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NECESSARY AND SUFFICIENT CONDITIONS
FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS

ON RIEMANNIAN MANIFOLDS

A. FIGALLI, L. RIFFORD, AND C. VILLANI

Abstract. In this paper we investigate the regularity of optimal transport maps
for the squared distance cost on Riemannian manifolds. First of all, we provide
some general necessary and sufficient conditions for a Riemannian manifold to sat-
isfy the so-called Transport Continuity Property. Then, we show that on surfaces
these conditions coincide. Finally, we give some regularity results on transport
maps in some specific cases, extending in particular the results on the flat torus
and the real projective space to a more general class of manifolds.

1. Introduction

Let µ, ν be two probability measures on a smooth compact connected Riemannian
manifold (M, g) equipped with its geodesic distance d. Given a cost function c :
M ×M → R, the Monge-Kantorovich problem consists in finding a transport map
T : M →M which sends µ onto ν (i.e. T#µ = ν) and which minimizes the functional

min
S#µ=ν

∫

M

c(x, S(x)) dµ(x).

In [24] McCann (generalizing [2] from the Euclidean case) proved that, if µ gives
zero mass to countably (n− 1)-rectifiable sets, then there is a unique transport map
T solving the Monge-Kantorovich problem with source measure µ, target measure ν,
and cost function c = d2/2. Moreover, T takes the form T (x) = expx

(
∇xψ

)
, where

ψ : M → R is a c-convex function (see [26, Chapter 5]). From now on, the cost
function we consider will always be c(x, y) = d(x, y)2/2. The purpose of this paper
is to study whether the optimal map can be expected to be continuous or not.

Definition 1.1. Let (M, g) be a smooth compact connected Riemannian manifold
of dimension n ≥ 2. We say that (M, g) satisfies the transport continuity property
(abbreviated T CP)1 if, whenever µ and ν are absolutely continuous measures with

1Compare with [13, Definition 1.1], where a slighty different definition of T CP is considered.
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densities bounded away from zero and infinity, the unique optimal transport map T
between µ and ν is continuous.

Note that the above definition makes sense, since under the above assumptions
McCann’s Theorem [24] ensures that the optimal transport map T from µ to ν
exists and is unique. The aim of the present paper is to give necessary and sufficient
conditions for T CP.

Since this is the fourth of a series of papers [14, 15, 16] concerning the regularity
of optimal maps on Riemannian manifolds and the Ma-Trudinger-Wang condition,
to avoid repetition we will only introduce the main notation, referring to our pre-
vious papers for more details. For convenience of the reader, some notation from
Riemannian geometry is gathered in Appendix A.

Given a smooth compact connected Riemannian manifold of dimension n ≥ 2, for
every x ∈ M , we denote by I(x) ⊂ TxM the injectivity domain of the exponential
map at x (see Appendix A). We will say that (M, g) satisfies (CI) (resp. (SCI)) if
I(x) is convex (resp. strictly convex) for all x ∈ M . Let (x, v) ∈ TM with v ∈ I(x)
and (ξ, η) ∈ TxM × TxM . Following [23, 26], the MTW tensor at (x, v) evaluated
on (ξ, η) is defined as

S(x,v)(ξ, η) = −
3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

c
(
expx(tξ), expx(v + sη)

)
.

It is said that (M, g) satisfies the Ma–Trudinger–Wang condition (MTW) if

(1.1) ∀ (x, v) ∈ TM with v ∈ I(x), ∀ (ξ, η) ∈ TxM × TxM,
[
〈ξ, η〉x = 0 =⇒ S(x,y)(ξ, η) ≥ 0

]
.

If the last inequality in (1.1) is strict unless ξ = 0 or η = 0, then M is said to satisfy
the strict Ma–Trudinger–Wang condition (MTW+). Our first result holds in any
dimension.

Theorem 1.2. Let (M, g) be a smooth compact connected Riemannian manifold of
dimension n ≥ 2. Then:

(i) If (M, g) satisfies T CP, then (CI) and (MTW) hold.
(ii) If (M, g) satisfies (SCI) and (MTW+), then T CP holds.

Let us observe that, in the above result, there is a gap between the necessary and
sufficient conditions for T CP.
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However, in two dimensions, we can take advantage of the following two results
(and a delicate geometric argument, see Subsection 3.3) to fill the gap:
1) In R

2, continuity of optimal maps between densities bounded away from zero and
infinity is known to be true under (MTW) [12].
2) If (MTW) holds, then, for any x ∈M , the curvature of TFL(x) near any point of
TFCL(x) (see Appendix A) has to be nonnegative. (Although not explicitly stated
in this way, this fact is an immediate consequence of the proof of [15, Proposition
4.1(ii)].)

Theorem 1.3. Let (M, g) be a smooth compact Riemannian surface. Then M
satisfies T CP if and only if (CI) and (MTW) hold.

Since property (CI) is closed under C2-convergence of the metric, as an imme-
diate consequence of Theorem 1.3 and Remark 3.3 below, we deduce that the set
of two-dimensional manifolds satisfying T CP is closed in C2-topology (compare [27]).

The paper is organized as follows: In the next section, we introduce the extended
MTW condition, and we provide some further regularity results (in particular, we
extend the regularity results on the flat torus [5] and the real projective space to
a more general class of manifolds). Moreover, we make some comments on other
existing results. The proofs of Theorems 1.2 and 1.3 are given in Section 3. Finally,
some notation and technical results are postponed to the appendices.

2. Further results and comments

2.1. Extended MTW conditions. For every x ∈ M , let us denote by NF(x) ⊂
TxM the nonfocal domain at x (see Appendix A). As before, we shall say that
(M, g) satisfies (CNF) (resp. (SCNF)) if NF(x) is convex (resp. strictly convex)
for all x ∈ M . As first suggested in [13], the MTW tensor may be extended by
letting v vary in the whole nonfocal domain rather than in the injectivity domain.
To define this extension, we let x ∈M , v ∈ NF(x), and (ξ, η) ∈ TxM × TxM . Since
y = expx v is not conjugate to x, by the Inverse Function Theorem there are an open
neighborhood V of (x, v) in TM , and an open neighborhood W of (x, y) in M ×M ,
such that

Ψ(x,v) : V ⊂ TM −→ W ⊂M ×M
(x′, v′) 7−→

(
x′, expx′(v′)

)

is a smooth diffeomorphism from V to W . Then we may define ĉ(x,v) : W → R by

ĉ(x,v)(x
′, y′) =

1

2

∣∣Ψ−1
(x,v)(x

′, y′)
∣∣2
x′

∀ (x′, y′) ∈ W.
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If v ∈ I(x) then for y′ close to expx v and x′ close to x we have

ĉ(x,v)(x
′, y′) = c(x′, y′) = d(x′, y′)2/2.

Let x ∈M , v ∈ NF(x), and (ξ, η) ∈ TxM×TxM . Following [13], the extended MTW
tensor at (x, v), evaluated on (ξ, η), is defined as

S(x,v)(ξ, η) = −
3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

ĉ(x,v)

(
expx(tξ), expx(v + sη)

)
.

It is said that (M, g) satisfies the extended Ma–Trudinger–Wang condition (MTW)
if

(2.1) ∀ (x, v) ∈ TM with v ∈ NF(x), ∀ (ξ, η) ∈ TxM × TxM,
[
〈ξ, η〉x = 0 =⇒ S(x,y)(ξ, η) ≥ 0

]
.

As before, if the last inequality in (2.1) is strict unless ξ = 0 or η = 0, then M is said

to satisfy the extended strict Ma–Trudinger–Wang condition (MTW
+
). Note that

(MTW) implies (MTW) and (MTW
+
) implies (MTW+). The two following

results follow from Theorems 1.2 and 1.3, see Appendix C.

Corollary 2.1. Let (M, g) be a smooth compact connected Riemannian manifold of

dimension n ≥ 2. If M satisfies (SCNF) and (MTW
+
), then T CP holds.

Corollary 2.2. Let (M, g) be a smooth compact Riemannian surface. If M satisfies
(CNF) and (MTW), then T CP holds.

