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GENERIC PROPERTIES OF CLOSED ORBITS OF

HAMILTONIAN FLOWS FROM MAÑÉ’S VIEWPOINT

L. RIFFORD AND R. RUGGIERO

Abstract. We show the genericity from the viewpoint of Mañé of generic prop-
erties (as symplectic linear maps) of the differential of Poincaré maps of periodic
orbits of Hamiltonians. Combining this result and the work of Oliveira [19] we
get a Kupka-Smale type theorem ” à la Mañé” for regular energy levels of Tonelli
Hamiltonians in compact manifolds. Our proof relies on techniques from geometric
control theory.

1. Introduction

The remarkable work of Ricardo Mañé about Aubry-Mather theory for C∞, con-
vex, superlinear Lagrangians L : TM −→ R, or Tonelli Lagrangians, gives us the
starting point of a program to understand genericity of Lagrangians and Hamilto-
nians from a special point of view. Genericity for a certain system property means
dense or Baire genericity of the family of systems enjoying such property in an
appropriate topological space.

Definition 1.1. Let M be a C∞ compact manifold. We say that a property P of
Ck Tonelli Lagrangians in M , L : TM −→ R, is Mañé Cr generic, for r ≤ k if
there exists a Cr generic set of Ck functions U : M −→ R such that the property
P holds for each Lagrangian of the form LU(p, v) = L(p, v) − U(p). We shall say
that P is Mañé Cr generic. This definition proceeds for Hamiltonians H replacing
LU = L − U by HU = H + U . Analogously, we define the Mañé C∞ genericity of a
property P by replacing Ck, Cr by C∞ in the above statement.

The family LU(p, v) = L(p, v) + U(p) of Lagrangians is a very natural family of
conservative systems: when L(p, v) = 1

2
gp(v, v) is a Riemannian metric, the above

Lagrangians are just mechanical Lagrangians. The study of the genericity from
Mañé’s view point amounts to study perturbations of Lagrangians or Hamiltoni-
ans obtained just by adding a small scalar function to the Lagrangian, or a small
potential in the terminology of classical mechanics. In the Riemannian case, such
perturbations correspond to conformal perturbations of the Riemannian metric.
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The simplicity of the idea of perturbing just by adding small potentials, and
the deep preliminary results obtained by Mañé about generic properties of Aubry-
Mather sets (invariant objects of Lagrangian systems with action minimizing prop-
erties) had a strong appeal to researchers in classical mechanics and dynamical
systems. Since Mañé’s initial paper [15], a great deal of work has been devoted to
understand generic properties of systems from this point of view (see Massart [16],
Contreras [6], Contreras and Iturriaga [7], Contreras and Paternain [8], Oliveira
[19], Ruggiero [23], etc..), specially to solve his famous conjecture about the generic
uniqueness of the Aubry-Mather set in a specified homology class (see Bernard and
Contreras [5] or Figalli and Rifford [11, 12]). However, the apparent simplicity of this
sort of perturbations is in contrast with the highly technical difficulties arising from
the fact that this family of perturbations is a very restricted one. As we mentioned
before, in the case of Riemannian metrics Mañé’s genericity is equivalent to attain
generic properties of geodesic flows just by considering conformal perturbations of
metrics.

This point of view of genericity leads to many interesting questions concerning
the usual theory of generic dynamical systems: Is the Ck genericity theory of La-
grangians (Hamiltonians) equivalent to Mañé Ck genericity? Does the celebrated C1

closing lemma for flows hold for perturbations of Lagrangians by potentials? Remark
that the C1 closing lemma for geodesic flows is not known (see Rifford [20] for a proof
of the C0 closing lemma for geodesic flows just by adding small C1 potentials to the
metric). Classical results of generic properties of the Poincaré map of closed orbits
are due to Abrahams [1], Anosov [3] (the so-called bumpy metric theorem); and by
Klingenberg-Takens [13] for Hamiltonians. Robinson [21, 22] showed the Kupka-
Smale theorem for Hamiltonian flows; and Devaney [10] showed the Kupka-Smale
theorem for reversible flows, namely, flows commuting with an involution defined
in the manifold (like Hamiltonian flows of mechanical Lagrangians). None of the
proofs of these results proceeds when perturbing the Hamiltonian by potentials.

