but Id Code and Loc-Dom Set are solvable in polynomial time. We call these graphs SC1-
graphs (the name comes from the fact that the hardness of the considered problems is due to their similarity
to instances of Set Cover). We also define the similar class of SC2-graphs, for which, interestingly, the
complexities of Id Code and Loc-Dom Set differ. Such a class was not known to exist before this work.

Definition 34. A graph G is said to be an SC1-graph if it can be built from a bipartite graph with parts S
and T and an additional set S′ disjoint from S and T with |S′| = 5|S| such that:

• for each vertex x of S, there are two vertex-disjoint paths xaxbxcx and xdxex of length 3 and 2,
respectively, with ax, bx, cx, dx, ex ∈ S′ and no other edges from vertices of S′ than those of the two
paths, and

• each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least two ele-
ments.

An example of an SC1-graph is pictured in Figure 8.

4Recall that this class is included in the class of asteroidal triple-free graphs, which itself is a subclass of the class of
Dominating Shortest Path graphs, in which Dominating Set is still solvable in polynomial time [42].
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T S S′

Figure 8: Example of an SC1-graph.

Theorem 35. Let G be an SC1-graph built from a bipartite graph with parts S and T . Then γID(G) = 4|S|,
S ∪ {as, bs, ds | s ∈ S} is an optimal identifying code of G, and it can be computed in polynomial time.

Proof. Note that each vertex s of S necessarily belongs to any identifying code, since it is the only one
separating ds from es. Similarly, each vertex as with s ∈ S is the only one separating bs from cs. In order
to dominate cs and es, one of bs, cs and ds, es respectively, has to belong to any identifying code. Hence
γID(G) ≥ 4|S|.

Using the facts that each vertex of T is adjacent to at least two vertices of S and that all the neighbour-
hoods of vertices of T within S are distinct, it is easy to show that S ∪ {as, bs, ds | s ∈ S} is an identifying
code.

Finally, one can easily check in polynomial time whether a given graph is an SC1-graph; once this is
done, it is straightforward to compute the code S ∪ {as, bs, ds | s ∈ S}.

We have a similar statement for locating-dominating sets:

Theorem 36. Let G be an SC1-graph built from a bipartite graph with parts S and T . Then γLD(G) = 3|S|,
S ∪ {bs, ds | s ∈ S} is an optimal locating-dominating set of G, and it can be computed in polynomial time.

Proof. As in the proof of Theorem 35, for each s ∈ S, in order to dominate cs and es, one of bs, cs and ds, es
respectively, has to belong to any locating-dominating set. For any possible choice of vertex among bs, cs,
one additional vertex among s, as, bs, cs is needed (either to separate as from cs or to dominate bs). Hence
γID(G) ≥ 3|S|.

As in the proof of Theorem 35, it is easy to show that S ∪ {bs, ds | s ∈ S} is a locating-dominating set
and that it can be computed in polynomial time.

Theorem 37. Dominating Set is NP-complete for planar (bipartite) SC1-graphs of maximum degree 5.

Proof. We reduce Set Cover to Dominating Set for SC1-graphs. Let (I, A) be a hypergraph such that
each vertex of A has a distinct neighbourhood within I and at least two neighbours in I. For example,
one can take an instance of Vertex Cover for planar graphs of maximum degree 3, which is a special
case of Set Cover (where I is the set of edges of a simple graph; each set of A stands for a given vertex
and contains all edges incident to it), known to be NP-complete [32]. Let B(I, A) be the bipartite incidence
graph of (I, A), and build the SC1-graph G from B(I, A) with parts S = A and T = I. If (I, A) comes from
Vertex Cover for planar graphs of maximum degree 3, G is planar and has maximum degree 5. We claim
that (I, A) has a set cover of size k if and only if G has a dominating set of size k + 2|S|.

For the first part, let C ⊆ A be a set cover of (I, A). One can easily check that the set C ∪{bs, ds | s ∈ S}
is a dominating set of G.

