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Miscellaneous works
by Francesco dell’Isola (2010-2013)

Abstract

In this document are gathered: i) all the reviews authored by Francesco
dell’Tsola appeared in Mathematical Reviews (MathSciNet) in the period 2010-
2013 and ii) his three laudationes in honor of Professor Del Piero and Professor
Di Carlo.

Review of paper: Iovane G., Nasedkin A.V. Modal analysis of
piezoelectric bodies with voids. I. Mathematical approaches. Appl.
Math. Model. 34 (2010), no. 1, 60-71

The paper starts by considering a particular case of the equations for piezo-
electric bodies with voids quoted in [M. Ciarletta and E. Scarpetta, Mech. Res.
Comm. 23 (1996), no. 1, 1-10]. The sense of physical assumptions adopted by
the authors is not clear: for example, no explanation is given for the missing
terms in the constitutive equations used. Similarly, boundary conditions are
introduced without specifying if they were originally deduced (in [op. cit.] or
elsewhere) using a variational principle. Subsequently, in Section 3, the eigen-
value problem presented in Section 2 is formulated in a variational form. Proofs
of Theorems 3.1 and 3.2 are not presented since they “completely repeat well-
known proofs” available in [S. G. Mikhlin, Variational methods in mathematical
physics, Translated by T. Boddington, Macmillan, NewYork, 1964]. After a
technical Section 4, where the results in [A. V. Belokon’ and A. V. Nasedkin,
Prikl. Mat. Mekh. 60 (1996), no. 1, 151-158] are invoked, in Section 5 some re-
lationships between eigenfrequencies of the eigenproblems considered are found.
The paper concludes with a few considerations of a physical nature.

Review of paper: Sobh Ayman Mahmoud. Heat transfer in a slip
flow of peristaltic transport of a magneto-Newtonian fluid through a
porous medium. Int. J. Biomath. 2 (2009), no. 3, 299-309

From the text: “We study the interaction of peristalsis with heat transfer for
the flow of a viscous fluid through a porous medium in uniform and non-uniform
channels. The flow is subjected to a constant transverse magnetic field.

“No investigation has been made yet to analyze the peristaltic flow with heat
transfer through a porous medium when the no-slip condition is inadequate.”



The paper presents some closed-form solutions for well-known evolution
equations when no-slip boundary conditions are imposed. Biomechanical im-
plications of the results found are not discussed.

Review of paper: Podio-Guidugli Paolo, Vianello Maurizio. Hy-
pertractions and hyperstresses convey the same mechanical informa-
tion. Contin. Mech. Thermodyn. 22 (2010), no. 3, 163-176

This article contains a description of the theory of second gradient continua,
a theory which is attracting increasing interest. This is accounted for by the
large number of researchers who are using it for modelling a variety of phenom-
ena ranging from capillarity or phase transition, to plasticity or flow in porous
media. The final recognition of the importance of P. Germain’s paper [J. Mé-
canique 12 (1973), 235-274] — which concludes and systematizes the works by
R. A. Toupin [Arch. Rational Mech. Anal. 17 (1964), 85-112], R. D. Mindlin
[Internat. J. Solids Structures 1 (1965), no. 4, 417-438] and P. Casal [C. R.
Acad. Sci. Paris Sér. A 274 (1972)] — fully justifies its revival. However, such a
revival should add some new results to the theory, either clarifying the underly-
ing physical phenomenology or somehow developing the mathematics used. This
is not the case in the paper under review: indeed in it, (i) while Paul Germain
paid careful attention to introducing a physically meaningful nomenclature for
designating the different types of contact actions, here they are all mixed up in
a less meaningful "hyper-" designation; (ii) the classification of second gradient
materials which do not exert contact edge forces and boundary conditions to
be assigned in the framework of second gradient continuum models is claimed
to be novel, while instead it has been well known for a long time [see, e.g., F.
dell’Tsola and P. Seppecher, Meccanica 32 (1997), no. 1, 33-52]; and (iii) in-
stead of using the most suitable, complete and original (multi-index) version of
Levi-Civita absolute calculus, the authors try to use a less suitable index-free
notation which is well adapted only in contexts where only second-order tensors
suffice. In addition, the validity of the Principle of Virtual Powers, not only for
the whole continuous body considered but also for all its subbodies, is already
explicitly postulated in the work of E. Cosserat and F. Cosserat [Théorie des
corps déformables, Hermann, Paris, 1909]. There is no reason for the authors to
refer to a strengthened or generalized version of the Principle of Virtual Pow-
ers (or Virtual Works) since a word-for-word statement of it can be found, for
instance, in the textbook [Mécanique des milieux continus. II, Ellipses, Paris,
1988] of J. Salengon at the Ecole Polytechnique (Paris Tech). On the other
hand, the claim that, in the literature, there is no available treatment of sec-
ond gradient continuum mechanics "a la Cauchy” (i.e., an approach which is
starting from the concept of contact actions and is able to deduce the general
form of internal powers with a "tetrahedron” argument) is not accurate: such
a result has been obtained by dell’Isola and Seppecher [op. cit.], as recognized
for instance by G. A. Maugin in his review of that paper, or by S. Forest et al.
[Mécanique des milieux continus, Ecole des mines, Paris, 2005-2006; per revr.].



Review of paper: Madeo A., Gavrilyuk S. Propagation of acoustic

waves in porous media and their reflection and transmission at a

pure-fluid /porous-medium permeable interface. Eur. J. Mech. A
Solids 29 (2010), no.5, 897-910

In this paper the set of balance equations proposed by M. A. Biot [J. Acoust.
Soc. Amer. 28 (1956), 168-178; J. Acoust. Soc. Amer. 28 (1956), 179-191]
and Coussy [O. Coussy and T. Bourbie, Rev. Inst. Fr. Pétrole 39 (1984), no.
1, 47-66; O. Coussy, Poromechanics, Wiley, Chichester, 2004] to model solid
deformation and fluid flow in porous media is particularized to get the PDEs
governing one-dimensional, quasi-linear compression wave propagation. In the
spirit of K. O. Friedrichs and P. D. Lax [Proc. Nat. Acad. Sci. U.S.A. 68
(1971), 1686-1688], S. K. Godunov and E. I. Romenskii [Elements of contin-
uum mechanics and conservation laws, translated from the 1998 Russian edi-
tion by Tamara Rozhkovskaya, Kluwer /Plenum, New York, 2003] and A. Jeffrey
[Quasilinear hyperbolic systems and waves, Pitman Publishing, London, 1976],
a sufficient condition for hyperbolicity is proven for considered one-dimensional
PDEs in terms of the Hessian matrix of the Eulerian deformation energy density,
and a range is determined for fluid and solid velocities corresponding to which
wave propagation necessarily occurs. This result is of relevance in those appli-
cations where a small periodic perturbation is superimposed onto a stationary
fluid flow, as e.g. in geotechnical and petrol engineering. Once the linearized
equations for these perturbations are formulated, the problem of wave reflec-
tion and transmission at a discontinuity surface between a pure fluid phase and
a porous fluid saturated solid matrix is addressed. To get transmission and
reflection coefficients, the bulk and surface balances of mechanical energy are
deduced from considered equations and boundary conditions. A novel expres-
sion for these coefficients in terms of the eigenvalues and eigenvectors of the
matrices of the coefficients in the governing system of linear PDEs and its ju-
dicious non-dimensional formulation allows the authors to reveal a threshold
phenomenon: the set of Biot elasticity coeflicients can be partitioned into two
subsets, in which the greatest amount of wave energy is transported by “fast”
Biot wave and by the “slow” Biot wave, respectively. The theoretical results
presented seem to give a promising foundation of an efficient indirect method
for experimental determination of the Biot coefficients.

Review of paper: Whittaker Robert J., Heil Matthias, Jensen
Oliver E., Waters Sarah L. A rational derivation of a tube law from
shell theory. Quart. J. Mech. Appl. Math. 63 (2010), no.4, 465-496

This is an interesting paper in which the authors seek to deduce a “tube law”,
i.e., a relationship between transmural pressure and all relevant geometric and



mechanical parameters of an elastic tube in which a fluid flow occurs. Indeed,
when studying fluid flow in a deformable tube one may use a 1D model based on
the conservation of mass and on Poiseuille’s law (or another friction model) in
which the three unknowns are the fluid flow velocity, the internal pressure and
the tube area A. Therefore, “A third equation, commonly known as a ‘tube law’,
is required to capture the wall mechanics in order to link A with the internal
pressure and thus close the system.”

It is clear that more refined theories could be used to describe the phenomena
considered. In the paper under review the authors state that “we formally derive
a tube law from shell theory that is valid for small-amplitude long-wavelength
deformations of a thin-walled elliptical tube and incorporates the leading-order
effects of azimuthal bending and axial curvature”. The analysis performed and
the results obtained are sound and correct. The authors are entitled to claim
that “our systematic approach also shows which terms must be neglected to
arrive at the simple tube law and thus provides a means of understanding the
regime in which such a tube law will hold together with estimates of the likely
errors for a given set of parameter values. Within the region of validity, the tube
law enables us to capture the predictions of shell theory in a remarkably simple
form”.

Indeed, the investigation presented supplies the needed criteria for estab-
lishing the range of validity of the aforementioned 1D model and for requiring
when, instead, the more detailed theory of shells needs to be used. The tube law
is deduced by means of a pseudo-spectral method based on a Fourier expansion
of the solutions of the field equations obtained by means of shell theory. Subse-
quently, the theoretical tube law is used to derive solutions for two simple cases
(uniform and linearly varying transmural pressure applied to a finite-length tube
with rigid supports), and its predictions are compared with some numerical sim-
ulations based on shell theory. The results presented will most likely originate
some interesting mathematical investigations, from the proof of asymptotic con-
vergence of the solutions arising when using shell theory to the solutions of the
1D problem which includes the tube law. To comment on the relevance of results
presented in the applications one can agree with the authors when they state:
“The tube law [which we obtain] has a form that has commonly been used in
previous work, but our derivation allows the calculation of the coefficients and
also provides further insight into when the law might break down and how it
could be refined further.”