In this article we consider the Kupka-Smale theorem for Hamiltonian flows from
Mañé’s viewpoint. The Kupka-Smale theorem, one of the first important results
about generic properties of dynamical systems, asserts that the set of Ck diffeomor-
phisms and flows in a compact manifold satisfying the following two properties:

(1) All closed orbits are hyperbolic.
(2) Heteroclinic orbits are transversal, i.e., the intersection between stable and

unstable manifolds of closed hyperbolic orbits are transversal,

is Cr dense for every r ≤ k and C1 residual in the set of diffeomorphisms. For con-
servative dynamical systems it is well known that the genericity of closed hyperbolic
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orbits is not true due to the symplectic properties of the differential of the Poincaré
transform. So an appropriate version of the Kupka-Smale theorem for Hamiltonians
in our setting would be that Ck systems, k ≥ 2, satisfying the following properties:

(1) Each closed orbit is either hyperbolic or no eigenvalue of the Poincaré trans-
form of any closed orbit is a root of unity.

(2) Heteroclinic orbits are transversal, i.e., the intersection between stable and
unstable manifolds of closed hyperbolic orbits are transversal,

are Cr generic for every r ≤ k from Mañé’s viewpoint (k might be ∞).
The problem has been already considered by Oliveira [19] who shows the Kupka-

Smale theorem for energy levels of Hamiltonians in compact surfaces from the point
of view of Mañé, (assuming that genericity for potentials means density). Actually,
in [19] the Mañé C∞ genericity of the transversal intersections of stable and unstable
submanifolds of closed orbits is proved for n-dimensional compact manifolds So item
(2) holds in fact for any dimension.

The proof of item (1) in [19] has two steps as in the usual proof of Kupka-Smale
theorem for diffeomorphisms and flows. First of all, it is proved a transversality
result, which holds in any dimension, called in [19] the reduction lemma: given an
energy level, and given T > 0, the set of Hamiltonians whose Hamiltonian flows
in the level have a finite number of closed orbits of period at most T is Mañé C∞

generic. The reduction lemma implies that item (1) follows from the proof of the
genericity of the required spectral properties in each single orbit. This last step
of the Kupka-Smale theorem is showed in [19] in dimension 2 (see Theorem 18 in
[19]). Our contribution to the problem is the proof of the last step in any dimension,
concluding in this way the proof of the Kupka-Smale theorem from the point of view
of Mañé.

Theorem 1.2. Let M be a C∞ compact manifold M and H : T ∗M −→ R be a Ck

Tonelli Hamiltonian, k ≥ 2. Given a regular energy level H−1(E) of H, a closed
orbit θ ∈ H−1(E) and ǫ > 0, there is a C∞ function U : M −→ R whose Ck norm is
at most ǫ such that the Hamiltonian HU(p, q) = H(p, q)+U(p) satisfies the following
properties:

(1) θ is a closed orbit of the Hamiltonian flow of HU with the same period and
energy E.

(2) The differential of the Poincaré map of the orbit of θ with respect to the
Hamiltonian flow of HU is generic in the set of symplectic linear transforma-
tions: each eigenvalue of the Poincaré map is either unitary and not a root
of 1, or is not unitary.
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The usual approach to tackle Theorem 1.2 is essentially the following. Let us
consider perturbations of the Hamiltonian preserving a small subset γ([a, b]) given
by the canonical projection of a closed orbit φt(θ) = (γ(t), β(t)) of the Hamiltonian
flow. Then it is not difficult to write the perturbed differential of the Poincaré map
in terms of the differential of the initial Poincaré map. In appropriate coordinates,
this is given in terms of the perturbation of a Jacobi equation associated to the
Hamiltonian flow. The differential of a perturbed Poincaré map satisfies a first order
ordinary linear system whose homogeneous part is the differential of the unperturbed
one. So the goal is to show that the collection of perturbed fundamental solutions
of this family of systems whose initial conditions coincide with an unperturbed
fundamental solution at γ(a) attains an open set of symplectic matrices at γ(b).
This transversality statement can be proved in many ways, typically involving an
integration of the perturbed system, a procedure posing highly technical problems.

Our strategy is to avoid integration by using tools of geometric control theory:
the above problem can be set as a controllability problem. Control theory ideas
give rise to a much simpler, geometric proof of Theorem 1.2 compared with previous
works in the literature about generic properties of Poincaré maps of closed orbits of
Hamiltonians.

Acknowledgements: We would like to thank Professor Mário Jorge D. Carneiro
from the Universidade Federal de Minas Gerais, and Professor Elismar Oliveira from
the Universidade Federal de Rio Grande do Sul, for fruitful discussions about the
subject.

2. Preliminaries in control theory

Our aim here is to provide simple sufficient conditions for local controllability
results. This kind of results could be developped for nonlinear control systems on
smooth manifolds. For sake of simplicity, we restrict our attention here to the case
of affine control systems on the set of (symplectic) matrices. We refer the interested
reader to [9] for a further study in control theory.