2.2. The MTW condition without orthogonality. We say that (M, g) satisfies
(MTW 6⊥) if (1.1) holds without any orthogonality assumption, that is,

∀ (x, v) ∈ TM with v ∈ I(x), ∀ (ξ, η) ∈ TxM × TxM, S(x,y)(ξ, η) ≥ 0.(2.2)

Let µ, ν be two σ-finite non-negative measures with positive bounded densities on a
connected Riemannian manifold (M, g), and let ψ : M → R be a locally semiconvex
c-convex function such that the map T : M →M given by

T (x) = expx

(
∇ψ(x)

)
a.e. x ∈M.

satisfies T#µ = ν (observe that in this setting we cannot talk about optimal maps,
since µ may have infinite mass, and so

∫
M
d(x, T (x))2 dµ(x) may be infinite). Denote

by ψc the c-transform of ψ and recall that

∂cψ(x) = {y ∈M ; ψ(x) + ψc(y) + c(x, y) = 0} .
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Define the contact set of y ∈M as

S(y) = {x ∈M ; y ∈ ∂cψ(x)} = ∂cψc(y).

As it will be seen in Section 3.2 (see in particular (3.15)), if (M, g) satisfies (MTW),
then the equality exp−1

y (∂cψc(y)) = ∇−ψc(y) holds for any y ∈ M . In particular,

exp−1
y (S(y)) ⊂ I(y) is always a convex set. The following theorem, already present

in the proof of [11, Corollary 5.2], is a simple consequence of the results in [10].

Theorem 2.3. Assume that (M, g) satisfies (CI) and (MTW 6⊥), and suppose that
there exist two positive constants λ,Λ > 0 such that

λvol ≤ µ ≤ Λvol , λvol ≤ ν ≤ Λvol .

Then, for any y ∈M , either S(y) is a singleton or all exposed points of exp−1
y (S(y))

belong to TCL(y).

Let us recall that, according to [22], a manifold is said to have nonfocal cut
locus if TFCL(x) = ∅ for all x ∈ M . As an immediate corollary of the above
theorem and [6, Appendix C, Theorem 3] we obtain the following result, which
extends the regularity result on the flat torus T

n [5] and the real projective space to
compact quotient of S

n1
r1

× . . . × S
ni
ri
× R

n with nonfocal cut locus, like for instance
M = RP

n1
r1

× . . .×RP
ni
ri
×T

n. (Let us however point out that, since [6, Appendix C,
Theorem 3] is proven in the compact case, we need to slightly modify its proof in
order to deal with the fact that the mass of our measures in not necessarily finite.)

Corollary 2.4. Let (M, g) be a compact quotient of S
n1
r1
×. . .×S

ni
ri
×R

n with nonfocal
cut locus. Then T CP holds. Moreover, if µ = fvol and ν = gvol with f, g > 0 and
of class C∞, then the optimal transport is C∞ too.

2.3. Further comments. Thanks to existing results in the literature and some
of the above results, we can list all the known examples of compact Riemannian
manifolds satisfying T CP (to our knowledge, the list below is exhaustive):

– Flat tori in any dimension [5].
– Round spheres in any dimension [21]
– Small C4 deformations of round spheres in any dimension [13, 14].
– Riemannian submersions of round spheres [19].
– Products of round spheres [11].
– Quotients of all the above examples by a discrete group of isometry [6].
– Compact quotients of products of spheres and Euclidean spaces with nonfocal

cut locus (Corollary 2.4).
– Compact Riemannian surfaces satisfying (CI) and (MTW) (Theorem 1.3).



6 A. FIGALLI, L. RIFFORD, AND C. VILLANI

By Theorem 1.2(i), any Riemannian manifold verifying T CP must satisfy (CI)
and (MTW). As shown by Theorem 1.3, the combination (CI)-(MTW) and T CP
are equivalent on surfaces. We do not know if such a result holds in higher dimension.

In [7] the authors showed that small C4 perturbations of S
2 equipped with the

round metric satisfy (MTW 6⊥). Thanks to [19, Theorem 1.2(3)], this implies that
any product of them satisfy (MTW)6⊥. We dot not know if such Riemannian
products satisfy T CP.

Finally, we point out that to our knowledge there is no concrete example of a
Riemannian manifold satisfying (MTW) but not (MTW 6⊥).

3. Proofs of Theorems 1.2 and 1.3

3.1. Necessary conditions for T CP. We want to prove that Theorem 1.2(i) holds.
Actually, we will show a slightly stronger result: (CI) is satisfied provided the cost
function satisfies Assumption (C) (this condition first appeared in [26, page 205]):

Assumption (C): For any c-convex function ψ and any x ∈M , the c-subdifferential
∂cψ(x) is pathwise connected.

As shown in [26, Theorem 12.7], T CP implies Assumption (C). In addition,
by [26, Theorem 12.42], Assumption (C) and (CI) imply (MTW). Therefore,
Theorem 1.2 is a straightforward consequence of the following result:

Proposition 3.1. Let (M, g) be a smooth compact connected Riemannian manifold
of dimension n ≥ 2 satisfying Assumption (C). Then (CI) holds.

Proof of Proposition 3.1. Assume by contradiction that I(x̄) (or equivalently I(x̄)) is
not convex for some x̄ ∈M . We need the following result, whose proof is postponed
to the end:

Lemma 3.2. Assume I(x̄) is not convex. Then there are v−1, v1 ∈ I(x̄) such that:

- v0 = v−1+v1

2
does not belong to I(x̄);

- the mapping v ∈ [v−1, v1] ∩ I(x̄) 7→ expx̄(v) ∈M is injective.

Set yi = expx̄(vi) for i = −1, 1, 0 (with v−1, v1, v0 as in the above lemma), and let
ψ : M → R be the c-convex function defined by

ψ(x) = max
{
c(x̄, y−1) − c(x, y−1), c(x̄, y1) − c(x, y1)

}
∀x ∈M.

The set of subgradients of ψ at x̄ is given by the segment

∇−ψ(x̄) = [v−1, v1] ⊂ Tx̄M,
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which by [26, Theorem 10.25] means that

−∇+
x̄ c(x̄, y) ⊂ [v−1, v1] ∀ y ∈ ∂cψ(x̄),

where ∇+
x̄ c(x̄, y) denotes the set of supergradients of the semiconcave function x 7→

c(x, y) at x̄. Since both v−1 and v1 belong to the injectivity domain I(x̄), we have
that c(x̄, ·) is differentiable at both y−1 and y1, and ∇x̄c(x̄, yi) = −vi for i = −1, 1.
Moreover we observe that the mapping

F : y ∈ ∂cψ(x̄) 7−→ −∇+
x̄ c(x̄, y) ⊂ [v−1, v1]

is convex-valued and upper semicontinuous. Thanks to Assumption (C), there
exists a continuous curve t ∈ [0, 1] → y(t) ∈M such that the mapping F ◦y is convex-
valued, upper semicontinuous, and satisfies (F ◦ y)(0) = v−1 and (F ◦ y)(1) = v1.
By [1, Theorem 9.2.1], for every ǫ > 0 we can find a Lipschitz function fǫ : [0, 1] →
[v−1, v1] such that

Graph(fǫ) ⊂ Graph
(
F ◦ y

)
+ ǫB =

{
(t, v); t ∈ [0, 1], v ∈

(
F ◦ y

)
(t)

}
+ ǫB,

in [0, 1] × [v−1, v1] (here B denotes the open unit ball in R
2). By compactness and

Lemma 3.2, this implies that there exists y ∈ ∂cψ(x̄) such that

v1/2 ∈ −∇+
x̄ c(x̄, y) \ I(x̄).

The set −∇+
x̄ c(x̄, y) is the convex hull of the minimizing speeds joining x̄ to y. Thus

there are two minimizing speeds v 6= v′ ∈ [v−1, v1] ∩ I(x̄) joining x̄ to y, and a
constant λ ∈ (0, 1), such that v1/2 = λv + (1 − λ)v′. This contradicts the fact that

v ∈ [v−1, v1]∩ I(x̄) 7→ expx̄(v) is injective, and proves that (M, g) satisfies (CI). �

It remains to prove Lemma 3.2.