Review of paper: Sharma M.D. Piezoelectric effect on the velocities
of waves in an anisotropic piezo-poroelastic medium. Proc. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010), no. 2119,
1977-1992. 1471-2946

In this paper the model introduced by Biot for the motion of a fluid in a
porous deformable matrix is completed by means of electrostatics equations for



electric displacement and coupled piezoelectric constitutive equations. Indeed,
the author assumes that two different electric (macroscopic) displacements can
be defined for the fluid and solid constituent, and postulates that these two
displacements are separately divergence free (electrostatics assumption). These
assumptions may be questioned from a physical point of view, as they strongly
“uncouple” the electric potential in the fluid component from the electric poten-
tial in the solid component: it could be very important to establish when they
are applicable. Subsequently the author attacks the huge amount of algebraic
calculations needed to study plane wave propagation in the framework of the
considered model. In section 5 the author claims the following: “Due to the non-
availability of real data, a hypothetical numerical model is chosen to explain the
variations of velocities. Numerical results from such a particular model may not
carry any quantitative significance and hence cannot be generalized. However,
a qualitative analysis of these results may certainly be useful in understanding
the wave-induced piezoelectric character of composite materials.” It is a pity
that the author does not try to get, from his analytical results and numerical
simulations, a method for establishing a measurement procedure to determine
at least some of the constitutive parameters introduced in the considered model:
in a sense all numerical models are “hypothetical” and need to be used to find
the values of introduced constitutive coefficients for each particular material.
Later the author claims, “The APP medium being a two-phase medium, the
separation of piezoelectric effect due to each of its constituents may be inter-
esting. To explore the piezoelectric response of the solid frame and pore-fluid,
the variations of the phase velocities and ray velocities with phase direction are
presented.” The following analysis is rather interesting and precise; however, the
author should underline clearly that the aforementioned “uncoupling” assump-
tion greatly influences the separation of piezoelectric effect occurring in each
constituent. The results and conclusions seem correct and are interesting; par-
ticularly remarkable are the comments about the influence of the fluid density
or piezoelectric activeness on wave velocity.

Review of paper: Golden J.M. Phase transitions in materials with
thermal memory: the case of unequal conductivities. Phys. D. 238
(2009). no. 4, 428-448

The paper addresses an interesting problem: to introduce at the interfacial
zone between different phases Cattaneo delay in heat flux constitutive equations.
The author refrains from citing the enormous number of papers dedicated to
the modelling of interfacial zones and limits himself to [J. M. Golden, Phys.
D 237 (2008), no. 19, 2499-2516; E. Fried and M. E. Gurtin, Phys. D 68
(1993), no. 3-4, 326-343; Phys. D 91 (1996), no. 1-2, 143-181], which do not
completely represent the whole set of results already available. The name of C.
Cattaneo [Atti Sem. Mat. Fis. Univ. Modena 3 (1949), 83-101] is not even
cited. Concerning the literature about continuum modelling of interfacial zones



we refer, e.g., to [T. Alts and K. Hutter, J. Non-Equilib. Thermodyn. 13 (1988),
no. 3, 221-280; J. Non-Equilib. Thermodyn. 13 (1988), no. 4, 301-329; J. Non-
Equilib. Thermodyn. 14 (1989), no. 1, 1-22; F. dell’Isola and W. Kosinski,
Arch. Mech. (Arch. Mech. Stos.) 45 (1993), no. 3, 333-359; P. Seppecher,
Ann. Phys. 13 (1988), 13-22; per revr.; R. Gatignol and P. Seppecher, J.Méc.
Théor. Appl. (1986), suppl., 225-247; |, and to all references there cited. In
the present paper, although not clearly stated, one can find some results which
may be of interest: from the abstract, “these involve the jump in temperature
across the transition zone and the normal derivatives of the temperature on
each phase boundary, which are related to the velocity of the transition zone
and a latent heat dependent on this velocity, as well as the speeds of thermal
disturbances in the two phases”. However, the author refrains from using a
unique constitutive equation for both phases, as he does not introduce second
gradient models: instead, he rather artificially introduces an “order parameter”
which delineates the interfacial zone. The physical and mathematical basis for
such an approach may be considered controversial [see, e.g., G. Bouchitté, C.
Dubs and P. Seppecher, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996),
no. 9, 1103-1108]. The asymptotics and “averaging along the thickness” in the
interfacial zone proposed by the author need to be completed to lead to some
more applicable results.
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Review of paper: Budaev Bair V., Bogy David B. A self-consistent
acoustics model of interface thermal resistance. SIAM J. Appl.
Math. 70 (2009/10), no. 5, 1691-1710

This paper shows that “heat-carrying acoustic waves must obey the intro-
duced principle of heat radiation instead of the Sommerfeld radiation condition
used in acoustics”. The analysis developed allows the authors to “derive an
equation of compatibility that connects the heat flux and the temperature on
both sides of the interface”. The presentation is limited to the study of one-
dimensional wave propagation. However, one may agree with the authors when
they state that: “Our model of heat conductance by acoustic waves is frequency
dependent, and it can be used to analyze conductance by acoustic waves of any
frequency band.” [. . . ] “It also explains why the interface thermal resistance
between sharply contrasting materials is better approximated by the diffuse
mismatch model than by the conventional acoustic mismatch model.” Moreover
the thermal resistance computed by means of the model presented “appears to
be in line with expectations”. The promising results presented show that the
three-dimensional analysis must be attempted. Indeed, the authors state that
“Although the one-dimensional model cannot be directly compared with exper-
imental data, it is nevertheless remarkable that the conventional acoustic model
overestimates the measured thermal resistance in approximately the same ratio
as it overestimates the resistance Rj computed by our model.” The promised
separate paper focused on three-dimensional problems may represent remark-
able progress in the field.
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Review of paper: Ammari Kais and Nicaise Serge. Stabilization

of a piezoelectric system", Asymptot. Anal. 73 (2011), no.3, 125-146.

Summary: “We consider a stabilization problem for a piezoelectric system.
We prove an exponential stability result under some Lions geometric condition.

Our

method is based on an identity with multipliers that allows to show an

appropriate observability estimate.”
The reviewer could not find explicitly stated in the paper which stabiliza-

tion

(stabilization is the act of stabilizing something or making it more stable,



obviously here in a mathematical sense) problem for the considered piezoelec-
tric system is solved by the authors. Indeed more generally in the whole paper
the reader does not find any discussion about the problems solved and their
importance in the applications. The function @ introduced in Equation (1.7)
probably is relevant in this context as one may deduce from the sentences which
can be read at the end of page 127 and the beginning of page 128. The reader is
also left without any suggestion about the meaning and relevance of the bound-
ary conditions introduced in Equations (1.7.5) and (1.7.6). Moreover, have these
boundary conditions already been studied and justified elsewhere? What is their
possible physical meaning? Are they considered by other authors as sources of
mathematical problems? Can the function @ be chosen to stabilize the consid-
ered physical system? How should one eventually interpret this choice? The
results presented in section 2 prove that the boundary value problem formulated
in section 1 is well-posed for a large class of functions (). The arguments used
seem to be correct: however, the authors do not underline where their proof
confronts a serious difficulty or departs from those results already obtained in
the literature which they so often cite in their presentation. In section 3 the
authors choose a particular subset of the set of functions () considered in section
2 and prove an exponential stability result. Although remarks 3.2 and 3.4 are
somewhat obscure, the arguments presented in this section seem to be correct.
The paper ends without a conclusion section: the authors perhaps should have
shown explicitly the most delicate parts of their reasoning, and underlined where
they are novel and why they are relevant for applications.
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Review of paper: Noll Walter, Seguin Brian. Basic concepts of
thermomechanics. J. Elasticity 101 (2010), no.2, 121-151. 1573-2681

This work is written to be a “blueprint” for a possible textbook on continuum
thermomechanics.

In the Introduction the authors claim that their proposed textbook would
differ from most existing textbooks because of some features which are listed in
the Introduction. We start by quoting these features with some comments.

“(1) Tt uses the mathematical infrastructure based on sets, mappings, and
families, rather than the infrastructure based on variables, constants, and pa-
rameters. (2) It is completely coordinate-free and R™-free when dealing with
basic concepts.”

The need to “embed” the physical theories into a “set theoretic” framework
has been a continual guiding idea for the authors. However, it is not clear
why the sets one needs for developing thermodynamics and mechanics cannot
be assumed—from the very beginning—to be subsets of the set of the n-tuples
of real numbers or subsets of some suitable set of real-valued functions of real
variables. Is the formalism introduced by the authors really needed to describe
the complexity of some phenomena? The Appendix of the paper is a simple
reproduction of some pages of a standard (modern) textbook in mathematical
analysis or linear algebra: it is pervaded by a form of “Bourbakism” which in
the reviewer’s opinion is not useful in the present context. It is not clear why
it is desirable to have a formal foundation of mechanics which is absolutely
“coordinate-free” or “R"-free”: there are aspects of this foundation in
which one encounters fewer difficulties when using n-tuples of numbers.

“(3) It does not use a fixed physical space. Rather, it employs an infinite
variety of frames of reference, each of which is a Fuclidean space. The motivation
for avoiding physical space can be found in Part 1, entitled ‘On the illusion of
physical space’, of the booklet [W. Noll, Five contributions to natural philosophy,
2004, available at www.math.cmu.edu/ ~wnOg/noll]. Here, the basic laws are
formulated without the use of a physical space or any external frame of reference.
(4) Tt considers inertia as only one of many external forces and does not confine
itself to using only inertial frames of reference. Hence kinetic energy, which is
a potential for inertial forces, does not appear separately in the energy balance
equation.”

In classical mechanics the axiomatics of space and time can be founded
equivalently on (i) the assumption of the existence of a “physical space” or on
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(ii) suitable invariance requirements for changes of coordinate systems. The
reader interested in a clear and exhaustive treatment on this point may refer to
the textbook which is the masterpiece in the field, V. I. Arnol’d’s Mathemati-
cal methods of classical mechanics [(Russian), Izdat. “Nauka”, Moscow, 1974;
translated from the Russian by K. Vogtmann and A. Weinstein, Springer, New
York, 1978]. The point of view assumed in the paper under review reproduces
nearly exactly, but with more formalistic complications, the clear presentation
found there.

The footnote at the beginning of Section 2 is rather surprising: the observa-
tions there contained inspired Euler, d’Alembert, Lagrange, Maxwell and many
others.

The content of Section 2 comes exactly from [W. Noll, Arch. Rational Mech.
Anal. 52 (1973), 62-92] and [W. Noll and B. Seguin, Int. J. Pure Appl. Math.
37 (2007), no. 2, 187-202] and presents some rephrasing of well-known results
from set theory, including De Morgan formulas.

Section 3 presents in a Bourbakistic way results which are presented in every
textbook of mechanics: the formalism used was first presented in several papers
by Noll.