Let us a consider a control system on M2m(R) (with m, k ≥ 1), of the form

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ui(t)Bi(t)X(t), for a.e. t,(1)

where the state X(t) belongs to M2m(R), the control u(t) belongs to Rk, and t ∈
[0, T ] 7→ A(t), B1(t), . . . , Bk(t) are k + 1 smooth maps valued in M2m(R) (with
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T > 0). Given X̄ ∈ M2m(R) and ū ∈ L1
(

[0, T ]; Rk
)

, the Cauchy problem

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ūi(t)Bi(t)X(t), for a.e. t, X(0) = X̄,(2)

possesses a unique maximal solution XX̄,ū(·) defined on a maximal interval of the
form [0, TX̄,ū) with TX̄,ū ∈ [0, T ]. Given X̄ ∈ M2m(R), we denote by UX̄ the set of

controls u ∈ L1
(

[0, T ]; Rk
)

such that TX̄,u = T . The set UX̄ is an open (possibly

empty) subset of L1
(

[0, T ]; Rk
)

. The End-Point mapping associated with X̄ in time
T (here we assume that the set is UX̄ is nonempty) is defined as

EX̄ : UX̄ −→ M2m(R)
u 7−→ XX̄,u(T ).

It is a smooth mapping. Given X̄ ∈ M2m(R), ū ∈ UX̄ , and setting X̄(·) := XX̄,u(·),

the differential of EX̄ at ū is given by the linear operator

dEX̄(ū) : L1
(

[0, T ]; Rk
)

−→ M2m(R)
v 7−→ Y (T ),

where Y (·) is the unique solution to the Cauchy problem
{

Ẏ (t) = A(t)Y (t) +
∑k

i=1 vi(t)Bi(t)X̄(t) for a.e. t ∈ [0, T ],
Y (0) = 0.

(3)

Note that if we denote by S(·) the solution to the Cauchy problem

(4)

{

Ṡ(t) = A(t)S(t),
S(0) = In,

then there holds

dEX̄(ū)(v) =
k
∑

i=1

S(T )

∫ T

0

vi(t)S(t)−1Bi(t)X̄(t) dt,(5)

for every v ∈ L1([0, T ]; Rk).

Let Sp(m) be the symplectic group in M2m(R) (m ≥ 1), that is the smooth
submanifold of matrices X ∈ M2m(R) satisfying

X∗
JX = J where J :=

[

0 Im

−Im 0

]

.
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Denote by S(2m) the set of symmetric matrices in M2m(R). The tangent space to
Sp(m) at the identity matrix is given by

TI2m
Sp(m) =

{

Y ∈ M2m(R) | JY ∈ S(2m)
}

.

Therefore, if there holds

JA(t), JB1(t), . . . , JBk(t) ∈ S(2m) ∀t ∈ [0, T ],(6)

then Sp(m) is invariant with respect to (1), that is for every X̄ ∈ M2m(R) and
ū ∈ UX̄ ,

XX̄,u(t) ∈ Sp(m) ∀t ∈ [0, T ].

In particular, this means that for every X̄ ∈ Sp(m), the End-Point mapping EX̄ is
valued in Sp(m). Our aim is now to provide a sufficient condition of local control-
lability in Sp(m).

Proposition 2.1. Let T > 0, and t ∈ [0, T ] 7→ A(t), B1(t), . . . , Bk(t) ∈ M2m(R) be
smooth mappings satisfying (6). Define the k sequences of smooth mappings

{Bj
1}, . . . , {B

j
k} : [0, T ] → TI2m

Sp(m)

by
{

B0
i (t) := Bi(t)

Bj
i (t) := Ḃj−1

i (t) + Bj−1
i (t)A(t) − A(t)Bj−1

i (t),
(7)

for every t ∈ [0, T ] and every i ∈ {1, . . . , k}. Assume that there exists some t̄ ∈ [0, T ]
such that

Span
{

Bj
i (t̄) | i ∈ {1, . . . , k}, j ∈ N

}

= TI2m
Sp(m).(8)

Then for every X̄ ∈ Sp(m) such that ū ≡ 0 belongs to UX̄ ⊂ L1([0, T ]; Rk) (associated
with (1)), there holds

dEX̄
(

L1
(

[0, T ]; Rk
))

= TX̄(T )Sp(m),(9)

with X̄(T ) := XX̄,u(T ).

Proof. We need to show that dEX̄ : L1([0, T ]; Rk) → TX̄(T )Sp(m) is surjective. If
not, there exists a nonzero matrix Y ∈ M2m(R) such that

X̄(T )∗JY ∈ S(2m)

and

Tr
(

Y ∗dEX̄(ū)(v)
)

= 0 v ∈ L1
(

[0, T ]; Rk
)

.