Proof of Lemma 3.2. Without loss of generality we may assume that gx̄ = IdRn .
Therefore, it is sufficient to show that there are v−1, v1 ∈ I(x̄) such that v0 = v−1+v1

2

does not belong to I(x̄) and such that the mapping

v ∈ [v−1, v1] ∩ I(x̄) 7→ |v| ∈ R

is injective. Denote by τC : Ux̄M → (0,∞) the restriction of the cut time tC(x̄, ·)

(see Appendix A) to the unit sphere Ux̄M ⊂ Tx̄M . Since I(x̄) is not convex, there
are w0, w1 ∈ TCL(x̄) and t̄ ∈ (0, 1) such that wt̄ = (1 − t̄)v−1 + t̄v1 does not belong

to I(x̄).
We claim that we may assume that τC is differentiable at ŵ0 = w0/|w0|, and that

the vector w1 − w0 satisfies

〈w1 − w0, ξ(w0)〉 > 0,
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where ξ(w0) denotes the exterior unit normal to the TCL(x̄) at w0. (Note that,
once τC is assumed to be differentiable at ŵ0, then ξ(w0) exists and is unique since
TCL(x̄) is given by the image of the map ŵ ∈ Ux̄M 7→ τC(ŵ)ŵ ∈ Tx̄M .)

Indeed, if not, for every ŵ ∈ Ux̄M such that τC is differentiable at ŵ we would
have

I(x̄) ⊂ Sξ(w),

where Sξ(w) ⊂ Tx̄M denotes the closed affine halfspace associated with the normal
ξ(w) at w = τC(ŵ)ŵ, that is,

Sξ(w) = {w + h; 〈h, ξ(w)〉 ≤ 0} .

However, since τC is Lipschitz and so differentiable a.e., we would obtain

I(x̄) ⊂ Sξ(w) ∀w ∈ TCL(x̄),(3.1)

which easily implies that I(x̄) is convex, absurd.
Now, let w0, w1 ∈ TCL(x̄) and t̄ ∈ (0, 1) be such that τC is differentiable at

ŵ0 = w0/|w0|, wt̄ = (1− t̄)w0+ t̄w1 does not belong to I(x̄), and 〈w1−w0, ξ(w0)〉 > 0.

This means that there is a maximal t̂ ∈ (0, 1] such that wt 6∈ I(x̄) for all t ∈ (0, t̂).

Since 〈w1 −w0, ξ(w0)〉 > 0 and wt /∈ I(x̄) for small positive times, there exists ǫ0 > 0
small enough such that (1 + ǫ)w0 − ǫw1 belongs to I(x̄) and

[
(1 + ǫ)w0 − ǫw1, wbt

]
∩ I(x̄) = {w0, wbt} .

for all ǫ ≤ ǫ0. Hence, if we choose ǫ, ǫ′ ≤ ǫ0 such that |(1+ ǫ)w0 − ǫw1| 6= |(1− ǫ′)wbt|,
then v−1 = (1 + ǫ)w0 − ǫw1 and v1 = (1 − ǫ′)wbt satisfy the desired assumption. �

Remark 3.3. If (M, g) satisfies (CI), then (MTW) is equivalent to the fact that
the cost c = d2/2 is regular in the sense of [26, Definition 12.14], that is, for every
x̄ ∈M and v0, v1 ∈ I(x̄) it holds

vt = (1 − t)v0 + tv1 ∈ I(x̄) ∀ t ∈ [0, 1],(3.2)

and

c(x, yt) − c(x̄, yt) ≥ min
(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
,(3.3)

for any x ∈ M , where yt = expx̄(vt) for any t ∈ [0, 1]. Such a result appeared with
an incomplete proof in [26, Proof of Theorem 12.36], but it is an easy consequence
of the argument given there combined with Lemma 3.5 below.
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3.2. Sufficient conditions for T CP. Theorem 1.2(ii) follows from the following
finer result.

Proposition 3.4. Assume that M satisfies (SCI) and (MTW+). Then, the opti-
mal map from µ to ν is continuous whenever µ and ν satisfy:

(i) limr→0+
µ(Br(x))

rn−1 = 0 for any x ∈M ;

(ii) ν ≥ c0 vol for some constant c0 > 0.

Proof of Proposition 3.4. The proof of Proposition 3.4 is divided in three steps.

Step 1: we first show that under assumptions (CI) and (MTW), the cost c = d2/2
is “regular” (see Remark 3.3).

Lemma 3.5. Let (M, g) be a Riemannian manifold satisfying (CI)-(MTW). Fix

x̄ ∈ M , v0, v1 ∈ I(x̄), and let vt = (1 − t)v0 + tv1 ∈ TxM . For any t ∈ [0, 1], set
yt = expx(vt). Then, for any x ∈M , for any t ∈ [0, 1],

(3.4) c(x, yt) − c(x̄, yt) ≥ min
(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
.

Proof of Lemma 3.5. Fix x̄ ∈ M and v0, v1 ∈ I(x̄). Note that, by continuity of c,
it is sufficient to prove (3.4) with v0, v1 ∈ I(x̄). Let us fix x ∈ M and define the
function h : [0, 1] → R by

h(t) := −c(x, yt) + c(x̄, yt) = −c(x, yt) +
1

2
|vt|

2
x̄ ∀ t ∈ [0, 1].

(Observe that c(x̄, yt) = |vt|
2
x̄/2, since vt ∈ I(x̄).) Our aim is to show that h can only

achieve a maximum at t = 0 or t = 1. Assume that the curve (yt)0≤t≤1 intersects
cut(x) only a finite set of times 0 = t0 < t1 < . . . < tN < tN+1 = 1, always intersects
cut(x) transversally, and never intersects fcut(x) = expx(TFCL(x)). This implies
that h is smooth on the intervals (tj, tj+1) for j = 0, . . . , N and is never differentiable
at t = tj for j = 1, . . . , N . By semiconvexity of the function t 7→ −c(x, yt) necessarily

ḣ(t+j ) > ḣ(t−j ), and so h(t) cannot achieve a local maximum in a neighborhood of
the points t1, . . . , tN . In particular, there exists η > 0 such that h(t) cannot achieve
its maximum in any interval of the form [tj −2η, tj +2η] with j ∈ {1, . . . , N}. Let us
show that h cannot have a maximum in any of the intervals I0 := (t0, t1 − η), IN :=
(tN + η, tN+1), and Ij := (tj + η, tj+1 − η) with j ∈ {1, . . . , N − 1} .

Let j ∈ {0, . . . , N} be fixed. The function y 7→ c(x, y) is smooth in a neighborhood
of the curve (yt)t∈Ij

, so qt := −∇yc(x, yt) is well-defined for every t ∈ Ij. Set, for
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every t ∈ [0, 1], q̄t := −∇yc(x̄, yt). Since v0, v1 belongs to I(x̄) which is an open
convex set (by assumption (CI)), the tangent vector q̄t always belong to I(yt) and
does not intersect TFL(yt). Then, arguing as in [26, Proof of Theorem 12.36], there
exists a constant C > 0 (depensing on η) such that

S(yt,sqt+(1−s)qt)(ẏt, qt − qt) ≥ −C |〈ẏt, qt − qt〉| ∀ t ∈ Ij, ∀s ∈ [0, 1].

Since (see [26, Proof of Theorem 12.36] or [13, Proof of Lemma 3.3])
{
ḣ(t) = 〈ẏt, qt − qt〉

ḧ(t) = 2
3

∫ 1

0
(1 − s)S(yt,sqt+(1−s)qt)(ẏt, qt − qt) ds

for any t ∈ Ij, we get

(3.5) ḧ(t) ≥ −C|ḣ(t)| ∀ t ∈ Ij.