In Section 4, after recalling the definitions introduced in [W. Noll and E. G.
Virga, Arch. Rational Mech. Anal. 102 (1988), no. 1, 1-21], the authors also
formulate some results about isometries. In a different language these results
are exactly those one can find, e.g., in the cited textbook by Arnol’d. Then the
authors introduce the set of configurations and transplacement for a continuous
body in a very formal way: however, exactly as it is accepted generally, configu-
rations and transplacement are finally specified by means of two times continu-
ously differentiable invertible functions (diffeomorphisms) defined in subsets of
R? and taking values in subsets of R?. The general impression is that the au-
thors want to spell out exactly some concepts which are considered implicitly in
every standard presentation of continuum mechanics. Subsequently the authors
recognize, as is done more or less explicitly in any textbook, that a continuous
body is a Riemannian submanifold of a three-dimensional Euclidean space and
formalize—as is usually done—the concept of “infinitesimal body element” and
its deformation. Finally, they introduce the concept of subbody. Some results,
which rephrase well-known results from set theory, are again reconsidered, to
recognize that the abstract concept of subbody which the authors prefer to use
actually reduces to the one which is usually accepted. The authors repeat that
all these proofs are highly nontrivial. This statement is correct, as these results
are the basis of the modern Theory of Sets, and can be found in any textbook
of this theory.

Section 5 is a section in which the authors want to explicitly declare that
in the past the first of them introduced a notation which could be considered
misleading. More results about isometries, which are more clearly presented,
e.g., in [V. I. Arnol’d, op. cit.], are recalled: the authors implicitly use the
most important property of Euclidean three-dimensional spaces, i.e. that they
are isomorphic to R3. This property makes understandable and logically correct
both Sections 4 and 5 and in particular the crucial definition preceding equation
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(4.3). On the other hand the existence of these isometries is accepted and used
right away in many textbooks (for instance in Arnol’d’s) so obtaining a great
economy of thought: on the contrary the notations used by the authors— instead
of being helpful—become cumbersome and distracting. Indeed, one should never
forget the crucial role in differential geometry played by charts.

Section 6 is a simple rephrasing of a part of the set-theoretic introduction in
a textbook of mathematical analysis while Section 7 starts with the fundamen-
tal distinction between spatial and material fields, formulated, this time, with
a notation which is only slightly more complicated than the usual one. How-
ever, when introducing motions, velocity fields and spatial velocity gradients the
notation becomes once more very difficult for somebody who has not already
understood the presented concepts.

Section 8 starts by rephrasing standard definitions and results from real
analysis. Then the concept of “contactors” appears: it is simply a very formal
way to talk about Cauchy-type contact interactions. Theorems 4, 5 and 6 are
trivial consequences of important results from Lebesgue’s Theory of Measure.
Protocontractors are discussed in a remark which ignores all investigations about
generalized continua which are accounted for, e.g., in [G. A. Maugin and A. V.
Metrikine (eds.), Mechanics of generalized continua, Adv. Mech. Math., 21,
Springer, New York, 2010].

Also, Sections 9 and 10 ignore all literature referred to in [G. A. Maugin
and A. V. Metrikine, op. cit.] and consist in the formalistic presentation of
the balance of forces and torques in Lagrangian and Eulerian description. It
actually reduces to the one presented in all textbooks, once the complex nota-
tion is decrypted. A citation of a famous statement by Archimedes about levers
appears here. The reviewer disagrees with the authors: as it has been clearly
proven by L. Russo [The forgotten revolution, translated from the 1996 Italian
original by Silvio Levy, Springer, Berlin, 2004], Archimedes had a deep under-
standing of the mathematical structure of mechanics, and he mastered perfectly
the principle of virtual work. Deformation processes and mechanical processes
are then considered and the very particular form of balance of powers valid for
Cauchy continua is obtained.

In Section 11 (which the reviewer found very difficult to understand) and
Section 12 the balance of energy and entropy is presented in a form which is valid
only for Cauchy continua. One has to remark that when considering generalized
continua the methodology presented here needs to be completely changed [see,
e.g., P. Germain, J. Mécanique 12 (1973), 235-274; SIAM J. Appl. Math. 25
(1973), no. 3, 556-575; A. E. Green and R. S. Rivlin, Arch. Rational Mech.
Anal. 17 (1964), 113-147; Arch. Rational Mech. Anal. 16 (1964), 325-353].
It is questionable whether in a textbook of the type conceived by the authors
such a limitation should be accepted.

In Section 13, entitled “Constitutive laws and the second law of thermody-
namics”, the authors only formulate the statement (due to Coleman and Noll)
about the nature of the constitutive equations which can be considered compat-
ible with the second principle of thermodynamics. All relevant and important
difficulties and results regarding this statement are not mentioned: therefore
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we do not know how the authors would present them to the reader of their
textbook.

In Section 14 the principle of material frame indifference and the following
surprising statement can be found: “In the literature on continuum mechanics
it is often implicitly assumed that the frame of reference being used is inertial so
the formula (14.6) is valid. However, when the frame of reference is not inertial
then (14.6) is not valid and the concept of kinetic energy is not useful.”

In the reviewer’s opinion the textbook planned by the authors would be very
mathematically complicated and formal; however, its scope would be rather
limited, as the presented theoretical frame is not able to encompass generalized
continua, the importance of which is generally accepted in the literature.
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Review of paper: Amendola Giovambattista, Fabrizio Mauro,
Golden Murrough.Thermodynamics of a non-simple heat conductor
with memory. Quart. Appl. Math. 69 (2011), no. 4, 787-806.
1522-4485

The paper under review deals with the problem of generalizing Cattaneo’s
heat flux constitutive law [C. Cattaneo, Atti Sem. Mat. Fis. Univ. Modena 3
(1949), 83-101].

Actually, as stated by the authors in the Introduction: “We consider a new
constitutive equation with memory for the heat flux, which includes not only
the effects of the history of the temperature gradient g, but also the history of
V - Vg.” For what concerns the physical motivation of the generalization con-
sidered the authors refer to [R. A. Guyer and J. A. Krumhansl, Phys. Rev.
148 (1966), no. 2, 766-778], where by using kinetic theory a generalization of
Cattaneo and Maxwell’s equation containing new higher spatial gradient terms
was obtained. The introduction continues by stating, “This choice yields a
non-simple material, for which the classical Second Law of Thermodynamics,
expressed by the Clausius-Duhem inequality, must be modified by means of a
different definition of internal entropy power or by considering the presence of an
extra flux.” The need to introduce an “ad hoc” extra flux, whose physical mean-
ing remains obscure, is peculiar to those approaches—such as the one chosen
by the authors—which refrain from the use of a variational formalism. Actually
this formalism can be used also in the context of heat flux phenomena: see, e.g.,
[B. D. Vujanovi¢ and S. E. Jones, Variational methods in nonconservative phe-
nomena, Math. Sci. Engrg., 182, Academic Press, Boston, MA, 1989] (and the
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references in its Chapter 5), where the heat equations resulting from Cattaneo’s
constitutive law were obtained from a variational principle. The authors accept
without comment the inequality (3.1) and introduce the “ad hoc” relation (4.8)
relating the extra flux to the already introduced constitutive equations for heat
flux without any physical or logical justification. The sentence on page 793,
“The inequality (4.9); is equivalent to the representation (4.11) by virtue of an
extra flux ®(¢), which for a local material is zero, while for non-local systems
depends on the material”, does not clarify the point of view of the authors
concerning this crucial issue. In the reviewer’s opinion the authors assume an
attitude very similar to the one shown in [J. E. Dunn and J. B. Serrin Jr.,
Arch. Rational Mech. Anal. 88 (1985), no. 2, 95-133|, where instead of using
a correct form of the Principle of Virtual Works, suitable for second gradient
materials, the authors also prefer to introduce an “ad hoc” extra flux without
any physical or logical justification, except the cogent need of writing an en-
tropy inequality which could allow for the dependence of deformation energy on
strain gradients. Sections 4 and 5 of the paper under review are an interesting
effort to overcome the difficulties discussed, an effort which surely will deserve
attention.

A final remark is needed here: The authors do not indicate which kind of
boundary conditions are physically meaningful and mathematically consistent
with the bulk equations which result from their constitutive assumptions. This
is not surprising as—without the guide of a variational principle—this issue
becomes a very difficult challenge.
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Review of paper: Groves M.D., Wahlén E. On the existence and
conditional energetic stability of solitary gravity-capillary surface
waves on deep water.

J. Math. Fluid Mech. 13 (2011), no.4, 593-627. 1422-6952

This paper is a beautiful and original work in applied mathematics. The
presentation is clear, rigorous and formal: the authors manage to be mathemat-
ically precise while also describing the physical meaning of their assumptions
and results. The demonstrations seem correct and their presentation does not
have any unclear points. The paper starts by proving an existence and stability
theorem for gravity-capillary solitary waves on the surface of a body of water of
infinite depth. Based on a classical variational principle, the existence of a min-
imizer of the wave energy £ is proven subject to the constraint that the wave
momentum 7 is fixed and given in terms of a positive amplitude parameter
much smaller than 1. Subsequently, as £ and J are both conserved quantities,
by means of a standard argument the stability of the set of minimizers is es-
tablished: one is assured that—once a suitable energy space is considered—a
solution starting near an energy minimizer remains close to being an energy
minimizer over its whole interval of existence. The mathematical results thus
obtained are used in order to compare the model for considered solitary waves
based on the previously used variational principle and the other one often ac-
cepted in the applied mechanics literature which, instead, uses the nonlinear
Schrodinger equation with cubic focussing nonlinearity. Actually the authors
prove in an elegant way that the waves which are the minimizers of the wave
energy & converge (after the appropriate rescaling) to the solutions of the above-
mentioned Schrodinger equation as the amplitude parameter tends to zero. A
concluding remark: the well-posedness assumption at the end of page 597 may
have deserved a more detailed discussion.
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Review of paper: Migérski Stanislaw, ochal Anna, Sofonea Mircea.
Analysis of a quasistatic contact problem for piezoelectric materials.
J. Math. Anal. Appl. 382 (2011), no.2, 701-713

Summary: “We consider a mathematical model which describes the frictional
contact between a piezoelectric body and an electrically conductive foundation.
The process is quasistatic, the material behavior is modeled with an electro-
viscoelastic constitutive law and the contact is described with subdifferential
boundary conditions. We derive the variational formulation of the problem
which is in the form of a system involving two history-dependent hemivariational
inequalities in which the unknowns are the velocity and electric potential field.
Then we prove the existence of a unique weak solution to the model. The proof
is based on a recent result on history-dependent hemivariational inequalities
obtained in [S. Migérski, A. Ochal and M. Sofonea, Nonlinear Anal. Real World
Appl. 12 (2011), no. 6, 3384-3396]."

This abstract describes rather accurately the content of the present paper,
the technical details of which cannot be fully understood without reading some
of the authors’ earlier papers to which they refer to repeatedly.