For the converse, let D be a dominating set of G of size k + 2|S|. Since for each vertex s ∈ S, cs and
es need to be dominated, we have |D ∩ S′| ≥ 2|S|. In fact, we can assume that for each vertex s ∈ S,
|D ∩ S′| = {bs, ds}; then all vertices of S ∪ S′ are dominated by some vertex of D ∩ S′. We can also assume
that D∩T = ∅, since all vertices of S are dominated by some vertex of D∩S′: if a vertex t ∈ T belongs to D,
we can replace it by an arbitrary neighbour of t in S to get a dominating set D′ with |D′| ≤ |D|. Observe that
D′∩S has to dominate all the vertices of T , hence (I, A) has a set cover of size |D′∩S| ≤ |D|−2|S| = k.
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We now introduce the class of SC2-graphs.

Definition 38. A graph G is said to be an SC2-graph if it can be built from a bipartite graph with parts S
and T and an additional set S′ disjoint from S and T with |S′| = |S| such that:

• for each vertex x of S, there is a vertex lx ∈ S′ of degree 1 adjacent to x, and

• each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least two ele-
ments.

An example of an SC2-graph is pictured in Figure 9.

T S S′

Figure 9: Example of an SC2-graph.

In what follows, γ(G) denotes the size of a smallest dominating set of graph G.

Theorem 39. Let G be an SC2-graph built from a bipartite graph with parts S and T . Then γ(G) =
γLD(G) = |S|, S is an optimal (locating-)dominating set of G, and it can be computed in polynomial time.

Proof. Since for every x ∈ S, every vertex lx needs to be dominated, either x or lx belongs to any dominating
set of G. It is easily observed that S is a dominating set of G. Moreover, since by the definition of an SC2-
graph, each vertex of T has a distinct neighbourhood within S, and this neighbourhood has at least two
elements, all vertices of T and S′ are separated, hence S is also locating-dominating. Now, as for SC1-
graphs, one can easily check in polynomial time whether a given graph is an SC2-graph; once this is done,
it is straightforward to compute S.

Theorem 40. Id Code is NP-complete for planar (bipartite) SC2-graphs of maximum degree 3.

Proof. We observe that Reduction 25 from Subsection 3.2 yields planar SC2 graphs of maximum degree 3
when applied to Vertex Cover for planar graphs of maximum degree 3. Hence Theorem 27 shows the
claim.

5. Open problems

We note that the complexity for (Min) Id Code and (Min) Loc-Dom Set are open for several impor-
tant input graph classes, as shown in Tables 1 and 2. We believe that the reductions for Id Code in line
graphs [30] and interval graphs [28, 31] could be adapted for Loc-Dom Set. Regarding interval graphs,
the approximation complexity of Min Id Code (and Min Loc-Dom Set) is still an open question. It is
also of interest to determine the complexity of Id Code and Loc-Dom Set for permutation graphs (for
which Dominating Set is polynomial-time solvable [27]). Finally, we remark that Min Dominating Set
admits PTAS algorithms for planar graphs [5] and for unit disk graphs [38]. Does the same hold for Min
Id Code and Min Loc-Dom Set?
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Appendix A. Omitted proofs

Proof of Theorem 17. Sufficient side (⇒) Let D ⊆ A be a discriminating code of (I, A), |D| = k. We
define C(D) as follows:

C(D) = D ∪ {u} ∪ {kj , tj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}.

One can easily check that C(D) has size k + 2dlog2(|A| + 1)e + 1 and is a dominating set of Sp(I, A).
To see that it is also an identifying code of Sp(I, A), observe that each vertex of K is separated from each
vertex of S by u. Moreover vertex u is the only vertex that is dominated only by the vertices of C(D) from
K. All pairs of vertices of K are separated: each vertex ki is separated from each other vertex of K by
its private neighbour ti, and since D is a discriminating code of (I, A), each vertex of I is dominated by
a distinct and nonempty set of vertices of D. Finally, all pairs of vertices of S are separated: due to the
non-singleton bipartite logarithmic identification of A, each vertex of A is dominated by a distinct subset of
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vertices of {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e} that has size at least 2. Finally, each vertex si is the only vertex
dominated only by ki, and each vertex ti is the only vertex of S dominated by itself.