Now, as in [26, Proof of Theorem 12.36] we consider the functions hε(t) = h(t) +
ε(t − 1/2)k, with k large enough (which will be chosen below). If by contradiction

hε attains a maximum at a time t0 ∈ Ij for some j, then at t0 we get ḣε(t0) = 0 and

ḧε(t0) ≤ 0, which gives

ḣ(t0) = −εk(t0 − 1/2)k−1, ḧ(t0) ≤ −εk(k − 1)(t0 − 1/2)k−2.

This contradicts (3.5) for k ≥ 1 +C/2. Moreover, since hε converges to h uniformly
on [0, 1] as ε→ 0, for ε sufficiently small the function hε cannot achieve its maximum
on any interval of the form Ij. This implies that hε(t) ≤ max{hε(0), hε(1)} for ε
small, and letting ε→ 0 we get (3.4).

Finally, thanks to Lemma B.2, we observe that the assumption we did on the
curve (yt)0≤t≤1 holds generically. So (as in [17]) the result follows immediately by
approximation. �

As a consequence of the above result, if ψ : M → R is a c-convex function, then
its c-subdifferential is always pathwise connected. As a matter of fact, if y0, y1 both
belong to ∂cψ(x̄), then there are v0, v1 ∈ I(x̄) such that y0 = expx̄(v0), y1 = expx̄(v1),
and

ψ(x̄) + c(x̄, yi) = min
x∈M

{
ψ(x) + c(x, yi)

}
∀ i = 0, 1.

The latter property can be written as

c(x, yi) − c(x̄, yi) ≥ ψ(x̄) − ψ(x) ∀x ∈M, i = 0, 1,

which, thanks to Lemma 3.5, implies

c(x, yt) − c(x̄, yt) ≥ min
(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
≥ ψ(x̄) − ψ(x),
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for every x ∈ M , where yt = expx((1 − t)v0 + tv1), t ∈ [0, 1]. This shows that the
path t 7→ yt belong to ∂cψ(x), as desired.

Step 2: We strengthen locally the previous result in a quantitative way.

Lemma 3.6. Let (M, g) be a Riemannian manifold satisfying (MTW), x̄ ∈ M be
fixed, A be a compact subset of I(x̄), and B ∈M be a compact set containing x̄ such
that the convex envelope of exp−1

y

(
B

)
in Tx̄M satisfies

conv
(
exp−1

y

(
B

))
⊂ I(y) ∀ y ∈ expx̄(A).(3.6)

Assume that there are K,C > 0 such that, for any y ∈ expx̄(A) and any x ∈

expy

(
conv

(
exp−1

y (B)
))

, there holds

∀ (ξ, η) ∈ TyM × TyM, S(y,x)(ξ, η) ≥ K|ξ|2x|η|
2
y − C|〈ξ, η〉y||ξ|x|η|y.(3.7)

Furthermore, fix f ∈ C∞
c ([0, 1]) with f ≥ 0 and {f > 0} = (1/4, 3/4). Then there

exists λ = λ(K,C, f) > 0 such that for any x ∈ B and any C2 curve (vt)0≤t≤1 drawn
in I(x̄) satisfying 




|v̈t|x̄ = 0 for t ∈ [0, 1/4] ∪ [3/4, 1],
|v̈t|x̄ ≤ K

8
d(x̄, x)|ẏt|

2
yt

for t ∈ [1/4, 3/4],
vt ∈ A for t ∈ [1/4, 3/4],

(3.8)

where yt = expx(vt), there holds for any t ∈ [0, 1]

(3.9) c(x, yt) − c(x̄, y)

≥ min
(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
+ λf(t)c(x̄, x).

Proof of Lemma 3.6. We adapt the argument in Lemma 3.5, borrowing the strategy
from [13, 22]: first of all, using Lemma B.2 (as we did in the proof of Lemma 3.5), up
to slightly perturbing v0 and v1 we can assume that v0, v1 ∈ I(x̄), (yt)0≤t≤1 intersects
cut(x) only at a finite set of times 0 = t0 < t1 < . . . < tN < tN+1 = 1, and moreover
(yt)0≤t≤1 never intersects fcut(x). Using the notations of Lemma 3.5, we consider
the function h : [0, 1] → R given by

h(t) = −c(x, yt) + c(x̄, yt) + λd(x̄, x)2f(t)/2 ∀ t ∈ [0, 1],

where λ > 0 is a positive constant to be chosen.
On the one hand, since f(t) = 0 and vt is a segment for t ∈ [0, 1/4] ∪ [3/4, 1],

arguing as in the proof of Lemma 3.5 we have that h|[0,1/4]∪[3/4,1] achieve its maximum
at 0, 1/4, 3/4 or 1.
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On the other hand, if t ∈ [1/4, 3/4]∩(tj, tj+1) for some j = 0, . . . , N , we can argue
as in the proof of [22, Theorem 3.1] (see also [13, Lemma 3.3]) to check that the

identity ḣ(t) = 0 gives ḧ(t) > 0 for λ = λ(K,C, f) sufficiently small. This implies
that the function h cannot have any maximum on any interval (tj, tj+1)∩ [1/4, 3/4].

Moreover, since ḣ(t+j ) > ḣ(t−j ) for j = 1, . . . , N , h cannot achieve its maximum at
any of the points tj, j = 1, . . . , N .

Hence h necessarily achieves its maximum at 0 or 1, and we obtain (3.9). �

Step 3: We conclude the proof of Proposition 3.4 arguing as in [13, Theorem 3.6]
and [22, Theorem 5.1].

Assumption (i) above ensures that µ gives no mass to sets with finite (n − 1)-
dimensional Hausdorff measure. Hence by McCann’s Theorem [24], there exists a
unique optimal transport map between µ and ν, given by T (x) = expx

(
∇xψ

)
where

ψ is a semiconvex function. Moreover, as shown by McCann, ∇xψ ∈ I(x) at all point
of differentiability of ψ. By assumption the sets I(x) are (strictly) convex for all x,

therefore the subdifferential of ψ satisfies ∇−ψ(x) ⊂ I(x) for all x ∈ M . We want
to prove that ψ is C1. To this aim, we need to show that ∇−ψ(x) is everywhere a
singleton. The proof is by contradiction.

Assume that there is x̄ ∈ M such that v0 6= v1 ∈ ∇−ψ(x̄). Let y0 = expx̄(v0),
y1 = expx̄(v1). Then yi ∈ ∂cψ(x̄), i.e.

ψ(x̄) + c(x̄, yi) = min
x∈M

{ψ(x) + c(x, yi)} , i = 0, 1.

In particular

(3.10) c(x, yi) − c(x̄, yi) ≥ ψ(x̄) − ψ(x), ∀x ∈M, i = 0, 1.

For every δ > 0 small, denote by Aδ ⊂ Tx̄M the set swept by all the C2 curves
t ∈ [0, 1] 7→ vt ∈ Tx̄M which satisfy vt = (1− t)v0 + tv1 for any t ∈ [0, 1/4] ∪ [3/4, 1]
and

|v̈t|x̄ ≤ δ|ẏt|
2
yt

for t ∈ [1/4, 3/4],(3.11)

where yt = expx̄(vt). Since the set I(x̄) is strictly convex, the segment I = [v1/4, v3/4]
lies a positive distance away from TCL(x̄), and for every y ∈ expx̄(I), the point x̄ is
at positive distance from TCL(y). Therefore, there is δ̄ > 0 small enough such that
Aδ̄ ⊂ I(x̄) and

conv
(
exp−1

y

(
B̄δ̄(x̄)

))
⊂ I(y) ∀ y ∈ expx̄

(
Aδ̄

)
.(3.12)
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By construction, any set Aδ (with δ ∈ (0, δ̄), δ̄ small) contains a parallelepiped Eδ

centered at v1/2 = v0+v1

2
, with one side of length ∼ |v0 − v1|x̄ and the other sides of

length ∼ δ|v0 − v1|
2
x̄, such that all points v in such a parallelepiped can be written

as vt for some t ∈ [3/8, 5/8]. Therefore, there is c > 0 such that Ln(Eδ) ≥ cδn−1,
where Ln denotes the Lebesgue measure on Tx̄M . Since Eδ lies a positive distance
from TCL(x̄), we obtain

vol (Yδ) ∼ Ln(Eδ) ≥ cδn−1, where Yδ := expx̄(Eδ).(3.13)

On the other hand, by (3.12) the cost c is smooth on B̄δ̄(x̄)×expx̄

(
Aδ̄

)
and moreover

(MTW+) holds. Hence, arguing as in [22, Lemma 2.3] we deduce that there are
K,C > 0 such that the following property holds for any y ∈ expx̄

(
Aδ̄

)
and any

x ∈ expy

(
conv

(
exp−1

y (B̄δ̄)
))

, where conv(S) denotes the convex envelope of a set S:

∀ (ξ, η) ∈ TyM × TyM, S(y,x)(ξ, η) ≥ K|ξ|2x|η|
2
y − C

∣∣〈ξ, η〉y
∣∣|ξ|x|η|y.