Then in the introduction one can find the following statement: “The present
paper represents a continuation of [Z. Lerguet, M. Shillor and M. Sofonea, Elec-
tron. J. Differential Equations 2007, No. 170, 16 pp.; S. Migérski, A. Ochal and
M. Sofonea, J. Math. Anal. Appl. 361 (2010), no. 1, 161-176] and is devoted
to the study of a new mathematical model which describes the frictional con-
tact between an electro-viscoelastic body and a conductive foundation. With
respect to [Z. Lerguet, M. Shillor and M. Sofonea, op. cit.] the novelty of the
model consists in the fact that the contact, the frictional and the conductivity
conditions are modeled with the subdifferentials involving nonconvex function-
als. With respect to [S. Migérski, A. Ochal and M. Sofonea, op. cit., 2010] the
novelty of the model consists in the fact that here the process is quasistatic and,
in addition, the elasticity operator involved in the constitutive law is nonlinear
and could be time-dependent.”

In the reviewer’s opinion the mathematical model presented in the present
and in the cited papers is indeed rather standard.
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The introduction then continues as follows: “Therefore, the arguments on
evolutionary hemivariational inequalities used in [S. Migoérski, A. Ochal and M.
Sofonea, op. cit., 2010] do not work in this case. Our interest in this paper
is twofold. First, to describe a physical process in which contact, friction and
piezoelectric effects are involved and to derive a consistent mathematical model
to this process.” In the paper the reader will not find such a “derivation” from
basic physical principles or any description of the physical process which the
presented model intends to describe. Instead, this model is simply formulated
in a formal way.

Immediately subsequent to the aforementioned statements one can read
about the second aim declared by the authors: “to illustrate how our recent
existence and uniqueness result on history-dependent hemivariational inequali-
ties, obtained in [S. Migérski, A. Ochal and M. Sofonea, op. cit., 2011], can be
used to provide the unique solvability of this mathematical model”. Indeed the
authors present the announced proof in section 5. This proof consists of a series
of careful determinations of upper bounds, which can be deduced by correctly
applying the assumed (apparently very standard) hypotheses.

The paper actually is an interesting application of powerful analytical meth-
ods to prove an existence and uniqueness theorem of a problem of interest in
the electrodynamics of deformable piezoelectric bodies in frictional contact with
a conductive body.
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Review of paper: Piccolroaz A., Mishuris G., Movchan A.B.
Perturbation of mode IIT interfacial cracks. Recent progress in the
mathematics of defects, 41-51, Springer, Dordrecht, 2011

The results presented in this paper are extensively used in a later paper in the
same collection [G. S. Mishuris, N. V. Movchan and A. B. Movchan, in Recent
progress in the mathematics of defects, 121-133, Springer, Dordrecht, 2011].
Here the authors address the problem of determining the variation of the stress
intensity factor induced by perturbations of the crack faces and of the crack
interface in a mode III interfacial crack. The cracked body under consideration
is assumed to be loaded by out-of-plane tractions. The asymptotic formulae
which are derived for the first-order perturbation of the stress intensity factor are
obtained by extensively using the mathematical tool discussed in the authors’
paper [J. Mech. Phys. Solids 57 (2009), no. 9, 1657-1682], i.e., the so-called
mode IIT skew-symmetric weight functions. In that paper the discussion was
limited to semi-infinite interfacial cracks while in the present one a discussion
about the possibility of extending the treatment to finite bodies is presented.
The asymptotic analysis sketched in section 3 seems correct and the illustrative
example introduced in section 4 is interesting. Unfortunately, the presentation
is often interrupted by references to other papers (by the same authors or by
some of their co-workers) so it is difficult to follow the reasoning leading to
the results obtained. Also, regrettably, the final section of the paper, entitled
Discussions and conclusions, is not as comprehensive as most likely the obtained
results deserve.

Review of paper: Mishuris G.S., Movchan N.V., Movchan A.B.
Dynamic mode-III interface crack in a bi-material strip. Recent
progress in the mathematics of defects, 121-133, Springer,
Dordrecht, 2011

From the introduction: “In the present paper, we make an emphasis on a
perturbation dynamic model for a Mode-III interfacial crack propagating within
a strip with slightly curved boundaries and the interface contour.”

In other words, the model used is intended to describe the effect of “small”
deviations from planar form eventually occurring at the interface between the
“detaching” strips (where displacements and stress are continuous) or at the
already detached surfaces (which are stress free) or at external boundaries of
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each of these strips, where Dirichlet boundary conditions are prescribed. In par-
ticular, the authors investigate how the aforementioned “imperfections” affect
the stress intensity factor in the cases when a small smooth perturbation occurs
“(a) on the interface at some distance from the crack tip, (b) on the crack faces
away from the crack tip, (c) on the sides of the strip”. Subsequently, the au-
thors consider a singular perturbation problem, i.e. the problem of determining
how a small time-dependent variation of the crack propagation speed influences
the stress intensity factor. Finally, the functional which maps the variation of
crack propagation speed into the corresponding stress intensity factor is used to
get the integro-differential equation which determines this speed. A discussions
and conclusions section, which is probably too short, concludes the paper. The
results seem correct and are interesting. On the other hand, in the presentation
there are so many references to several results obtained by the same authors in
other papers that reading it often becomes difficult.

Review of paper: Hackl Klaus, Fischer Franz Dieter, Svoboda Jiri.
A study on the principle of maximum dissipation for coupled and
non-coupled non-isothermal processes in materials. Proc. R. Soc.
Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no.2128,
1186-1196, addendum (5 pp.). 1471-2946

The intention of the authors is meritorious: to study a variational principle
valid for a large class of dissipative mechanical phenomena. Their preference
is stated in the abstract: “Onsager’s principle of maximum dissipation (PMD)
has proven to be an efficient tool to derive evolution equations for the inter-
nal variables describing non-equilibrium processes.” The presented approach is
followed by a small number of authors and indeed deserves attention; however,
its relationships with other possible approaches, for instance with the Rayleigh-
Hamilton conceptual frame, have not been fully investigated yet, as would be
desirable. One can agree with the authors when they continue stating that:
“However, a rigorous treatment of PMD for several simultaneously acting dis-
sipative processes is still open and presented in this paper.” Their presentation
proceeds by introducing dissipation functions which seem more general than
those usually considered. Using again the words of the authors: “The coupling
or uncoupling of the processes is demonstrated via the mathematical structure
of the dissipation function. Examples are worked out for plastic deformation
and heat flux.” Some remarks are in order at this point: (1) The flow of pre-
sented arguments is interrupted too often by references to other papers, which
makes understanding it rather difficult. Also, the style of presentation is some-
times difficult to follow. (2) Sometimes the needed assumptions are introduced
without a true discussion. This is, e.g., the case with Equation (2.7), which is
important—and maybe acceptable—but it is justified simply by stating that it
comes from continuum mechanics, as if this equation were an analytical result of
mathematical nature and not an ansatz based on some physical understanding
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of the phenomena to be described. The reader may question the fact that every-
thing in the paper is continuum mechanics. (3) The following opinion of the
authors, stated before Remark 2.1, has been changed in the addendum, where

the opposite choice is made: “The quantity TP has been denoted in [K. Hackl
and F. D. Fischer, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 464
(2008), no. 2089, 117-132] as ‘dissipation’ Q. From the physical point of view,

it is better to use the term P= Q/T and to denominate it as ‘entropy produc-
tion’, which is equivalent to the negative rate of Gibbs energy, divided by T.”
(4) In the paper there is no mention concerning maximality of dissipation: in-
deed, in the presented results the authors consider only stationarity. It could be
interesting to also explicitly take into account this aspect and its physical con-
sequences. Concerning the main results of the paper one can observe that: (1)
The comparison between the PMD for coupled and uncoupled processes leads to
important consequences, which the authors should have stressed more clearly.
(2) The presented version of PMD is spatially local in nature. (3) The important
case of quadratic dissipation Q is carefully considered: the authors leave open
the important problem about the link to be established between the presented
theoretical frame and the one based on Rayleigh-Hamilton ideas. (4) The role
and the significance of the Lagrange multiplier appearing in equation (3.6) and
the related parameter f are not discussed: this point needs more attention. (5)
Remark 3.3 starting with the sentence “It seems to be interesting to note that
coupled processes may exist although for each individual process a contribution
to the total dissipation is addressed depending only in the individual thermody-
namic kinetic variables characterizing only this process” is a little bit obscure,
even if somehow suggestive. The paper is concluded by the following statements
which are commented on singularly: (1) “The PMD is established in order to de-
rive evolution equations for heat flux, plastification, fluxes of matter and further
internal processes, represented by a further set of internal variables.” However,
in the paper one cannot find a detailed discussion concerning the problem of
determining, for each process, the value of the Lagrange multipliers or their
related quantities, as the previously introduced f. (2) “It is shown that the
evolution equations for each individual process obtain interaction terms with
respect to all other processes. Only if the dissipation is a homogeneous function
of the same order for all thermodynamic kinetic variables (generalized fluxes),
a decoupling of the processes takes place. Specifically the coupling of heat flux
and plasticity is investigated.” This summarizes the most important result of
the paper, which seems to be still valid also when the assumptions accepted in
the addendum replace those formulated in the paper. This result seems to be
correct and calls for deeper and more careful investigations.

Review of paper: Ganghoffer Jean-Francois. On Eshelby tensors in
the context of the thermodynamics of open systems: application to
volumetric growth. Internat. J. Engrg. Sci. 48 (2010), no.12,
2081-2098.
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In this paper the author, having in mind an application to some phenomena
occurring during the volumetric growth of living tissues driven by the diffu-
sion of nutrients, formulates a thermodynamic extremum principle for a class
of open continuous bodies in which Eshelby tensors play a relevant role. The
results presented seem very interesting. One may agree with what is stated in
the introduction of the paper: “[The] novelty advocated in the present contri-
bution lies in a deeper insight brought into the bridges connecting the three
previously mentioned areas, namely Eshelbian mechanics, open system thermo-
dynamics [. . . ]| and the calculus of variations, especially the transversal-
ity conditions for solid bodies having a movable boundary.” The presentation
starts from a Lagrangian formulation of dissipative constitutive laws, proceeds
by calculating the general variation of associated Hamiltonian action, and then
constructs Eshelby tensors, thus also proving that the so-called configurational
mechanics, at least in the context considered, can be based on a variational
principle. The main technical difficulty confronted by the author regards the
calculation of functional variations in the presence of varying integration do-
mains: the methods presented derive directly from those used in the works of
Edelen (1981). The generalized Gibbs-Duhem condition needed in the present
context is obtained by a procedure which underlines its relationship with the
notions of domain variation and Eshelby stresses. Particular emphasis is placed
on the notion of Eshelby stress related to growth, when the general theory is
applied to the aforementioned description of living tissue growth, a phenomenon
which is then considered in a spherically symmetric case by suitable (and care-
fully described) numerical simulations. The style of the paper appears to be too
synthetic and sometimes obscure. Therefore reading it is often difficult. A more
extended presentation, showing more details, and a decrease in the number of
cross-references to other papers which refer to important parts of the deductive
arguments presented would enlighten (and make more persuasive) the results of
a work which nevertheless seems correct and relevant for applications.