GENERIC PROPERTIES OF HAMILTONIAN FLOWS FROM MAÑÉ’S VIEWPOINT 7

By (5), this can be written as

k
∑

i=1

∫ T

0

vi(t)Tr
(

Y ∗S(T )S(t)−1Bi(t)X̄(t)
)

dt = 0 ∀ v ∈ L1
(

[0, T ]; Rk
)

.

Taking for every i ∈ {1, . . . , k},

vi(t) := Tr
(

Y ∗S(T )S(t)−1Bi(t)X̄(t)
)

∀t ∈ [0, T ],

we deduce that (v(·) is smooth on [0, T ], so it belongs to L1
(

[0, T ]; Rk
)

)

k
∑

i=1

∫ T

0

[

Tr
(

Y ∗S(T )S(t)−1Bi(t)X̄(t)
)]2

dt = 0,

which implies

(10) Tr
(

Y ∗S(T )S(t)−1Bi(t)X̄(t)
)

= 0 ∀ t ∈ [0, T ].

The above equality at t = t̄ yields

Tr
(

Y ∗S(T )S(t̄)−1B0
i (t̄)X̄(t̄)

)

= 0.

Using that d
dt

(S(t)−1) = −S(t)−1A(t), ˙̄X(t) = A(t)X̄(t) and differentiating (10) at
t = t̄ gives

Tr
(

Y ∗S(T )
(

−S(t̄)−1A(t̄)
)

B0
i (t̄)X̄(t̄)

)

+ Tr
(

Y ∗S(T )S(t̄)−1Ḃ0
i (t̄)X̄(t̄)

)

+ Tr
(

Y ∗S(T )S(t̄)−1B0
i (t̄)
(

A(t̄X̄(t̄)
))

= 0.

Which can be written as

Tr
(

Y ∗S(T )S(t̄)−1B1
i (t̄)X̄(t̄)

)

= 0.

Differentiating again and again yields that

Tr
(

Y ∗S(T )S(t̄)−1Bj
i (t̄)X̄(t̄)

)

= 0 ∀j ∈ N, ∀i ∈ {1, . . . , k}.(11)

Let us show that all the matrices S(T )S(t̄)−1Bj
i (t̄)X̄(t̄) belong to TX̄(T )Sp(m). For

that we need to prove that for any i ∈ {1, . . . , k} and any j ∈ N,

X̄(T )∗J
(

S(T )S(t̄)−1Bj
i (t̄)X̄(t̄)

)

∈ S(2m).

Since ū ≡ 0, there holds

X̄(T ) = S(T )X̄ and X̄(t̄) = S(t̄)X̄.
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Then

X̄(T )∗J
(

S(T )S(t̄)−1Bj
i (t̄)X̄(t̄)

)

= X̄(T )∗JX̄(T )X̄−1S(t̄)−1Bj
i (t̄)X̄(t̄)

= JX̄−1S(t̄)−1Bj
i (t̄)X̄(t̄)

= JX̄(t̄)−1Bj
i (t̄)X̄(t̄)

= X̄(t̄)∗JBj
i (t̄)X̄(t̄).

We conclude by (6). Since the matrix S(T )S(t̄)−1 is invertible and (8) holds, we
infer that

Tr (Y ∗H) = 0 ∀H ∈ TM̄(T )Sp(m),

which yields a contradiction. �

As a corollary, we deduce a local controllability property on Sp(m). We recall
that Sp(m) has dimension p := 2m(2m + 1)/2.

Proposition 2.2. Assume that assumptions of Proposition 2.1 hold. Then, for
every X̄ ∈ Sp(m) such that ū ≡ 0 belongs to UX̄ ⊂ L1([0, T ]; Rk), there are µ, ν > 0,
p smooth controls u1, · · · , up : [0, T ] → Rk with Supp(uj) ⊂ (0, T ) for j = 1, . . . , p
and a smooth mapping

U = (U1, · · · , Up) : B
(

X̄(T ), µ
)

∩ Sp(m) −→ B(0, ν)

with U
(

X̄(T )
)

= 0 such that

EX̄

(

p
∑

j=1

Uj(X)uj

)

= X ∀X ∈ B
(

X̄(T ), µ
)

∩ Sp(m).