By Lemma 3.6, we deduce that for any δ ∈ (0, δ̄), any y ∈ Yδ, and any x ∈ Bδ̄(x̄) \
B8δ/K(x̄), there holds

c(x, y) − c(x̄, y) ≥ min
(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
+ 2λmfd(x̄, x)

2,

where mf = inf{f(t); t ∈ [3/8, 5/8]} > 0 and λ = λ(K,C, f) > 0. Combining this
inequality with (3.10), we conclude that for any δ ∈ (0, δ̄),

∀ y ∈ Yδ, ∀x ∈ Bδ̄(x̄) \B8δ/K(x̄), y 6∈ ∂cψ(x).(3.14)

We claim that taking δ ∈ (0, δ̄) small enough, we may assume that the above
property holds for any x ∈ M \ B8δ/K(x̄). Indeed, if not, there exists a sequence
{δk} ↓ 0, together with sequences {xk} in M \ Bδ̄(x̄) and {yk} ∈ Yδk

, such that
yk ∈ ∂cψ(xk) for any k. By compactness, we deduce the existence of x ∈M \Bδ̄(x̄)
and yt ∈ expx̄([v0, v1]), with t ∈ [3/8, 5/8], such that yt ∈ ∂cψ(x). This implies that
the c-convex potential ψc : M → R satisfies x̄, x ∈ ∂cψ

c(yt). Moreover, (3.14) gives
that ∂cψ

c(yt) ∩ Bδ̄(x̄) \ B8δ/K(x̄) = ∅. However, by to the discussion after Lemma
3.5, we know that the set ∂cψ

c(yt) is pathwise connected, absurd.
In conclusion we have proved that for δ ∈ (0, δ̄) small all the mass brought into

Yδ by the optimal map comes from B8δ/K(x̄), and so

µ
(
B8δ/K(x̄)

)
≥ ν

(
Yδ

)
.

Thus, as µ
(
B8δ/K(x̄)

)
≤ o(1)δn−1 and ν(Yδ) ≥ c0vol (Yδ) ≥ c′δn−1 (by assumption

(ii) and (3.13)), we obtain a contradiction as δ → 0. �
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3.3. Proof of Theorem 1.3. Thanks to Theorem 1.2(i), we only need to prove the
“if” part. As in the proof of Proposition 3.4, let ψ be a c-convex function such that
T (x) = expx

(
∇xψ

)
. We want to prove that the subdifferential of ψ is a singleton

everywhere.
We begin by observing that, thanks to Lemma 3.5 and [26, Proposition 12.15], we

have

(3.15) ∇−ψ(x) = exp−1
x

(
∂cψ(x)

)
∀x ∈M.

First of all, we claim that the subdifferential of ψ at every point is at most one-
dimensional. Indeed, if ∇−ψ(x) is a two-dimensional convex C set for some x ∈M ,
then by (3.15) expx(C) = ∂cψ(x) is a set with positive volume. But then, considering
the optimal transport problem from ν to µ, the set ∂cψ(x) is sent (by ∂cψc) onto
the point x, which implies µ({x}) ≥ ν(∂cψ(x)) > 0, impossible.

Now, assume by contradiction that ψ is not differentiable at some point x0. Then
there exist v−1 6= v1 ∈ I(x0) such that ∇−ψ(x0) ⊂ I(x0) is equal to the segment
[v−1, v1] = {vt}−1≤t≤1, vt = 1+t

2
v1+ 1−t

2
v−1. (In this proof, to simplify the notation, it

is more convenient to use [v−1, v1] to denote ∇−ψ(x0) instead of [v0, v1].) We define
yt = expx0

(vt).
We claim that that the following holds:

(A) [vε−1, v1−ε] ⊂ I(x0) for all ε > 0 (i.e. vt 6∈ TCL(x0) for all t ∈ (−1, 1)).

Since the proof of the above result is pretty involved, we postpone it to the end of
this subsection.

Now the strategy is the following: by (A) we know that the cost function c = d2/2
is smooth in a neighborhood of {x0} × {yt; t ∈ [−3/4, 3/4]} and satisfies all the
assumptions of [12, Lemma 3.1] (observe that, even if that result is stated on domains
of R

n, everything is local so it holds also on manifolds), and we can deduce that
propagation of singularities hold. More precisely, [12, Lemma 3.1] gives the existence
of a smooth injective curve γx0

∋ x0 contained inside the set

Γ−3/4,3/4 =
{
d(·, y−3/4)

2 − d(·, y3/4)
2 = d(x0, y−3/4)

2 − d(x0, y3/4)
2
}
,

such that

(3.16) 2ψ − 2ψ(x0) = −d(·, y0)
2 + d(x0, y0)

2 on γx0
.

(Recall that c = d2/2.) Moreover, restricting γx0
if necessary, we can assume that

γx0
∩ cut(y0) = ∅.

We now observe that, since yt ∈ expx0
([v−1, v1]) = ∂cψ(x0), we have

(3.17) 2ψ − 2ψ(x0) ≥ d(·, yt)
2 − d(x0, yt)

2 ∀ t ∈ [−1, 1].
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Moreover, thanks to Lemma 3.5,

(3.18) −d(·, y0)
2 + d(x0, y0)

2 ≤ max
(
−d(·, yt)

2 + d(x0, yt)
2,−d(·, yτ )

2 + d(x0, yτ )
2
)

for all −1 ≤ t ≤ 0 ≤ τ ≤ 1. Hence, combining (3.16), (3.17), and (3.18), we deduce
that

2ψ − 2ψ(x0) = d(·, yt)
2 − d(x0, yt)

2 on γx0
∀ t ∈ [−1, 1]

and

γx0
⊂

⋂

−1<t<τ<1

Γt,τ ,

where

(3.19) Γt,τ =
{
d(·, yt)

2 − d(·, yτ )
2 = d(x0, yt)

2 − d(x0, yτ )
2
}
.

This implies that yt ∈ ∂cψ(x) for any x ∈ γx0
. Moreover, if we parameterize γx0

as
s 7→ xs, by differentiating with respect to s the identity

d(xs, yt)
2 − d(xs, y0)

2 = d(x0, yt)
2 − d(x0, y0)

2

we obtain

ẋs ·
[
∇+

x d(xs, yt)
2 −∇xd(xs, y0)

2
]

= 0

for all s, t (recall that γx0
∩ cut(y0) = ∅), that is, for any fixed s there exists a

segment which contains all elements in the superdifferential of d(·, yt)
2 at xs for all

t ∈ [−1, 1]. Thanks to the convexity of I(xs), we can apply (A) with x0 replaced by
xs. Hence, we can repeat the argument above starting from any point xs, and by a
topological argument as in [12, Proof of Lemma 3.1] (showing that the maximal time
interval on which we can extend the curve is both open and closed) we immediately
get that γx0

is a simple curve which either is closed or has infinite length.
To summarize, we finally have the following geometric picture: there exists a

smooth closed curve γ ⊂M , which is either closed or has infinite length, such that:

(A-a) For any x ∈ γ, yt 6∈ cut(x) for all t ∈ (−1, 1).
(A-b) γ ⊂

⋂
−1<t<τ<1 Γt,τ , where Γt,τ = {d(·, yt)

2 − d(·, yτ )
2 = d(x0, yt)

2 − d(x0, yτ )
2}.