Review of paper: Epstein Marcelo, Maugin Gérard A. Remarks on
the universality of the Eshelby stress. Math Mech. Solids 15 (2010),
no.1l, 137-143. 1741-3028

This paper clarifies—in a timely and precise way—the role of Eshelby (and
Mandel) stresses in those theories which include material evolution. With a
very balanced and fortunate choice, the authors address the core of the ques-
tion, refraining from any unessential formal dressing of their presentation. The
reader is directed immediately to the point and will easily draw all its important
consequences and will ponder the many relevant considerations implied.

In the introduction, the authors raise the question: “Is the Eshelby stress
universal?” In the following very short abstract, the reader does not find the
answer to the question raised: “The possible role of Eshelby stress in the general

27



context of theories of material evolution is examined with particular emphasis
on evolution laws that are not necessarily of the elastic type.” In a few pages sim-
ple, rigorous and therefore incontrovertible calculations and definitions are pre-
sented, which show the very particular nature of Eshelby stresses, as well as the
fact that the introduction of Mandel stress is absolutely equivalent to Eshelby
stress. Indeed, the difference between the two treatments consists simply in a
different conventional choice: while the Eshelby approach considers Helmholtz
free-energy density, the Mandel approach uses free energy per unit mass. The
case of pure aging is considered in detail: the result is of relevance. Actually,
models based on Eshelby and Mandel stresses can only account for a very limited
class of phenomena. One can therefore agree completely with the conclusions
presented by the authors: “The analysis presented in this work seems to indi-
cate that the Eshelby and Mandel stresses are not always the natural driving
forces behind material evolution and, therefore, they are not universal. It is
only in materials abiding by evolution laws of obvious or latent anelastic type
(preservation of structural identity) that these forces emerge naturally.” This
statement is substantiated not only by the considerations developed in the most
simple situation represented by pure aging but also by (i) remarking that the
free energy presented in equation (29) is “a perfectly legitimate material law
that can be arrived at as a generalization of a simple rheological model”, and
(ii) delivering an example of a physically meaningful continuum model in which
the concepts of Eshelby stress or Mandel stress are not sufficient to describe
material evolution.

Review of paper: Moonen P., Sluys L.J., Carmeliet J. A
continuous-discontinuous approach to simulate heat transfer in
fractured media. Transp. Porous Media 89 (2011), no.3, 399-419.
1573-1634

A class of heat conduction phenomena in a body where some “micro-cracks”
are concentrated on a surface is considered in this paper. They are surely of in-
terest and deserve a careful mathematical modeling. The results presented are of
relevance and may lead to useful applications. However, the presentation is not
always clear, and some difficulties can present themselves to the reader: indeed
the “micro” level description (i.e. at the length scale of a single micro-crack)
of the considered heat flux mechanisms and its corresponding macro level are
sometimes confused. The abstract starts with the statement, “A macroscopic
framework to model heat transfer in materials and composites, subjected to
physical degradation, is proposed.” It continues with the following— maybe
too concise—passage: “The framework employs the partition of unity concept
and captures the change from conduction-dominated transfer in the initial con-
tinuum state to convection and radiation-dominated transfer in the damaged
state. The underlying model can be directly linked to a mechanical cohesive
zone model, governing the initiation and subsequent growth and coalescence of
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micro-cracks.” Actually, the authors do not propose a model in which some evo-
lution equations for initiation, growth or coalescence of cracks are proposed; the
state of the cracks is assumed to be given and not influenced by heat conduc-
tion. The change from conduction to convection/radiation regimes is modeled
by means of reasonable macroscopic constitutive equations for heat conduction
which are obtained with a heuristic micro-macro identification process. The
mechanical state of the present cracks is described also by including a cohe-
sive damaged zone which is characterized by means of its own conductivity
properties. The most relevant contribution presented regards the derivation
of the damage-based “discrete” constitutive equation for heat transfer and the
consequent simplified models for heat transfer across micro-cracks and cavities
concentrated on a surface. The reader should consider that “discrete” is used
by the authors as an adjective referring to the discontinuities of temperature
fields. Subsequently some interesting academic exercises are numerically solved
to present the scope of considered models, by means of a suitably derived weak
formulation of postulated energy balance equations and boundary conditions.

Review of paper: Sofonea Mircea, Kazmi Kamran ,Barboteu
Mikael, Han Weimin. Analysis and numerical solution of a
piezoelectric frictional contact problem. Appl. Math. Model. 36
(2012), no 9, 4483-4501

From the summary: “We consider a mathematical model which describes the
frictional contact between an electro-elastic-visco-plastic body and a conductive
foundation. The contact is modelled with normal compliance and a version of
Coulomb’s law of dry friction, in which the stiffness and the friction coefficients
depend on the electric potential.We derive a variational formulation of the prob-
lem and we prove an existence and uniqueness result. The proof is based on
a recent existence and uniqueness result on history-dependent quasivariational
inequalities obtained in [M. Sofonea and A. C. Matei, European J. Appl. Math.
22 (2011), no. 5, 471-491].”

The reviewer could not find any relevant wording or substantial difference
with the summary of the paper [S. Migérski, A. Ochal and M. Sofonea, J.
Math. Anal. Appl. 382 (2011), no. 2, 701-713] that he himself already re-
viewed for Mathematical Reviews. Also a parallel reading of the two papers does
not show easily—regarding the mathematical results described in the aforemen-
tioned excerpt—the similarities and the differences between them. It has to
be remarked that in the present paper the previous work of Migérski, Ochal
and Sofonea is not cited. It would be very helpful—to enlighten the interested
reader—to give a detailed comparison of the two mathematical models and
methods presented in both publications, especially because in the present pa-
per the theoretical results derived by means of standard methods of functional
analysis are sustained by some interesting numerical simulations. Indeed, the
second part of the abstract reads: “Then we introduce a fully discrete scheme
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for solving the problem and, under certain solution regularity assumptions, we
derive an optimal order error estimate. Finally, we present some numerical re-
sults in the study of a two-dimensional test problem which describes the process
of contact in a microelectromechanical switch.”

The partition of the abstract into two parts is reflected by a similar parti-
tion of the paper itself. In the first part a list of technical hypotheses is given
and some theorems (based on other papers by the same group of authors) are
presented. In the second part some details are given about the numerical pro-
cedure used. The reviewer finds the description of this procedure too summary
and definitively lacking in important details. Also, in this second part the reader
is referred to other papers, the most important of which are [M. Barboteu and
M. Sofonea, Appl. Math. Comput. 215 (2009), no. 8, 2978-2991; J. Math.
Anal. Appl. 358 (2009), no. 1, 110-124; Ann. Acad. Rom. Sci. Ser. Math.
Appl. 1 (2009), no. 1, 7-30]. Most likely the code developed by the authors
should be able to describe phenomena much more interesting than those pre-
sented. In the conclusion one reads the following statements, with which the
reviewer agrees completely: “The algorithm may be used as a benchmark for
the calibration of computer codes for more complicated piezoelectric contact
problems. Also, the problem is relatively easy to set experimentally, and it may
provide an effective way to determine some of the constants associated with
the contact process, to be used in more complex physical settings. Finally, it
may be of interest to introduce controls into the model, and study the related
optimal control problem.”

Review of paper: Thompson Alice B., Billingham John. Inviscid
coalescence in the presence of a surrounding fluid. TMA J. Appl.
Math. 77 (2012), no.5, 678-696. 1464-3634

Any review of this paper needs to consider also the content of two other
works.

From the introduction: “In this paper, we discuss the relevance of the work
by A. B. Thompson, J. Billingham and R. H. Tew [IMA J. Appl. Math. 75
(2010), no. 6, 857-880] and Thompson [Surface-tension-driven coalescence,
Ph.D. thesis, Univ. Nottingham, 2012] to the problem of inviscid coalescence. We
will avoid giving details of the mathematical analysis here, particularly for the
two-fluid problem described in Section 4. We aim to discuss the applicability,
features and difficulties of this analysis, and future directions for investigation.”

The interested reader is directed to the more detailed presentation [A. B.
Thompson, op. cit.] to find the complete formulation of field equations and
boundary conditions used by the authors. The parallel lectures of all three-
works allow us to conclude that the authors: (i) consider two immiscible and
incompressible fluids and (ii) model the interfacial zone between the two immis-
cible fluids as a sharp interface at which they postulate that balance of force
assumes the form given by so-called nonlinear Bernoulli law.

The authors also state the following.
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Continued from the introduction: “In summary, it has been shown that
there is no simply connected time-dependent solution for the coalescence of
spherical drops surrounded by a vacuum. If such a solution did exist, it should
correspond to a self-similar solution for recoil of a very fat wedge of fluid, with
far-field angle m — € and imposed tip angle 7/2. However, numerical solutions
to the self-similar system show that there is no solution for € less than about
39. Investigation of the self-similar system for a recoiling slender fluid wedge
suggests that suitable solutions do exist for ¢ — 0, which may correspond to a
simply connected time-dependent solution for bubble coalescence. This leaves
the important question of what density ratio is required between the coalescing
and surrounding fluid in order for simply connected solutions to exist, for both
the self-similar and time-dependent problems.”