Necessary side (⇐) Let C be an identifying code of Sp(I, A) with |C| = k + 4dlog2(|A|+ 1)e+ 1. We
first “normalize” C by constructing an identifying code C∗ of Sp(I, A), |C∗| ≤ |C|, such that the two following
properties hold:

|C∗ ∩ (V (Sp(I, A)) \ (I ∪A))| = 4dlog2(|A|+ 1)e+ 1 (A.1)

|C∗ ∩ I| = ∅. (A.2)

To get Condition (A.1), we replace |C∩{V (Sp(I,A))\{I∪A}}| by {u}∪{kj , tj | 1 ≤ j ≤ 2dlog2(|A|+1)e}
to get code C′ (whose structure is similar to the one of the code constructed in the (⇒) part of the proof).
Observe that |C′| ≤ |C|. Indeed, we had |C ∩ {V (Sp(I, A)) \ {I ∪ A}}| ≥ 4dlog2(|A| + 1)e + 1. To see this,
note that for any j ∈ {1, . . . , 2dlog2(|A| + 1)e}, |C ∩ {kj , sj , tj}| ≥ 2. Indeed, N(sj) = N(tj); as they must
be separated by C, one of them, say sj , belongs to C. Bu tj must be dominated, hence one of kj and tj
belongs to C. Finally, v must be dominated, hence |C ∩ {u, v}| ≥ 1.

To fulfill Condition (A.2), we note that each vertex i ∈ I ∩ C′ can simply be removed from the code.
Assume for the sake of contradiction, that C′ \ {i} is not an identifying code. Note that i cannot be needed
for domination since all vertices of I are dominated (e.g. by u) and all vertices of A are dominated by some
vertex in {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}. Hence, i is needed for separation. Since K is a clique and contains
already many vertices of C′ (i.e. u and all vertices of {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}), i may only separate
two vertices of S (no vertex of S is adjacent to all the vertices of C′∩K, hence all vertices of S are separated
from all vertices of K). Actually, these two vertices have to both belong to A since no other vertex from S
can be adjacent to I. But all pairs in A are separated by some vertex in {kj | 1 ≤ j ≤ 2dlog2(|A|+ 1)e}, a
contradiction. Removing every i ∈ C′ ∩ I in this way, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof, one can easily
check that after these two modifications performed on code C, the obtained code C∗ is still an identifying
code.

By Condition (A.2), we have |C∗ ∩A| ≤ |C| − 4dlog2(|A|+ 1)e+ 1 = k.
To finish the proof, we claim that C∗ ∩ A is a discriminating code of (I, A). This is easy to observe, as

all pairs {I, I ′} of I are dominated and separated by C∗. By Condition (A.1), they must be separated by
some vertex of A. Hence C∗ ∩A is a discriminating code of (I, A).

Proof of Theorem 20. We first assume that a1 is the vertex adjacent to all vertices of A as given by the
construction of E (LOG(A,L)).

Sufficient side (⇒) Let D ⊆ A be a discriminating code of (I, A), |D| = k. Without loss of generality,
we assume that a1 is adjacent to some vertex of D. We define C(D) as follows:

C(D) = D ∪ {aj , bj , cj , dj , fj | 1 ≤ j ≤ dlog2(|A|+ 1)e} \ {b1, f1}.

One can easily check that C(D) has size k+5dlog2(|A|+1)e−2 and is a dominating set of G(I, A). Let us
show that it is also an identifying code of G(I, A). First of all, due to the bipartite logarithmic identification
of A over (A, {aj | 1 ≤ j ≤ dlog2(|A|+1)e}), each vertex of A is dominated by a distinct subset of vertices of
{aj | 1 ≤ j ≤ dlog2(|A|+1)e}; note that any other vertex (except e1, which however is not dominated by any
vertex ai) is dominated by some vertex bi. Hence each vertex of A is separated from all other vertices. Next,
each vertex of I is dominated by a distinct nonempty subset of D since D is a discriminating code of (I, A).
Within V (G) \ (A∪ I), only vertices of the form ai may be dominated by vertices of D; however each vertex
ai is separated from any vertex of I by di. It remains to check that vertices of the form ai, bi, ci, di, ei, fi are
separated from each other. For any i, j (possibly i = j), any vertex among {ai, bi, ci} is separated from any
vertex of {dj , ej , fj} by the set {ak | 1 ≤ k ≤ dlog2(|A|+ 1)e}. Similarly, for i 6= j, any vertex of {ai, bi, ci}
is separated from any vertex of {aj , bj , cj} by either di, dj , fi or fj (noticing that each vertex ci except c1 is
dominated by fi). Again, for i 6= j, di, ei, fi are separated from dj , ej , fj by at least one of ci, cj (noticing
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that each vertex among {di, ei, fi} is dominated by bi, except when i = 1). For any i, it remains to check
the separation of any pair within {ai, bi, ci} and within {ai, bi, ci}. If i 6= 1, observe that ai is dominated by
di, bi is dominated by both di, fi, and ci is dominated by fi. Furthermore, a1, b1 and a1, c1 are separated
by some vertex of D that is adjacent to a1 (we assumed that it exists); b1, c1 are separated by d1. Finally
for any i, di is separated from both ei, fi by ai; ei and fi are separated by ci.