Proof. From Proposition 2.1, we know that the mapping EX̄ : UX̄ → Sp(m) is a
smooth submersion at ū. Thus, remembering that the set of controls u ∈ C∞

(

[0, T ]; Rk
)

with Supp(u) ⊂ (0, T ) is dense in L1
(

[0, T ]; Rk
)

, there are p smooth controls u1, . . . , up :

[0, T ] → Rk with Supp(uj) ⊂ (0, T ) for j = 1, . . . , p such that

Span
{

dEX̄(ū)(uj) | j = 1, . . . , p
}

= TX̄(T )Sp(m).(12)

Let Λ > 0 be such that, for every λ ∈ B(0, Λ), the control
∑p

j=1 λju
j belongs to UX̄ .

Define F : B(0, Λ) → Sp(m) by

F (λ) := EX̄
(

ū +

p
∑

j=1

λju
j
)

∀λ = (λ1, . . . , λp) ∈ B(0, Λ).
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The function F is well-defined, smooth on B(0, Λ), and satisfies F (0) = EX̄(ū) =
X̄(T ). Its differential at λ = 0 is given by

dF (0)(λ) =

p
∑

j=1

λjdEX̄(ū)(uj) ∀λ ∈ R
p,

hence it is invertible by (12). By the Inverse Function Theorem, there are µ, ν > 0
and a smooth function

U = (U1, . . . , Up) : B
(

X̄(T ), µ
)

∩ Sp(m) −→ B(0, ν)

with U
(

X̄(T )
)

= 0 such that

EX̄
(

ū +
k
∑

i=1

Ui(z)ui
)

= z ∀ z ∈ Bk
(

X̄(T ), µ
)

∩ Sp(m).

This concludes the proof.
�

3. Perturbations of the Hamiltonian by potentials and their effect

over the Hamiltonian flow

Let M be a C∞ compact manifold M of dimension n ≥ 2 and H : T ∗M −→ R

be a Ck Tonelli Hamiltonian, k ≥ 2. Let us consider the Hamiltonian flow φt :
H−1(E) −→ H−1 in a regular energy level H = E, and let θ = (γ, β) : [0, T ] →
H−1(E) be a closed orbit of period T . Consider a section S ⊂ H−1(E) transverse to

θ([0, T ]) at θ(0) and denote by Φ : S → S the Poincaré return map. Set X̂ := dΦ. It
is a linear symplectic mapping from Tθ(0)S onto itself. Any Ck potential U : M → R

such that

U(γ(t)) = 0, dγ(t)U = 0 ∀t ∈ [0, T ],

preserves the closed orbit θ and its energy level. If U is small enough in a neighbor-
hood of γ([0, T ]), the Poincaré return map ΦU : S → S associated to the Hamiltonian
flow of HU in H−1

U (E) and its differential dΦU : Tθ(0)S → Tθ(0)S are well-defined.
Our aim is to show that the set of dΦU for U as above small enough contains an open
subset of the set of linear symplectic matrices from Tθ(0)S onto itself. We mention
that in the construction that will be performed in the sequel, restricting to smaller
interval [a, b] ⊂ [0, T ], we may always assume that

γ(t) ∩ γ ([0, T ] \ {t}) = ∅ ∀t ∈ [a, b].
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3.1. Good coordinates for the Hamiltonian flow along a non-singular orbit.

The following result is proved in [12] (see [12, Lemma C.1]) after an application of a
Lemma obtained by Li and Nirenberg (Lemma 3.1 in [14]). Let π : T ∗M −→ M be
the canonical projection, let Ψ : O ⊂ M −→ B ⊂ Rn be a local coordinate system
for M , Ψ(x) = (p1(x), p2(x), .., pn(x)), let (p, q) be the canonical coordinates in T ∗M
associated to Ψ, where q = Ψ∗p represents the coordinates of 1-forms induced by
the dual forms dpi of the coordinate vector basis.

Lemma 3.1. Let θ([a, b]) be a non-singular orbit of the Hamiltonian flow of H
without self-intersection. Let x = π(θ). Up to do a translation in the q variable
and to take a smaller interval, there exist local coordinates Φ : O ⊂ M −→ Rn,
Φ = (p1, p2, .., pn), where O is an open neighborhood of x and Φ(x) = 0, such that
the Hamiltonian H̄ = Φ∗H defined in an open set V × Rn ⊂ Rn × Rn satisfies the
following properties:

(1) The orbit of H̄ through (0, e1) is φ̄t(0, e1) = (te1, e1) for every t ∈ [a, b].
(2) In the coordinates (p, q) the Hamiltonian satisfies

(i) ∂2H̄
∂pi∂qj

(φ̄t(0)) = 0 for any i, j = 1, . . . , n.

(ii) ∂2H̄
∂q1∂qj

(φ̄t(0)) = 0 for any j = 2, . . . , n.