The problem to which the authors are referring in this excerpt is some-
how parallel to the problem of the minimal radius of nucleation of bubbles and
drops when surrounded by their liquid or vapor respectively. As discussed in
detail in [E. A. Carlen et al., J. Geom. Anal. 16 (2006), no. 2, 233-264] a
more careful mathematical analysis is possible which predicts the observed (ex-
perimentally and via numerical simulations) existence of a minimal nucleation
radius. This more careful mathematical analysis is however based on more de-
tailed models which were developed for describing capillary phenomena, more
detailed than the Laplace law (even when eventually corrected by the addition
of jumps of inertial terms at the interface). In particular interfaces between
phases are successfully modeled as interfacial zones where considered fluids are
modeled as capillary fluids [see, e.g., S. L. Gavrilyuk and H. Gouin, in Trends
in applications of mathematics to mechanics (Nice, 1998), 306-311, Chapman
& Hall/CRC Monogr. Surv. Pure Appl. Math., 106, Chapman & Hall/CRC,
Boca Raton, FL, 2000]. Using this more general class of models P. Seppecher in
[Int. J. Eng. Sci. 34 (1996), no. 9, 977-992] managed to study the fluid motion
in the neighborhood of contact lines which are formed in phase transition at im-
permeable walls between drops or bubbles and respectively the corresponding
vapor or liquid. In the paper under review the authors perform an analysis of
a model which is in a sense “incomplete” or “ill-posed” as it lacks the needed
details to describe carefully the considered physical phenomena: the models in
which capillary fluids are introduced are a sort of regularization of the afore-
mentioned incomplete ones. However, the authors in the framework which they
have chosen indeed manage to obtain beautiful results and show interesting
properties of the solution of all possible generalized models which include the
Laplace law. Their analysis relies on several simplifications to the coalescence
problem. They restrict themselves to self-similar recoil, and consider only the
small-displacement problem, in which the imposed contact angle is m — \e rather
than /2, with 1 < A < e—1 so that they no longer need to solve a free bound-
ary problem. Using these limiting assumptions they find in Section 3 that when
the surrounding fluid has zero density, there is no simply connected solution to
the small-displacement system for large .

Continued from the introduction: “In Section 4, we investigate the two-fluid
problem for small displacement. We identify a distinguished density ratio, and
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find numerical and asymptotic evidence that shows that for this distinguished
density ratio, a valid solution persists for large A, and that its dependence on is
consistent with ¢'/2 time dependence for the coalescence of spherical drops.”
The authors also state that although the solutions found do not solve the
large-displacement system, they display similar qualitative features to the known
solutions of the large-displacement problem. The methods presented in the re-
viewed paper, together with those presented in the literature when dealing with
capillary fluids and thick interfacial zones, may allow for a major advancement
of the understanding of many capillary phenomena occurring at contact lines.

Review of paper: Nazar M., Shahid F., Saeed Akram M., Sultan Q.
Flow on oscillating rectangular duct for Maxwell fluid. Appl. Math.
Mech. (English Ed.) 33 (2012), no. 6, 717-730. 1573-2754

The velocity field and the associated shear stresses corresponding to the
unsteady flow of generalized Maxwell fluid on an oscillating rectangular duct
are determined by means of double finite Fourier sine and Laplace transforms.
These solutions are also presented as a sum of the steady-state and transient
solutions. The solutions corresponding to Maxwell fluids, performing the same
motion, appear as limiting cases of the solutions obtained here. The equation
studied in the paper under review exactly coincides with equation (26) on page
75 in [H. T. Qi and J. G. Liu, Eur. Phys. J. Special Topics 193 (2011), no.
1, 71-79, doi:10.1140/epjst /e2011-01382-6]. The initial and boundary condition
problems also coincide, and the closed-form solutions are very similar. However,
the aforementioned paper is not cited in the present work and therefore the
necessary comparison of their results is not made.

Review of paper: Kuttler K.L., Purcell J., Shillor M. Analysis and
simulations of a contact problem for a nonlinear dynamic beam with
a crack. Quart. J. mech. Appl. Math. 65 (2012), no. 1, 1-25.
1464-3855

This paper is a nice piece of work: in it a mathematical model—relevant for
its engineering applications—is studied rigorously. The reviewer believes that
the mathematical results presented will supply a solid basis for the formulation
of reliable numerical codes, to be used to explore the properties of a beam model
which is really promising.

In the abstract the authors state: “This work studies and simulates the
dynamics of a Gao beam that may come in contact with a reactive foundation
and which has an evolving symmetric edge crack. The problem is set as a
variational inequality coupled with a differential equation for the evolution of
the damage variable, which measures the severity of the crack.” It has to be
remarked that more generally a variational approach can also be used to get
the evolution equation for damage [see, e.g., N. K. H. Pham, J.-J. Marigo and
C. Maurini, J. Mech. Phys. Solids 59 (2011), no. 6, 1163-1190]. Of course,
including the evolution of damage in the variational scheme is very useful when
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dealing with the establishment of existence and uniqueness theorems and when
formulating numerical procedures to apply the model to practical problems.

The abstract continues as follows: “The existence of a local weak solution
for the model is proved using approximations, result for abstract problems in
Hilbert spaces, and a priori estimates. A finite-element scheme for the prob-
lem is proposed, and representative simulations presented. In particular, the
dependence of the beam’s vibration frequency on the crack’s position and size
is depicted.” The part dealing with the formulation of the finite-element scheme
and its theoretical background seems correct and in some aspects original. Very
interesting is the presented application to the study of the influence of crack
geometrical properties on beam dynamical response to externally applied loads,
which seems to open interesting new research perspectives.

In the introduction one reads: “We extend a model for the dynamics of
a nonlinear beam, developed by Gao in [D.Y. Gao, Mech. Res. Comm. 23
(1996), no. 1, 11-17; Internat. J. Non-Linear Mech. 35 (2000), no. 1, 103—-131;
D. Y. Gao and H. D. Sherali, in Advances in applied mathematics and global
optimization, 257-326, Adv. Mech. Math., 17, Springer, New York, 2009] and
analysed there and in [K. T. Andrews et al.,, “Analysis and simulations of a
nonlinear dynamic beam”, preprint, 2009; per bibl.; M. F. M’'Bengue, Analysis
of models for nonlinear dynamic beams with or without damage or frictionless
contact, Ph.D. thesis, Oakland Univ., 2008; No. 27|, which allows for the
study of buckling by including the growth of a symmetric edge crack. The
damage to the beam, which in this case is the growth of the crack as a result
of cycles of tension/compression, is described by using the so-called damage
function [M. Frémond, Non-smooth thermomechanics, Springer, Berlin, 2002;
M. Shillor, M. Sofonea and J. J. Telega, Models and analysis of quasistatic
contact: wvariational methods, Lecture Notes in Phys., 655, Springer, Berlin,
2004, doi:10.1007/b99799; M. Sofonea, W. Han and M. Shillor, Analysis and
approzimation of contact problems with adhesion or damage, Pure Appl. Math.
(Boca Raton), 276, Chapman & Hall/CRC, Boca Raton, FL, 2006]. The model
also allows for contact between the beam and a reactive foundation that is
situated under it.” However, it is difficult to find a clear statement about the
features of the model presented which are not already given in the literature.

The Conclusions section seems too short. In it, the authors state: “The
numerical method was implemented and two types of simulations performed.
First, vibrations of the beam until failure were simulated for the under-buckled
and buckled states. It was seen that due to the choice of a large damage rate
coefficient kg, the beam broke fairly quickly in both cases.” In these simulations
it is shown how the model is able to describe the growth of damage, in the
presence of external actions which are able to lead to the failure of the beam.
A more detailed study of the influence of buckling on crack growth seems to be
needed here.

The Conclusions section continues as follows: “The second type of simula-
tions were run to explore the behaviour of the beams’ oscillations using their
spectra. It was found that the spectrum depends heavily on the depth of the
crack (the damage r) and on the position of the crack z.. The simulations found
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that the dependence on r seems to follow the sequence of stable, transitional
and chaotic behaviour (Figs 5-8). The results of the simulations indicate the
difficulties in identifying the crack position and depth for post-buckled states.
Additional study is needed to determine if one can determine the position and
depth of a crack from the distribution of the spectral lines for different frequen-
cies.” In the reviewer’s opinion the issue considered in the previous sentences
is the most important one when dealing with damage growth in beams. It is
a pity that this point has not been more deeply studied by the authors, and
therefore the question of the efficacy of the proposed approach remains.

Review of paper: de Saxcé Géry, Vallée Claude. Bargmann group,
momentum tensor and Galilean invariance of Clausius-Duhem in-
equality. Internat. J. Engrg. Sci. 50 (2012), no. 1, 216-232

A central problem in the foundations of continuum mechanics is represented
by the search for the most comprehensive postulation framework to be used
for all continuum models. The dichotomy is between those who accept the
d’Alembert and Lagrange principle of virtual velocities (or works or powers)
and those (following the ideas of Newton and Poisson) who want to base on a
series of balance principles all the postulation processes in continuum mechanics.
A beautiful defense of the Lagrangian view of mechanics can be found already
in the work by Gabrio Piola [Di un principio controverso della meccanica analit-
ica di Lagrange, e delle molteplici sue applicazioni: memoria postuma, Giuseppe
Bernardoni Giovanni, Milano, 1856].Piola confuted in his [Intorno alle equazioni
fondamentali del movimento di corpi qualsivogliono, considerati secondo la nat-
urale loro forma e costituzione: memoria, B. D. Camera, Modena, 1846] all of
Poisson’s arguments against the principle of virtual velocities (or work or pow-
ers) as presented in [S. D. Poisson, “Mémoire sur les équations générales de I’
équilibre et du mouvement des corps solides élastiques et des fluides”, J. Ecole
Polytech 13 (1831), 1-174; “Mémoire sur I’ équilibre et le mouvement des corps
élastiques”, Mém. Acad. Sci. Inst. France 8 (1829), 357-570]. Modern sup-
porters of Poisson’s party are Truesdell, Noll and their followers, while Toupin
seems to belong to the Lagrangian party.

The paper under review, presented at the 13th Colloque Internationale de
Théories Variationnelle (2008), does not openly embrace one of the two opposed
theses; however, the results presented may have an impact on the controversy, at
least for what concerns continuum mechanics. The authors base their analysis
on previous research by Souriau and Valle (see references in the paper) aimed at
finding the correct geometrical structures for physical theories and fix their at-
tention on continuum thermodynamics. The main results they show in sections
3-6 consist in: (i) finding a momentum tensor in terms of Planck’s potential ver-
ifying the requirement of material indifference, (ii) introducing an irreversible
(dissipative) momentum tensor, (iii) calculating the divergence of the sum of
both these tensors (which is called the total momentum tensor) and (iv) recog-
nizing that the balances of mass, linear momentum and energy are all together
equivalent to assuming that the total momentum tensor is divergence-free. The
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geometrical structure in which tensorial quantities are introduced by the authors
is a five-dimensional linear space in which classical space-time is embedded. The
tensorial rule—suitably introduced to frame Galilean mechanics—needed to im-
pose invariance conditions is supplied by the Bargmann group of transformation
(see references in the paper). In sections 7 and 8 the Clausius-Duhem equation
and its relation with the constitutive equations for a dissipative momentum ten-
sor are discussed in the geometrical framework previously introduced. This is
done by expressing entropy production in terms of the previously introduced
total momentum tensor and by characterizing nondissipative processes. The re-
sults presented seem sound and correct, but to fully establish their importance
some deeper investigations are needed and their relationship with a suitable
version of the principle of virtual velocities (or the less general principle of least
action) must be clarified. In the reviewer’s opinion, however, a reproach has
to be formulated to the style of this paper (and of many others originated by
the school founded by Souriau): it seems too Tacitean and esoteric. Moreover,
readers may be discouraged by the dense citations of other papers from which
crucial points of the presented arguments need to be extracted and thus feel
that they are missing an important part of the arguments.