Let us show that the compactness of M prevents this.
By differentiating with respect to t at t = 0 the identity

d(x, yt)
2 − d(x, y0)

2 = d(x0, yt)
2 − d(x0, y0)

2 ∀x ∈ γ,

we obtain (using (A-a))
[
∇yd(x, y0)

2 −∇yd(x0, y0)
2
]
· ẏ0 = 0 ∀x ∈ γ.
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Observe that, since y0 6∈ cut(x), ẏ0 6= 0. Hence there exists a segment Σ ⊂ I(y0)
such that exp−1

y0
(γ) ⊂ Σ. This is impossible since γ ⊂ M \ cut(y0), so exp−1

y0
(γ) is

either closed or it has infinite length.
This concludes the proof of the C1 regularity of ψ. It remains to show the validity

of property (A) above.

Proof of (A). To prove (A), we distinguish two cases:

(i) Either v−1 or v1 does not belong to TCL(x0).
(ii) Both v−1 and v1 belong to TCL(x0).

In case (i), by the convexity of I(x) we immediately get that either [v−1, v1−ε] ⊂ I(x)
or [vε−1, v1] ⊂ I(x) for any ε > 0, so (A) holds.

In case (ii), assume by contradiction that (A) is false. By the convexity of I(x0) we
have [v−1, v1] ⊂ TCL(x0). Let t̄ ∈ [−1, 1] be such that |vt̄|x0

is minimal on [v−1, v1]
(by uniform convexity of the norm, there exists a unique such point). We consider
two cases:

(ii-a) exp−1
x0

(yt̄) is not a singleton.
(ii-b) exp−1

x0
(yt̄) = vt̄.

In case (ii-a), since |vt̄|x0
is the unique vector of minimal norm on [v−1, v1], there

exists v̄ ∈ TCL(x0) \ [v−1, v1] such that expx0
(v̄) = expx0

(vt̄) = yt̄ (v̄ cannot belongs
to [v−1, v1] since |v̄|x0

= |vt̄|x0
). However this is impossible since (3.15) implies

v̄ ∈ exp−1
x0

(
∂cψ(x0)

)
⊂ ∇−ψ(x0) = [v−1, v1].

In case (ii-b), without loss of generality we assume that the metric at x0 concides
with the identity matrix. Let us recall that by [15, Proposition A.6] the function
w ∈ Ux0

M 7→ tF (x0, w) has vanishing derivative at all w such that tF (x,w)w ∈
TFCL(x0). Hence, since the derivative of t 7→ |vt|x0

is different from 0 at every
t 6= t̄ and |vt|x0

≤ tF (x0, vt) for every t, we deduce that vt ∈ TCL(x0) \ TFL(x0)
for all t 6= t̄. Let us choose any time s 6= t̄. Since vs ∈ TCL(x0) \ TFL(x0), there
exists a vector v′ such that expx0

(v′) = expx0
(vs) ∈ ∂cψ(x0). By (3.15) this implies

v′ ∈ ∇−ψ(x0) = [v−1, v1]. Hence there exists a time s′ 6= s such that v′ = vs′ .
Moreover, since |vs|x0

= |vs′|x0
> |vt̄|x0

, we get |s − t̄| = |s′ − t̄|. Thus, by the
arbitrariness of s ∈ [−1, 1] \ {t̄} we easily deduce that the only possibility is t̄ = 0,
and so yt = y−t for all t ∈ [−1, 1].

By doing a change of coordinates in a neighborhood of the minimizing geodesic
γ0 going from x0 to y0, we can assume that x0 = (0, 0), y0 = (1, 0), v0 = (1, 0),
[v−1, v1] =

[
(1,−1), (1, 1)

]
, that the metric g at x0 and y0 is the identity matric I2,

and that the geodesic starting from x0 with initial velocity v0 is given by γ(t) = (t, 0).
Now, to simplify the computation, we slightly change the definition of vδ and yδ for
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δ > 0 small (this should not create confusion, since we will adopt the following
notation in all the sequel of the proof): denote by vδ the speed which belongs to the
segment [v−1, v1] and whose angle with the horizontal axis is δ, that is

vδ =
(
1, tan δ

)
, v̄δ :=

vδ∣∣vδ

∣∣ =
(
cos δ, sin δ

)
, tδ :=

∣∣vδ

∣∣ =
1

cos δ
.

Consider γδ the geodesic starting from x0 with initial velocity vδ, and set

yδ := expx0
(vδ), wδ := −γ̇δ(1), and w̄δ :=

wδ∣∣wδ

∣∣ .

The geodesic flow sends
(
x0, vδ

)
to

(
yδ,−wδ

)
, and the linearization at δ = 0 gives

ẏ0 = 0 and − ẇ0 =
(
0, ḟ0(1)

)
,(3.20)

where f0 denotes the solution (starting with f0(0) = 0, ḟ0(0) = 1) to the Jacobi
equation associated with the geodesic starting from x0 with initial velocity v0. The
curve δ 7→ yδ is a smooth curve valued in a neighborhood of y0. Moreover, since
yδ = y−δ for any small δ, yδ has the form

yδ = y0 +
δ2

2
Y + o(δ2)

for some vector Y . We now observe that, for every δ > 0, the vector ẏδ satisfies
(because the distance function to x0 is semiconcave and yδ is contained in the cut
locus of x0)

〈ẏδ, wδ〉 = 〈ẏδ, w−δ〉,

which can be written as 〈
ẏδ

|yδ|
, wδ − w−δ

〉
= 0.

Thanks to (3.20), we deduce that yδ takes the form

yδ = y0 +
δ2

2
(λ, 0) + o(δ2)(3.21)

for some λ ≥ 0.
We now need some notation. For every nonzero tangent vector v at x0, we denote

by f0(·, v), f1(·, v) the solutions to the Jacobi equation

f̈(t) + k(t)f(t) = 0 ∀ t ≥ 0,(3.22)

along the geodesic starting from x0 with unit initial velocity v/|v| which satisfy

f0(0, v) = 0, ḟ0(0, v) = 1, f1(0, v) = 1, ḟ1(0, v) = 0.(3.23)
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Set now

v̄⊥δ :=
(
− sin δ, cos δ

)
.

Since

v̇δ =

(
0,

1

cos2 δ

)
=

sin δ

cos2 δ
v̄δ +

1

cos δ
v̄⊥δ ,

we have

(3.24) ẏδ =
sin δ

cos2 δ

(
−w̄δ

)
+ f0

(
tδ, vδ

) 1

cos δ

(
−w̄⊥

δ

)
.

Then, since w̄δ = (−1, 0) +O(δ), this means that

ẏδ = δ(1, 0) +O(δ2),

which implies that the constant λ appearing in (3.21) is equal to 1. Hence ÿ0 = (1, 0),
and we get

yδ = y0 +
δ2

2
(1, 0) +O(δ4),(3.25)

because yδ = y−δ.

Define the curve δ 7→ zδ by

zδ := expx0
(uδ) with uδ := τδv̄δ =

(
τδ cos δ, τδ sin δ

)
.

We now use a result from [15]: since (MTW) holds, then the curvature of TFL(x0)
near any point of TFCL(x0) has to be nonnegative, see [15, Proposition 4.1(ii)]. Since
[v−1, v1] ⊂ I(x0) ⊂ NF(x0) and v0 ∈ TFCL(x0), this implies that τδ − tδ = O(δ4),
which also gives

∣∣yδ − zδ

∣∣ = O(δ4).(3.26)

Denote by āδ the (unit) vector at time t = τδ of the geodesic starting at x0 with
initial velocity v̄δ. As for ẏδ, we can express żδ in terms of aδ, a

⊥
δ , and f0

(
τδ, vδ

)
= 0.