(iii) The (n−1)×(n−1) matrix whose entries are ∂2H̄
∂qi∂qj

(φ̄t(0)), 2 ≤ i, j,≤ n,

is the identity matrix In−1.

Let us make some remarks about Lemma 3.1. It can be viewed as a generalization
of well known special coordinate systems defined along Riemannian or Finslerian
geodesics. Indeed, in the case of Riemannian geometry such coordinate system is
given by Fermi coordinates (see [23] for instance), in the case of Finsler geometry
the coordinate system arises from the existence of the Chern-Rund connection (see
[4] for the definition), which is a covariant derivative defined along each Finslerian
geodesic behaving just as a Riemannian connection. Notice that item (2) (ii) is a
generalization of the notion of parallelism of the coordinate vector fields along the
orbit φ̄t(θ). In both (Riemannian and Finsler) cases, we can represent the differential
of the geodesic flow in the unit tangent bundle along an orbit by a one parameter
family of matrices W (t) satisfying a first order system of the form:

W ′(t) =

(

0 I
−K(t) 0

)

W (t).

The matrix W (t) represents a basis of Jacobi fields and its derivatives defined in the
orbit, and the matrix K represents the sectional curvatures (flag curvatures in the
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Finsler case) of planes formed by the tangent vector of the geodesic associated to
the orbit and the basis of the coordinate vector fields which are transverse to the
geodesic. So Lemma 3.1 tells us that there exists a sort of Riemannian local form
for the Hamiltonian flow in a neighborhood of a closed, non-singular geodesic, where
the curvature matrix is replaced by the Hessian of the Hamiltonian with respect to
these special coordinates. Moreover,

Lemma 3.2. If a property of H̄ is Mañé Ck generic, then the same holds for H.

This is just because there is a correspondence between perturbations of H̄ by
locally supported potentials and perturbations of H by potentials that are locally
supported in U .

3.2. Perturbations of the Hamiltonian by quadratic potentials. Applying
Lemma 3.1 to a piece of a closed orbit θ for the Hamiltonian flow of H, we may
assume that θ̄ = (p̄, q̄) = φ̄t(0, e1) : [a = 0, b] → Rn × Rn is an orbit of a Ck Tonelli
Hamiltonian H̄ : Rn × Rn → R satisfying items (1)-(2) of Lemma 3.1. Thanks to
Lemma 3.2, we just need to study generic perturbations of H̄ in a neighborhood V
of p̄([a, b]).

Set m := n − 1, p̂ := (p2, . . . , pn) ∈ Rm for any p = (p1, . . . , pn) ∈ Rn, and fix
δ > 0 such that [a, b] × B(0m, δ) ⊂ V. Pick two C∞ functions c : R −→ R and
τ : Rm → R such that

c
(

te1

)

= τ(p̂) = 1 ∀t ∈ [a, b], ∀p̂ ∈ B(0m, δ/2),

Supp(c) × Supp(τ) ⊂ V ,

and define for every i, j ∈ {1, . . . ,m} the C∞ function σij : Rn −→ R by

σij(p) = c
(

p1

)

τ
(

p̂
)

pi+1pj+1 ∀p ∈ R
n.

For every C∞ function

u =
(

uij

)

i,j=1,...,m

i≤j
: R −→ R

m(m+1)
2

with
Supp(u) ⊂ (a, b),

we define the C∞ potential Uu : Rn → R with Supp(U) ⊂ V by

Uu(p) :=
1

2

m
∑

i=1

uii(p1)σii(p) +
m
∑

i,j=1
i<j

uij(p1)σij(p) ∀p ∈ R
n.
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Since the functions σij and their first derivatives vanish along the segment p̄([a, b]),
the trajectory θ̄ : t ∈ [a, b] → (te1, e1) is an orbit of the Hamiltonian flow of H̄u

given by

H̄u(p, q) = H̄(p, q) + Uu(p) ∀(p, q) ∈ R
n × R

n.

Moreover, the H̄u-energy of the orbit of θ is the same H̄-energy, and from Lemma
3.1 it is straightforward to check (using Hamilton equations) that the 2m-plane
Π ⊂ Rn × Rn defined by

Π =
(

{0} × R
m
)

×
(

{0} × R
m
)

is invariant by the differential of the Hamiltonian flows of H̄, H̄u along θ̄.
Let Wu : [a, b] → M2n(R) be the differential of the Hamiltonian flow of H̄u along

θ̄. By Lemma 3.1 and the choice of the functions uij, the restriction Ŵu of Wu to Π
satisfies the following first order Cauchy problem:

Ŵ ′
u(t) =

(

0 Im

−Ku(t) 0

)

Ŵu(t), Ŵu(a) = I2m,(13)

where Ku(t) is defined from the matrix K(t) :=
(

∂2H̄
∂pi∂pj

(φ̄t(0))
)

i,j=2,...,n
, by the

following formulae:

Ku(t) = K(t) +
m
∑

i=1

uii(t)E(ii) +
m
∑

i,j=1
i<j

uij(t)E(ij),(14)

where the E(ij), 2 ≤ i ≤ j ≤ m are the symmetric m × m matrices defined by

(E(ii))k,l := δikδil ∀i = 1, . . . ,m

and (E(ij))k,l = δikδjl + δilδjk ∀i < j = 1, . . . ,m.