Necessary side (⇐) Let C be an identifying code of G(I,A), |C| = k + 5dlog2(|A| + 1)e − 2. We first
“normalize” C by constructing an identifying code C∗ of G(I, A), |C∗| ≤ |C|, such that the two following
properties hold:

|C∗ ∩ {V (G(I, A)) \ {I ∪A}}| = 5dlog2(|A|+ 1)e − 2 (A.3)

|C∗ ∩ I| = ∅. (A.4)

To get Condition (A.3), we first replace |C ∩ {V (G(I, A)) \ {I ∪ A}}| by {aj , bj , cj , dj , fj | 1 ≤ j ≤
dlog2(|A| + 1)e} \ {b1, f1} to get code C′ (whose structure is similar to the one of the code constructed
in the (⇒) part of the proof). Observe that |C′| ≤ |C|. Indeed, we had |C ∩ {V (G(I, A)) \ {I ∪ A}}| ≥
5dlog2(|A| + 1)e − 2. To see this, note that for any j ∈ {1, . . . , log2(|A| + 1)}, vertices aj , cj are forced by
{dj , ej} and {ej , fj}, respectively, and |C ∩ {dj , ej}| ≥ 1 since C must separate bj from cj . Finally, consider
the two sets F = {fj | j ∈ {1, . . . , log2(|A|+ 1)}} and B = {bj | j ∈ {1, . . . , log2(|A|+ 1)}}. Finally, observe
that at least |F |−1 vertices of F (|B|−1 vertices and of B, respectively) do not need to belong to C. Indeed,
for any pair ci, cj of vertices with i 6= j and 1 ≤ i, j ≤ dlog2(|A| + 1)e (ei, ej , respectively), either fi or fj
(bi or bj , respectively) must belong to C.

To fulfill Condition (A.4), we replace each vertex i ∈ I∩C′ by some vertex in A. If C′\{i} is an identifying
code, we may just remove i from the code. Otherwise, note that i is not needed for domination since all
vertices of K1 ∪ A are dominated by a1. Hence, i separates i itself from some other vertex i′ in I (indeed,
one can check that all other types of pairs which could be separated by i are actually already separated by
some vertex of C′ ∩ (V (G(I, A)) \ I). But then, the pair {i, i′} is unique (suppose i separates i itself from
two distinct vertices i′ and i′′ of I, then i′ and i′′ would not be separated by C′, a contradiction). Since
(I, A) admits a discriminating code, there must be some vertex a of A separating i from some i′. Hence we
replace i by a. Doing this for every i ∈ C′ ∩ I, we get code C∗, and |C∗| ≤ |C′| ≤ |C|.

Using the previous observations and by similar arguments as in in the (⇒) part of the proof, one can easily
check that after these two modifications performed on code C, the obtained code C∗ is still an identifying
code.

By Condition (A.4), we have |C∗ ∩A| ≤ |C| − 5dlog2(|A|+ 1)e+ 2 = k. To complete the proof, we claim
that C∗ ∩A is a discriminating code of (I, A). This is easy to observe, as all pairs {I, I ′} of I are separated
by C∗. By Condition (A.3), they must be separated by some vertex of A. Hence C∗ ∩A is a discriminating
code of (I, A).
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