For that, we note that

u̇δ =
(
τ̇δ cos δ − τδ sin δ, τ̇δ sin δ + τδ cos δ

)

= τ̇δ
(
cos δ, sin δ

)
+ τδ

(
− sin δ, cos δ

)

= τ̇δv̄δ + τδv̄
⊥
δ ,

from which we deduce that

(3.27) żδ = τ̇δ āδ + f0

(
τδ, vδ

)
τδ

(
ā⊥δ

)
= τ̇δ āδ.
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This gives

z̈δ = τ̈δ āδ + τ̇δ ˙̄aδ

and
...
z δ =

...
τ δ āδ + 2τ̈δ ˙̄aδ + τ̇δ ¨̄aδ.

Moreover, since τδ −
1

cos(δ)
= τδ − tδ = O(δ4), we have

τ̇0 = ṫ0 = 0, τ̈0 = ẗ0 = 1,
...
τ 0 =

...
t 0 = 0.

Hence we obtain

żδ = 0, z̈δ = ā0 = −w0,
...
z δ = 2 ˙̄a0(= −ẇ0 6= 0),

which yields

zδ = y0 +
δ2

2
(1, 0) +

δ3

3
˙̄a0 + o(δ3).

This contradicts (3.25) and (3.26), and concludes the proof of (A). �

Appendix A. Some notations in Riemannian geometry

Given (M, g) a C∞ compact connected Riemannian manifold of dimension n ≥ 2,
we denote by TM its tangent bundle, by UM its unit tangent bundle, and by
exp : (x, v) 7−→ expx v the exponential mapping. We write g(x) = gx, gx(v, w) =
〈v, w〉x, gx(v, v) = |v|x and equip M with its geodesic distance d. We further define:

• tC(x, v): the cut time of (x, v):

tC(x, v) = max
{
t ≥ 0; (expx(sv))0≤s≤t is a minimizing geodesic

}
.

• tF (x, v): the focalization time of (x, v):

tF (x, v) = inf
{
t ≥ 0; det(dtv expx) = 0

}
.

• TCL(x): the tangent cut locus of x:

TCL(x) =
{
tC(x, v)v; v ∈ TxM \ {0}

}
.

• cut(x): the cut locus of x:

cut(x) = expx(TCL(x)).

• TFL(x): the tangent focal locus of x:

TFL(x) =
{
tF (x, v)v; v ∈ TxM \ {0}

}
.
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• TFCL(x): the tangent focal cut locus of x:

TFCL(x) = TCL(x) ∩ TFL(x).

• fcut(x): the focal cut locus of x:

fcut(x) = expx(TFCL(x)).

• I(x): the injectivity domain of the exponential map at x:

I(x) =
{
tv; 0 ≤ t < tC(x, v), v ∈ TxM

}
.

• NF(x): the nonfocal domain of the exponential map at x:

NF(x) =
{
tv; 0 ≤ t < tF (x, v), v ∈ TxM

}
.

• exp−1: the inverse of the exponential map; by convention exp−1
x (y) is the set of

minimizing velocities v such that expx v = y. In particular TCL(x) = exp−1
x (cut(x)),

and I(x) = exp−1
x (M \ cut(x)).

We notice that, for every x ∈M , the function tC(x, ·) : UxM → R is locally Lips-
chitz (see [4, 18, 20]) while the function tF (x, ·) : UxM → R is locally semiconcave
on its domain (see [4]). In particular, the regularity property of tC(x, ·) yields

(A.1) Hn−1
(
cut(x)

)
< +∞ ∀x ∈M.

Appendix B. On the size of the focal cut locus

Recall that, for every x ∈M , the focal cut locus of a point x is defined as

fcut(x) = expx(TFCL(x)).

The focal cut locus of x is always contained in its cut locus. However it is much
smaller, as the following result (which we believe to be of independent interest)
shows:

Proposition B.1. For every x ∈ M the set fcut(x) has Hausdorff dimension
bounded by n− 2. In particular we have

∀x ∈M, Hn−1
(
fcut(x)

)
= 0.(B.1)

Proof. For every k = 0, 1, . . . , n, denotes by Σk
x the set of y 6= x ∈ M such that the

convex set ∇+
x c(x, y) has dimension k. By [3, Corollary 4.1.13], since the function

y 7→ c(x, y) is semiconcave, the set Σk
x is countably (n − k) rectifiable for every
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k = 2, . . . , n, which means in particular that all the sets Σ2
x, . . . ,Σ

n
x have Hausdorff

dimension bounded by n− 2. Thus, we only need to show that the set

Jx =
(
Jx ∩ Σ0

x

)
∪

(
Jx ∩ Σ1

x

)

has Hausdorff dimension ≤ n−2. The fact that J0
x = Jx∩Σ0

x has Hausdorff dimension
≤ n − 2 is a consequence of [25, Theorem 5.1]. Now, consider ȳ ∈ J1

x = Jx ∩ Σ1
x.

Then there are exactly two minimizing geodesics γ1, γ2 : [0, 1] → M joining x to
ȳ. By upper semicontinuity of the set of minimizing geodesics joining x to y, for
i = 1, 2 we can modify the metric g in a small neighborhood of γi(1/2) into a new
metric gi in such a way that the following holds: there exists an open neighborhood
Vi of ȳ such that, for any y ∈ J1

x ∩ Vi, there is only one minimizing geodesic (with
respect to gi) joining x to y. In that way, we have

J1
x ∩ V1 ∩ V2 ⊂

(
J0

x

)
1
∪

(
J0

x

)
2
,

where
(
J0

x

)
i
denotes the set J0

x = Jx ∩ Σ0
x with respect to the metric gi. Hence we

conclude again by [25, Theorem 5.1]. �

As a corollary the following holds:

Lemma B.2. Let x̄ ∈M , v0, v1 ∈ I(x̄) and x ∈M be fixed. Up to slightly perturbing
v0 and v1, we can assume that v0, v1 ∈ I(x̄), (yt)0≤t≤1 intersects cut(x) only at a
finite set of times 0 < t1 < . . . < tN < 1, and moreover (yt)0≤t≤1 never intersects
fcut(x) = expx(TFCL(x)).

Proof of Lemma B.2. The proof of this fact is a variant of argument in [17]: fix
σ > 0 small enough so that

w ⊥ v1 − v0, |w|x ≤ σ =⇒ v0 + w, v1 + w ∈ I(x̄),

and consider the cylinder Cσ in TxM given by {vt + w}, with t ∈ [0, 1] and w as
above. By convexity of TFL(x̄), for σ sufficiently small we have Cσ ⊂ NF(x̄). Let
us now consider the sets

Cc
σ = Cσ ∩ exp−1

x̄

(
expx̄(Cσ) ∩ cut(x)

)
,

Ccf
σ = Cσ ∩ exp−1

x̄

(
expx̄(Cσ) ∩ fcut(x)

)
.