4. Proof of Theorem 1.2

Set m = n − 1, k := m(m + 1)/2 and for sake of simplicity assume from now
that [a, b] = [0, T ]. The formulas (13)-(14) giving Wu(T ) can be viewed as a control
system of the form

Ẋ(t) = A(t)X(t) +
m
∑

i≤j=1

uij(t)E(ij)X(t),(15)
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where the 2m × 2m matrices A(t), E(ij) are defined by

A(t) :=

(

0 Im

−K(t) 0

)

∀t ∈ [0, T ]

and

E(ij) :=

(

0 0
E(ij) 0

)

,

Since our control system has the form (1), all the results gathered in Section 2
apply. Since the E(ij) do not depend on time, we check easily that the matrices
B0

ij, B
1
ij, B

2
ij, B

3
ij associated to our system are constant and given by















B0
ij(t) = E(ij)

B1
ij(t) = [E(ij), A(t)]

B2
ij(t) = [[E(ij), A(t)] , A(t)]

B3
ij(t) = [[[E(ij), A(t)] , A(t)] , A(t)] ,

for every t ∈ [0, T ]. An easy computation yields for any i, j = 1, . . . ,m with i ≤ j
and any t ∈ [0, T ],

[E(ij), A(t)] =

(

−E(ij) 0
0 E(ij)

)

,

[[E(ij), A(t)] , A(t)] =

(

0 −2E(ij)
−E(ij)K(t) − K(t)E(ij) 0

)

,

[[[E(ij), A(t)] , A(t)] , A(t)]

=

(

3E(ij)K(t) + K(t)E(ij) 0
0 −E(ij)K(t) − 3K(t)E(ij)

)

.

In order to apply Proposition 2.2, we need to check (8) for some t̄ ∈ [0, T ]. The
following result holds.

Lemma 4.1. Assume that there is t̄ ∈ [0, T ] such that

dim
(

Span
{

[E(ij), K(t̄)] | i, j ∈ {1, . . . ,m}, i < j
})

=
m(m − 1)

2
.(16)

Then

Span
{

Bl
ij(t̄) | i, j ∈ {1, . . . ,m}, i ≤ j, l = 0, 1, 2, 3

}

= TI2m
Sp(m).
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Proof. Since (6) holds, the following inclusion holds

S := Span
{

Bl
ij(t̄) | i, j ∈ {1, . . . ,m}, i ≤ j, l = 0, 1, 2, 3

}

⊂ TI2m
Sp(m).

So, we just need to show that S has dimension p = 2m(2m + 1)/2. First, since
the matrices E(ij) form a basis of the vector space of symmetric matrices S(m), we
check easily that the vector space

Span
{

Bl
ij(t̄) | i, j ∈ {1, . . . ,m}, i ≤ j, l = 0, 2

}

has dimension m(m + 1). Thanks to the block forms of the matrices Bl
ij(t̄) with

l = 0, 1, 2, 3, it remains to check that under assumption (16) the vector space

Span
{

Bl
ij(t̄) | i, j ∈ {1, . . . ,m}, i ≤ j, l = 1, 3

}

has dimension p − m(m + 1)/2 = m2. We claim that if (16) holds, the vector space

Span
({

B1
ij(t̄) | i, j ∈ {1, . . . ,m}, i ≤ j

}

∪
{

B3
ij(t̄) | i, j ∈ {1, . . . ,m}, i < j

})

has dimension m2. Let us prove the claim arguing by contradiction. Set

F(ij) := B3
ij(t̄) =

(

3E(ij)K(t̄) + K(t̄)E(ij) 0
0 −E(ij)K(t̄) − 3K(t̄)E(ij)

)

,

for any i, j ∈ {1, . . . ,m} with i ≤ j and assume that
m
∑

i,j=1
i<j

aijF(ij) +
m
∑

i,j=1
i≤j

bijB
1
ij(t̄) = 0,(17)

for some aij, bij. By the above formulas, we get
{

∑m
i,j=1
i<j

aij (3E(ij)K(t̄) + K(t̄)E(ij)) +
∑m

i,j=1
i≤j

bij (−E(ij)) = 0
∑m

i,j=1
i<j

aij (−E(ij)K(t̄) − 3K(t̄)E(ij)) +
∑m

i,j=1
i≤j

bij (E(ij)) = 0.