Review of paper: Galeg C. Spatial behavior and continuous depen-
dence results in the linear dynamic theory of magnetoelectroelasticity.
J. Elasticity 108 (2012), no.2, 209-223. 1573-2681

In classical piezoelectricity and piezomagnetism only static or quasi-static
electromagnetic fields are considered. Thus, although the mechanical equa-
tions are dynamic, the electromagnetic equations are static and the electric
field and the magnetic field are not dynamically coupled. While for many ap-
plications quasi-static theory is sufficient, still there are situations, e.g. in the
presence of radiated electromagnetic power from a vibrating piezoelectric de-
vice, where full electromagnetic coupling needs to be considered. Such a fully
dynamic theory has been called piezoelectromagnetism and is being developed
in the current literature. The purpose of the paper under review is to investi-
gate some qualitative properties of solutions for the equations of linear dynamic
magnetoelectroelasticity. As for what concerns this theory, relatively few com-
parable results are known; the author extends some arguments already used for
hyperbolic equations to investigate the spatial behavior of dynamic magneto-
electroelastic processes. The results presented hold not only for piezoelectric
materials but more generally for anisotropic magnetoelectroelastic solids. They
can be described as follows: After defining the “support” of the given data in a
fixed interval of time [0, T], that is the set of all points for which at least one of
the given data in [0, T] (boundary or initial data or body force) is nonzero, the
appropriate time-weighted surface power function for the problem considered is
introduced. Then it is proven that, for each fixed time ¢ in a given compact
interval [0, T], the whole activity is vanishing at distances from the support
of the given data on [0, T] greater than kt, where k is a constant depending
on the constitutive coefficients of the magnetoelectroelastic medium. Inside the
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domain of influence, an exponential decay estimate is established for describ-
ing the spatial behavior of solutions for both bounded and unbounded bodies.
A direct consequence of this study is the uniqueness of solutions. Due to the
generality of the problem, the value of the parameter x provided here is not an
optimum one. Finally, the particular case of nonzero initial conditions is con-
sidered to establish some results on the spatial evolution of transient solutions,
provided that the initial data is assumed to be bounded in a certain energy
norm. Subsequently the continuous dependence of solutions with respect to the
external given data is studied. By means of Gronwall’s lemma a Lyapunov sta-
bility theorem is established. This result proves that, in the motion following
any sufficiently small change in the external data system, the deformation of
the body is arbitrarily small in magnitude.

The mathematical results presented seem novel, interesting and appear to
be obtained by correct arguments, while the physical phenomena described are
surely relevant.
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Review of paper: Khludnev Alexander. Contact problems for elas-
tic bodies with rigid inclusions. Quart. Appl. Math. 70 (2012), no.
2, 269-284. 1552-4485

In the reviewed paper some equilibrium problems arising in the mechanics
of elastic bodies with rigid inclusions possibly in contact with another rigid
inclusion or with a non-deformable punch are solved. Some problem formula-
tions with inequality type boundary conditions of a non-local type describing
a mutual non-penetration between contact surfaces are presented, which seem
correct and physically meaningful. In the problems treated the set of points
in which rigid inclusions may be in contact with other rigid inclusions or an
external rigid obstacle is unknown and the boundary conditions considered are
nonlinear and of inequality type: the contact set is determined provided that a
solution of the problem is found. However, the reviewer believes that regard-
ing the problems presented in this paper as free moving boundary problems
may be somehow misleading. Indeed the shape of the boundary of rigid inclu-
sions or of external rigid obstacles cannot change and rigid inclusions can only
move with infinitesimal rigid displacement. Moreover all problems studied are
two-dimensional: therefore except when the rigid inclusions (and the external
obstacles) have as boundaries some curves which can (eventually partially) be
rigidly superimposed it will happen that the set of contact points will be finite.

The differential and variational problem formulations (including variational
inequalities) are discussed, and a tricky fictitious domain approach is applied
which allows one to establish useful relations between different types of equi-
librium problems. Using standard mathematical techniques, the author then
proves the existence of solutions for all the types of inclusions and geometries
listed in the paper’s section titles: 2. Rigid inclusion being in a contact with
non-deformable punch on the boundary; 3. Thin rigid inclusion on the con-
tact boundary; 4. Thin rigid inclusion contiguous to volume rigid inclusion; 5.
Thin rigid inclusion being in contact with volume rigid inclusion; 6. Thin rigid
inclusion located inside the domain and on the boundary.

The contact problems studied are also compared with those formulated by
Signorini and solved in other papers in the literature, including some by the
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author himself. To this aim a rigorous passage to a limit is justified in which a
rigidity parameter tends to infinity. The technical difficulties to be confronted
when treating the more general three-dimensional problems of the kind pre-
sented in the reviewed paper seem relevant. A discussion of possible extensions
of the results presented is unfortunately missing.
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Review of paper: Mellet Antoine, Nolen James. Capillary drops
on a rough surface. Interfaces Free Bounds. 14 (2012) no. 2, 167-184.
1463-9971

The paper studies liquid drops lying on a rough planar surface. The drops
are minimizers of an energy functional that includes a random adhesion energy.
The existence of minimizers and the regularity of the free boundary are proven.
When the length scale of the randomly varying surface is small, the minimiz-
ers are seen to be close to spherical caps which are minimizers of an averaged
energy functional. In particular, an error estimate is given that is algebraic
in the scale parameter and holds with high probability. Only surface tension
effects (proportional to the free surface area and a class of wetting interactions
between the liquid drop and the solid support) are accounted for: in particular
the gravitational forces are not included. The volume of the drop is assumed
to be fixed. Indeed the mathematical model considered describes wetting inter-
action in a rather rough way, while in the literature more sophisticated models
were studied in a similar context [see, e.g., G. Bouchitté and P. Seppecher, in
Motion by mean curvature and related topics (Trento, 1992), 23— 42, de Gruyter,
Berlin, 1994]. The relative adhesion coefficient between the liquid and the solid
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is assumed to be a random field taking values in the interval (-1, 1). Tt is well
known that when this coefficient is smaller than or equal to -1 the global energy
minimizers correspond to spherical sets having no contact with the solid inter-
face, while when it is greater than -1 the absolute minimizer must touch the
solid support. The first result which the authors claim to obtain is a proof of
the existence and regularity of global minimizers under an additional constraint
that confines the drop to a bounded region. Next an issue of homogenization
is considered: for relative adhesion coefficients which depend on the variable x
ranging in the solid contact wall and which are piece-wise constant the authors
assume that the coefficients have a small parameter increasing their variation.
They find a homogenized energy functional and estimate the probability of the
error induced when using it. The mathematical part of the paper seems correct,
although rather involved: the authors do not clearly indicate which among the
presented arguments are novel and where they confront technically challenging
issues. The setting is rather abstract for what concerns the set of regions which
are considered in the studied minimization problem and this choice clearly makes
arduous the use of more physically meaningful energy functionals.
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Review of paper: Negri Matteo. Crack propagation by a regu-
larization of the principle of local symmetry. Discrete Contin. Dyn.
Syst. Ser. S 6 (2013), no. 1, 147-165. 1937-1179

Summary: “For planar mixed mode crack propagation in brittle materials
many similar criteria have been proposed. In this work the Principle of Local
Symmetry together with Griffith Criterion will be the governing equations for
the evolution. The Stress Intensity Factors, a crucial ingredient in the theory,
will be employed in a ‘non-local’ (regularized) fashion. We prove existence of a
Lipschitz path that satisfies the Principle of Local Symmetry (for the approxi-
mated stress intensity factors) and then existence of a BV-parametrization that
satisfies Griffith Criterion (again for the approximated stress intensity factors).”

The paper presents interesting results which need nontrivial technical prop-
erties to be proven. Remarkable are the approximations obtained for stress
intensity factors and the corresponding estimates of the error in their evalua-
tion.
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Review of paper: Treinen Ray. On the symmetry of solutions to
some floating drop problems. SIAM J. Math. Anal. 44 (2012), n0.6,
3834-3847. 1095-7154

This paper starts from a physical problem formulated and studied in [A. R.
Elcrat, R. W. Neel and D. Siegel, J. Math. Fluid Mech. 6 (2004), no. 4, 405-429]
to which the author refers often. The model which is considered there is based
on Laplace’s classical treatment of capillary phenomena at interfaces: three
different surface energies—not depending on the deformation of the interfaces—
are introduced. The total energy of the system is calculated by adding the energy
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concentrated on the aforementioned interfaces (which is therefore proportional
to their area) to the total bulk gravitational energy (see the expression between
equations (1.5) and (1.6) in the paper under review). (Concerning this choice, in
the reviewer’s opinion the more effective model found in the framework of second
gradient fluids should also be considered, as its potentiality in this context is
well established, as proven for instance by the beautiful paper [P. Seppecher, Int.
J. Eng. Sci. 34 (1996), no. 9, 997-992, doi:10.1016,/0020-7225(95)00141-7].)

The main result of the paper is stated in its abstract: “The symmetry of
floating drops is considered. Under conditions that the free boundary is con-
tained in a horizontal plane it is shown that all three component interfaces are
symmetric about a vertical line.” The proof is based on many different papers
among those available in the literature and the author shows a great capability
to exploit efficiently the results found there. The proof seems correct and is
obtained with a careful examination of all possible cases in the formation of
the considered surfaces. The author writes: “The present work applies some
tools used by other authors. These tools are collected in section 2. Section 3
is the proof of the main theorem. The approach is as follows. The symmetry
results of H. C.Wente [Pacific J. Math. 88 (1980), no. 2, 387-397] for fluid-
fluid configurations are adapted to show that under some circumstances the
drop is symmetric about a vertical axis in both the light drop and the heavy
drop problems. R. S. Finn and T. I. Vogel [Analysis (Munich) 29 (2009), no.
4, 387-402] developed criteria for floatation of solid objects, and some of their
methods are adapted to show that the external interfacial surface between the
supporting fluid and the fluid above is also symmetric about the same vertical
axis. These methods rely on a comparison principle of Siegel [Pacific J. Math.
88 (1980), no. 2, 471-515], which is an extension of the comparison principle
of P. Concus and Finn [Acta Math. 132 (1974)]. (See [R. S. Finn, Equilibrium
capillary surfaces, Grundlehren Math. Wiss., 284, Springer, New York, 1986].)”
Unfortunately the paper lacks a clear statement about the novel technical dif-
ficulties which the author confronts in his proof; however, it is likely true that
the interesting result he presents is new.
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Gianpietro Del Piero: a scientist on the edge between engineering
sciences and functional analysis

A constant in prof Del Piero’s scientific life was the revisitation of the fun-
damentals and the quest for new, effectivemathematical models for Contin-
uum Mechanics. This forced him to repeatedly enlarge his background, to
include significant parts of modern mathematics. Del Piero is a true engi-
neer: he deeply knows the correct “practice” needed to construct in an ef-
ficient ways structures and complex engineering devices. In a pretty semi-
nar about the “Domes,” (http://www.sdelevicivita.it/2012/11/seminar-by-prof-
gianpietro-del-piero-title-domes/) their constructive properties and the history
of their construction during the centuries, he managed to show to the audience
how the knowledge of the most practical aspects of structural engineering cannot
be separated from the mastering of important parts of theoretical mechanics.