Since Cσ ⊂ NF(x̄), exp−1
x̄ is locally Lipschitz on expx̄(Cσ), and therefore (A.1) and

(B.1) imply

Hn−1(Cc
σ) < +∞, Hn−1(Ccf

σ ) = 0.
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We now apply the co-area formula in the following form (see [8, p. 109] and [9,
Sections 2.10.25 and 2.10.26]): let f : vt + w 7−→ w (with the notation above), then

Hn−1(A) ≥

∫

f(A)

H0[A ∩ f−1(w)]Hn−1(dw)

for any A ⊂ Cσ Borel. Since the right-hand side is exactly
∫

#{t; vt + w ∈
A}Hn−1(dw), we immediately deduce that particular there is a sequence wk → 0
such that each (vt + wk) intersects Cc

σ finitely many often, and (vt + wk) never
intersects Ccf

σ .
We now also observe that, if y ∈ cut(x) \ fcut(x), then cut(x) is given in a

neighborhood of y by the intersection of a finite number of smooth hypersurfaces
(see for instance [22]). Thus, up to slightly perturbing v0 and v1, we may further
assume that at the points ytj the curve t 7→ yt intersects cut(x) transversally. �

Appendix C. Proofs of Corollaries 2.1, 2.2, 2.4, and Theorem 2.3

C.1. Proof of Corollary 2.1. By Theorem 1.2(ii), it suffices to show that (M, g)

satisfies (SCI). We argue by contradiction. Let v0 6= v1 ∈ I(x) be such that vt =
(1 − t)v0 + tv1 6∈ I(x̄) for all t ∈ (0, 1). Then, since TFL(x̄) is strictly convex, vt 6∈
TFL(x̄) for all t ∈ (0, 1). For any t ∈ (0, 1), set yt = expx̄(vt) and q̄t = −dvt

expx̄(vt)

as in the proof of Lemma 3.5. Then there exists qt ∈ I(yt) with qt 6= q̄t such that
expyt

(qt) = expyt
(q̄t) = x̄. We now choose a sequence of points {xk} → x̄ such that

yt 6∈ cut(xk) and −∇yc(xk, yt) → qt for all t ∈ [0, 1] (see for instance [22] for such
a construction). By repeating the proof of Lemma 3.5 with the smooth function
hk(t) = −c(xk, yt) + |vt|

2
x̄/2 over the time interval [0, 1] (see [13]), one can see that

ḧk(t) is given by

ḧk(t) =
2

3

∫ 1

0

(1 − s)S(yt,(1−s)q̄t−s∇yc(xk,yt))

(
ẏt, q̄t − [−∇yc(xk, yt)]

)
ds,

which by (MTW
+
) is strictly positive whenever ḣk(t) = 〈ẏt, q̄t− [−∇yc(xk, yt)]〉yt

=
0. As in the proof Lemma 3.5, these facts implies easily that, for any t ∈ (0, 1),

d(xk, yt)
2 − |vt|

2
x̄ = 2hk(t) ≥ 2 min{hk(0), hk(1)} + r(t)

= min
(
d(xk, y0)

2 − d(x̄, y0)
2, d(xk, y1)

2 − d(x̄, y1)
2
)

+ r(t),
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where r : [0, 1] 7→ [0, 1] is a continuous function (independent of k) such that r > 0
on [1/4, 3/4]. Hence, choosing for instance t = 1/2 and letting k → ∞ we get

0 = d(x̄, y1/2)
2 − d(x̄, y1/2)

2 ≥ d(x̄, y1/2)
2 − |v1/2|

2
x̄

> min
(
d(x̄, y0)

2 − d(x̄, y0)
2, d(x̄, y1)

2 − d(x̄, y1)
2
)

= 0,

a contradiction.

C.2. Proof of Corollary 2.2. By Theorem 1.3, it is sufficient to prove that (CNF)
and (MTW) imply (CI). Arguing as in [13], we can show that the following ”ex-
tended version” of Lemma 3.5 holds:

Lemma C.1. Let (M, g) be a Riemannian manifold satisfying (CNF)-(MTW).

Fix x̄ ∈M , v0, v1 ∈ I(x̄), and let vt = (1 − t)v0 + tv1 ∈ TxM . For any t ∈ [0, 1], set
yt = expx(vt). Then, for any x ∈M , for any t ∈ [0, 1],

c(x, yt) −
1

2
|vt|

2
x̄ ≥ min

(
c(x, y0) − c(x̄, y0), c(x, y1) − c(x̄, y1)

)
.

By choosing x = x̄ we deduce that c(x, yt) ≥
1
2
|vt|

2
x̄,, which implies that vt ∈ I(x̄),

as desired.

C.3. Proof of Theorem 2.3. Fix y ∈ M , assume that S(y) is not a singleton
and suppose by contradiction that there exists q0 ∈ exp−1

y (S(y)) ∩ I(y) ⊂ TyM an

exposed point for exp−1
y (S(y)). Let us define the “c-Monge-Ampère” measure |∂cφ|

as

|∂cφ|(A) = vol
(
∪x∈A∂

cφ(x)
)

for all A ⊂M Borel.

As shown for instance in [10, Lemma 3.1] (see also [23]), under our assumptions on
µ and ν the following upper and lower bounds on |∂cφ| hold:

λ

Λ
vol (A) ≤ |∂cφ|(A) ≤

Λ

λ
vol (A) for all A ⊂M Borel.

Now, let us consider the change of coordinates x 7→ q = −D̄c(x, y) which sends
M \ cut(y) onto I(y). Since x0 = expy(q0) 6∈ cut(y), the cost d2/2 is smooth in a
neighborhood of {x0} × {y}. Moreover, the support of |∂cφ| is the whole manifold
M . So, we can apply [10, Theorem 8.1 and Remark 8.2] to obtain that no exposed
points can exist inside the open set I(y). This gives a contradiction and concludes
the proof.
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C.4. Proof of Corollary 2.4. Let µ to ν be two probability measures such that

λvol ≤ µ ≤ Λvol , λvol ≤ ν ≤ Λvol

for two positive constants λ,Λ > 0. By [19], any compact quotient M of M̃ =

S
n1
r1
× . . .×S

ni
ri
×R

n satisfies MTW 6⊥. Moreover, if π̃ : M̃ →M denotes the quotient
map, we can use (π̃)−1 to lift µ and ν onto two σ-finite measure µ̃ and ν̃ which will
still satisfy the bounds

λṽol ≤ µ̃ ≤ Λṽol , λṽol ≤ ν̃ ≤ Λṽol .,

where ṽol denotes the volume density on M̃ . Now, let T = expx

(
∇xψ

)
: M → M

denote the transport map from µ to ν, and set c̃ = d̃2/2, with d̃ the Riemannian dis-

tance on M̃ . Observe that, since M is compact, the c-convex function is semiconvex

too. Then it is easily checked that the function ψ̃ : M̃ → R defined by ψ̃ = ψ ◦ π̃ is

c̃-convex, locally semiconvex, and T̃ = expex

(
∇exψ̃

)
: M̃ → M̃ sends µ̃ to ν̃. More-

over, since set of subgradients ∇−ψ(x) at any point x belongs to I(x) ⊂ TxM (see
for instance [24]), by identifying the tangent spaces TexM and Teπ(ex)M we obtain

∇−ψ̃(x̃) = ∇−ψ
(
π̃(x̃)

)
⊂ I(π̃(x̃)).

However, since M̃ is a product of spheres and R
n, thanks to the nonfocality assump-

tion on M it is easily seen that

TCL(π̃(x̃)) ⊂⊂ I(x̃)

(again we are identifying TexM with Teπ(ex)M). This implies that ∇−ψ̃(x̃) lies at a

positive distance from TCL(x̃) for every x̃ ∈ M̃ . In particular, for every ỹ ∈ M̃ , the
set

S̃(ỹ) =
{
x̃ ∈ M̃ ; ỹ ∈ ∂ecψ̃(x̃)

}

cannot intersect cut(ỹ). By Theorem 2.3 this implies that S̃(ỹ) is a singleton for

every ỹ, so ψ̃ec is C1. Since ψ̃ec is the potential associated to the transport problem
from ν̃ to µ̃ (that is, expey

(
∇eyψ

ec
)

is the optimal map sending ν̃ onto µ̃, see for
instance [26]) and the hypotheses on µ̃ and ν̃ are symmetric, we can exchange the

role of x̃ and ỹ to deduce that ψ̃ is C1 too. This implies that also ψ is C1, and so T
is continuous as desired.

Let us also observe that, since also ψc is C1, the transport map T is injective. As
already observed in [11], the continuity and injectivity of T combined with the result
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in [LTW] implies higher regularity (C1,α/C∞) of optimal maps for more smooth
(Cα/C∞) densities. This concludes the proof.
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Boston Inc., Boston, MA, 2004.

[4] M. Castelpietra and L. Rifford. Regularity properties of the distance function to conjugate and
cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian
geometry. ESAIM Control Optim. Calc. Var., to appear.

[5] D. Cordero-Erausquin. Sur le transport de mesures priodiques. C.R. Acad. Sci. Paris Sér. I

Math., 329:199–202, 1999.
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