Summing up both lines yields
m
∑

i,j=1
i<j

aij (2E(ij)K(t̄) − 2K(t̄)E(ij)) = 0,

which can be written as
m
∑

i,j=1
i<j

aij [E(ij), K(t̄)] = 0.
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This contradicts assumption (16). Then we deduce that all the aij’s vanish. Return-
ing to (17) and using that the Eij are linearly independent, we conclude easily. �

The result below follows easily from Proposition 2.2 and Lemma 4.1. We set
X̄ := I2m and use the notations defined in Section 2.

Proposition 4.2. Assume that there exists t̄ ∈ [0, T ] such that (16) holds. Then
there are µ, C > 0 such that for every X ∈ Sp(m) with ‖X − X̄(T )‖ < µ, there is a

C∞ function u : [0, T ] → R
m(m+1)

2 such that

Supp(u) ⊂ (0, T ), ‖u‖Ck < C‖X − X̄(T )‖

and

Xu(T ) = X.

Proposition 4.2 shows that as soon as (16) holds for some t̄ ∈ [0, T ], the Hamilton-
ian can be perturbed by small potential in order to reach a small ball of symplectic
matrices around W0(T ). If (16) is never satisfied on [0, T ], we need first to add a
small potential to H̄ in order to satisfy (16) and then we apply Proposition 4.2.
Such strategy is made possible by the following result.

Lemma 4.3. The set of matrices K ∈ S(m) such that

dim
(

Span
{

[E(ij), K] | i, j ∈ {1, . . . ,m}, i < j
})

=
m(m − 1)

2

is open and dense in S(m).

Proof. First, note that if K, K ′ belong to S(m) then [K, K ′] is skew-symmetric.
Denote by S−(m) the set of m×m skew-symmetric matrices, it is a vector space of
dimension m(m − 1)/2. Define the linear mapping

Φ : S(m) −→ (S−(m))
m(m−1)

2

K 7−→
(

[Eij, K]
)

i,j=1
i<j

We need to check that there is an open dense set of K ∈ S(m) such that the
m(m − 1)/2 coordinates of Φ(K) are linearly independent in S−(m) this amounts
to show that the determinant of Φ(K) does not vanish identically in S(m). Define
K̄ ∈ S(m) by

K̄rs := rδrs ∀r, s = 1, . . . ,m.

It is a diagonal matrix whose the coefficients are all distincts. We check easily that
det (Φ(K)) 6= 0. Thus the set of symmetric matrices K such that det(Φ(K)) is an
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algebraic submanifold of S(m) of dimension at most m(m + 1)/2 − 1. This shows
that its complement is open and dense in S(m). �

5. Proof of the Kupka-Smale Theorem

The proof of the Mañé’s generic transversality of the intersection between invariant
submanifolds of hyperbolic periodic orbits was proved by Oliveira [19]. Concerning
the Mañé generic version of the closed orbits claimed in the Kupka-Smale theorem,
Oliveira in [19] shows that it follows from the following statement (Theorem 18 in
[19]):

Theorem 5.1. Let H : T ∗M → R be a Tonelli Hamiltonian, and let γ ⊂ H−1(E) be
a periodic orbit contained in the regular energy level H−1(E) with minimal period T .
Suppose that γ is isolated in its energy level, non-degenerate of order ≤ m ∈ N. Then
there exists a potential U0 ∈ C∞(M, R) arbitrarily close to zero, with supp(U0) ⊂
U ⊂ M open, arbitrarily small, such that, γ is nondegenerated of order ≤ 2m to
H + U0.

We recall that a closed orbit γ is non-degenerate of order m ∈ N if its minimum
period is at most m and no root of unity is an eigenvalue of the differential of the
Poincaré map of γ. This theorem is proved in [19] in dimension 2.

The proof in the case of dimension n follows from Proposition 4.2 and Lemma 4.3,
where we showed that an open set of symplectic matrices is attained by a family of
differentials of Poincaré maps of the closed orbit θ obtained by perturbing the initial
Hamiltonian H by adding small potentials. The set of matrices whose eigenvalues are
either hyperbolic or unitary complex numbers whose imaginary part is irrational is
dense. It is clear that if the Poincaré transform of a closed orbit has these properties,
then the closed orbit will be m non-degenerate for every m. This finishes the proof
of Theorem 5.1 in any dimension.
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