Professor Del Piero is one of the first mechanicians who, since the very be-
ginning of their diffusion outside the cultural environment of pure mathematics,
understood the impact and importance that measure theory and many aspects
of functional analysis may have in continuum mechanics.

His appreciation of the powerful tools supplied by functional analysis began
as early as 1974, when he became assistant professor of Variational Methods
at the Universita di Pisa, in this way starting the construction of the strong
mathematical background on which he based his whole scientific activity.

The reader who looks at his list of publications and his CV discovers that
he applied sophisticated mathematics to model the mechanical behavior of con-
crete, brick walls, maintenance and durability of concrete structures, ductile-
brittle transition in engineering materials, and many other phenomena in struc-
tural mechanics, plasticity, damage propagation, viscoelasticity, cohesion and
adhesion.
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He also was involved in the conception of experimental measurements and
numerical codes developed by younger researchers, always using his theoretical
knowledge to choose the appropriate methodologies.

Professor Del Piero has been a paladin of theoretical knowledge as an essen-
tial tool in engineering sciences, in a time in which mathematics and any form
of theoretical knowledge are being more or less openly disdained.

He is one of the most skilled contemporary experts of fracture and plasticity.
He is well aware of the importance of a careful description of the phenomena.
For this, he resorts to the main tool which human mind conceived for problem
solving, that is, what Galileo called “the language of mathematics”.

Even if he has been sometimes considered as a crypto-mathematician infil-
trated among the engineers or, conversely, as an engineer infiltrated in among
the mathematicians, what he did was simply to follow his Archimedean point
of view: mathematics is a tool which the engineer has to master if he wants to
master the real world. This point of view we share with him, and for this reason
it was a great pleasure and honor to be called to edit this special issue.We hope
that Prof. Del Piero, now free of all kind of obligation, will eventually devote
himself exclusively to the activity he likes more: research.

Gianpietro Del Piero: a continuator of the Italian tradition in
continuum mechanics, as started by Gabrio Piola

I had the opportunity to meet Gianpietro Del Piero only recently. Indeed,
even if I followed several of his inspired lectures and seminars during the years,
I did not have the occasion of talking with him on scientific subjects until
2010. This occasion came with a decision of the Scientific Committee of the
First Sperlonga Summer School on Mechanics and Engineering Sciences, held
in September 2011, whose subject was “Atomistic and continuum descriptions
of microstructures”.

Indeed, agreeing with the proposal of Antonio Di Carlo, the Committee
decided to put Prof. Del Piero and Prof. Presutti in charge for the 2011 edition
of the school. In order to organize the school, Prof. Del Piero visited me several
times, discussed with me about many scientific and non-scientific subjects, and
shared with me his vision about many aspects of life and his experience about
academy, science and human beings.

A consequence of these meetings was that I was able to better understand
my own papers, thanks to the deep criticisms of their foundations made by Prof.
Del Piero. Also, I understood better some of his papers. A few months later,
with the support of Samuel Forest, I decided to submit to the Editor-in-chief of
Continuum Mechanics and Thermodynamics a proposal for the present special
issue, which gathers some of the contributions presented at the Symposium in
honor of Gianpietro Del Piero, in occasion of his retirement. This event took
place at the end of the School cited above.
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(http://www.sdelevicivita.it/category/videolezioni/symposiumdelpiero/) Later,

Samuel and myself decided to extend the invitation to publish a paper in this
special issue to other scientists working in the same area and sharing the taste
for rigorous presentations.

Since our first meeting at the Smart Materials and Structures Laboratory in
Cisterna di Latina, I had the pleasure to meet Gianpietro periodically, and to
discuss with him a lot: during these meetings, projects for joint papers started
to be made.

I am not sure that any paper will be completed rapidly, because, as I have
learnt quickly, the most demanding reviewer of Del Piero’s papers is Del Piero
himself. T have seen him to abandon a nearly completed paper, which many of
our colleagues would have considered a good one, simply because he considered
it not original enough.

In a time of h-indices, impact factors, and citations counting, this sound
attitude toward publishing activity is an example to be followed: it is indeed
absolutely useless, except maybe for somebody’s career or somebody’s else in-
flated self-esteem, to publish papers with a poor innovative content. In another
occasion, I had the opportunity of discussing about these subjects, and many
others related to Ancient Science, with Gianpietro and Lucio Russo, the author
of the remarkable book “The Forgotten Revolution” published by Springer. In-
deed T discovered, with my great intellectual amusement, that Gianpietro had
enthusiastically read the book and that he was eager to discuss with the author.

The dinner which the three of us had was a true intellectual enjoyment.We
agreed —for instance— that the decline of the technology in domes construction
was a confirm of Russo’s ideas about the general decline of science and technol-
ogy. Moreover, we agreed that the risks of a degradation of scientific knowledge
are always present and that in our times, they seem to be particularly dangerous.

Gianpietro Del Piero is not writing so many papers, because he is ponder-
ing them seriously. However, he does not suffer of the disease of extreme and
compulsive perfectionism: he manages to be happy with a good approximation
of perfection. Therefore, he manages, by means of carefully written papers, to
spread his sometimes very original ideas and scientific conceptions.

In the same way, his lectures are rigorous, precise and demanding, very
demanding. The audience is asked to reason step by step with him to follow
the arguments which he presents at a breathtaking rhythm. He demands to his
audience much less than he demanded to himself while preparing his lectures,
but still the majority of the persons suffer the great intellectual effort they
require.

In many aspects, he is a continuator of Piola’s scientific work: Gianpietro
Del Piero was among those who infused in (Continuum) Mechanics some of the
mathematical rigor needed for its development. Like Piola, he used advanced
mathematical tools to found Continuum Mechanics on solid bases, but, like
Piola, he never lost contact with applications. One night, after a glass of wine,
he admitted that he had another very important point in common with Piola:
they both share their family names with an outstanding football player!

Gianpietro belongs to the age of reason: his vision of life is based on the
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rational analysis of problems and on the effort of finding rational solutions. He
is also a very opinionated person: his beliefs are strong as is his personality. I
personally do not agree with many of his opinions: however, we managed to
discuss peacefully about our divergent opinions, because, perhaps contrary to
common belief, Gianpietro is very tolerant and open minded. In his political,
scientific and cultural battles, he always fought in absolute good faith, and he
is capable to understand and admit when and where he was wrong.

As happened to many “caposcuola’ (i.e. leaders of a scientific group), he
played an eminent role in academic politics during his career. Although some
of his choices were considered controversial, I am persuaded that also in this
role he tried to do his best for the advancement of science and for the well-
being of Italian academic institutions. Looking at his scientific results and at
his academic choices, I hope that for a long time, after his retirement, he will
be given the force to continue his intellectual activity.

For his life, he worked

AD SCIENTIARUM HAUSTUM ET SEMINARIUM DOCTRINARUM

towards a source of science and a seedbed of doctrine,

as demanded by Frederick the Second Hohenstaufen to the professors of my
Alma Mater.

The academic and scientific activity of a “Maestro” in applied
mechanics: Laudatio of Professor Antonio Di Carlo, Universita di
Roma TRE (Italy)

Antonio Di Carlo, both as scientist and professor, is open minded, creative
and original. His elocution is impeccable, elegant and appropriate, his lectures
suggestive, deep and informative, his mastery of Mathematics and Mechanics
exceptional. I had the privilege of being his assistant professor when he was
Chair of Structural Mechanics at the beginning of my career. I greatly enjoyed
his lectures, gaining from them a deep and thoroughly documented insight into
continuum and structural mechanics, thanks to the collection of files and doc-
uments that he prepared for his students. I learned — working with him — how
to adapt my lectures to the audience, how to effectively prepare serious written
tests and how to fairly examine students during an oral examination. I also
learned to be more demanding and self-critical when writing my own papers.

The lessons of Professor Di Carlo would not be fully learned, however, by
limiting attention to a rhetoric laudatio without discussing some of the most
controversial aspects of his academic personality. Indeed, the apparent impact
of his research in the literature of mechanical science would seem less compelling
than it actually is. In the Hellenistic tradition, also exemplified, for example,
by Bacon, a large role in the transmission and advancement of science is at-
tributed to the melitta; that is, the scientist acting as a bee that flies from one
flower to the other carrying with it the pollen of knowledge. Melittas do not
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leave written traces of their work on the elaboration of ideas and the trans-
mission of knowledge. Even more important is their work of selection: they
decide which information has to be transmitted to a given scientist whose com-
petence they believe is needed to advance a particular field of study. They tend
to disappear behind the knowledge they transmit and behind the papers that
they eventually author explicitly. Therefore, while their original contributions
to the advancement of science may be regarded as invaluable, they are often
hidden and invariably underestimated. The attitude of Professor Di Carlo to-
wards perfection in presenting his work in written form magnified his tendency
to transmit it mainly in oral form during seminars, conferences and scientific
discussions. Antonio is the most generous academician whom I have ever met
— especially with younger scientists: he dedicated many hours to the scientific
training of many more scientists than is apparent.

I am proud to publicly recognizemy personal debt to him on this occasion
and honoured by the friendship and esteem that he has always manifested to
me, albeit dispassionately. He has a shy and, at the same time, sarcastic tem-
perament and has always been strong with the strongest and weak with the
weakest while refraining from any opportunistic behaviour; therefore, he cannot
be accused of being a good politician. However, he is the best, most effective
and honest department head I know of, this having been recognized and cor-
roborated by his election to the office twice. For this reason, when discussing
with Professor Steigmann an appropriate way to honour Professor Di Carlo’s
achievements, we finally decided to invite promising young scientists to submit
dedicated papers to the normal issues of Mathematics and Mechanics of Solids,
subsequent to the publication of this laudatio, including the simple statement:
“Dedicated to Prof. Antonio Di Carlo in recognition of his academic activity”.
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