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NECESSARY AND SUFFICIENT CONDITIONS FOR CONTINUITY OF OPTIMAL TRANSPORT MAPS ON RIEMANNIAN MANIFOLDS

In this paper we investigate the regularity of optimal transport maps for the squared distance cost on Riemannian manifolds. First of all, we provide some general necessary and sufficient conditions for a Riemannian manifold to satisfy the so-called Transport Continuity Property. Then, we show that on surfaces these conditions coincide. Finally, we give some regularity results on transport maps in some specific cases, extending in particular the results on the flat torus and the real projective space to a more general class of manifolds.

1 Compare with [13, Definition 1.1], where a slighty different definition of T CP is considered. 1 2 A. FIGALLI, L. RIFFORD, AND C. VILLANI

 ensures that the optimal transport map T from µ to ν exists and is unique. The aim of the present paper is to give necessary and sufficient conditions for T CP.

 concerning the regularity of optimal maps on Riemannian manifolds and the Ma-Trudinger-Wang condition, to avoid repetition we will only introduce the main notation, referring to our previous papers for more details. For convenience of the reader, some notation from Riemannian geometry is gathered in Appendix A.

, the MTW tensor at (x, v) evaluated on (ξ, η) is defined as

It is said that (M, g) satisfies the Ma-Trudinger-Wang condition (MTW) if

If the last inequality in (1.1) is strict unless ξ = 0 or η = 0, then M is said to satisfy the strict Ma-Trudinger-Wang condition (MTW + ). Our first result holds in any dimension.

Theorem 1.2. Let (M, g) be a smooth compact connected Riemannian manifold of dimension n ≥ 2. Then: (i) If (M, g) satisfies T CP, then (CI) and (MTW) hold.

(ii) If (M, g) satisfies (SCI) and (MTW + ), then T CP holds.

Let us observe that, in the above result, there is a gap between the necessary and sufficient conditions for T CP.

Introduction

Let µ, ν be two probability measures on a smooth compact connected Riemannian manifold (M, g) equipped with its geodesic distance d. Given a cost function c : M × M → R, the Monge-Kantorovich problem consists in finding a transport map T : M → M which sends µ onto ν (i.e. T # µ = ν) and which minimizes the functional min S # µ=ν M c(x, S(x)) dµ(x).

In [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF] McCann (generalizing [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] from the Euclidean case) proved that, if µ gives zero mass to countably (n -1)-rectifiable sets, then there is a unique transport map T solving the Monge-Kantorovich problem with source measure µ, target measure ν, and cost function c = d 2 /2. Moreover, T takes the form T (x) = exp x ∇ x ψ , where ψ : M → R is a c-convex function (see [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Chapter 5]). From now on, the cost function we consider will always be c(x, y) = d(x, y) 2 /2. The purpose of this paper is to study whether the optimal map can be expected to be continuous or not. Definition 1.1. Let (M, g) be a smooth compact connected Riemannian manifold of dimension n ≥ 2. We say that (M, g) satisfies the transport continuity property (abbreviated T CP) 1 if, whenever µ and ν are absolutely continuous measures with However, in two dimensions, we can take advantage of the following two results (and a delicate geometric argument, see Subsection 3.3) to fill the gap: 1) In R 2 , continuity of optimal maps between densities bounded away from zero and infinity is known to be true under (MTW) [START_REF] Figalli | C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two[END_REF].

2) If (MTW) holds, then, for any x ∈ M , the curvature of TFL(x) near any point of TFCL(x) (see Appendix A) has to be nonnegative. (Although not explicitly stated in this way, this fact is an immediate consequence of the proof of [START_REF] Figalli | On the Ma-Trudinger-Wang curvature on surfaces[END_REF]Proposition 4.1(ii)].) Theorem 1.3. Let (M, g) be a smooth compact Riemannian surface. Then M satisfies T CP if and only if (CI) and (MTW) hold.

Since property (CI) is closed under C 2 -convergence of the metric, as an immediate consequence of Theorem 1.3 and Remark 3.3 below, we deduce that the set of two-dimensional manifolds satisfying T CP is closed in C 2 -topology (compare [START_REF] Villani | Stability of a 4th-order curvature condition arising in optimal transport theory[END_REF]).

The paper is organized as follows: In the next section, we introduce the extended MTW condition, and we provide some further regularity results (in particular, we extend the regularity results on the flat torus [START_REF] Cordero-Erausquin | Sur le transport de mesures priodiques[END_REF] and the real projective space to a more general class of manifolds). Moreover, we make some comments on other existing results. The proofs of Theorems 1.2 and 1.3 are given in Section 3. Finally, some notation and technical results are postponed to the appendices.

Further results and comments

2.1. Extended MTW conditions. For every x ∈ M , let us denote by NF(x) ⊂ T x M the nonfocal domain at x (see Appendix A). As before, we shall say that (M, g) satisfies (CNF) (resp. (SCNF)) if NF(x) is convex (resp. strictly convex) for all x ∈ M . As first suggested in [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF], the MTW tensor may be extended by letting v vary in the whole nonfocal domain rather than in the injectivity domain. To define this extension, we let x ∈ M , v ∈ NF(x), and (ξ, η) ∈ T x M × T x M . Since y = exp x v is not conjugate to x, by the Inverse Function Theorem there are an open neighborhood V of (x, v) in TM , and an open neighborhood W of (x, y) in M × M , such that

Ψ (x,v) : V ⊂ T M -→ W ⊂ M × M (x ′ , v ′ ) -→ x ′ , exp x ′ (v ′
) is a smooth diffeomorphism from V to W. Then we may define c (x,v) : W → R by

c (x,v) (x ′ , y ′ ) = 1 2 Ψ -1 (x,v) (x ′ , y ′ ) 2 x ′ ∀ (x ′ , y ′ ) ∈ W.
If v ∈ I(x) then for y ′ close to exp x v and x ′ close to x we have

c (x,v) (x ′ , y ′ ) = c(x ′ , y ′ ) = d(x ′ , y ′ ) 2 /2.
Let x ∈ M , v ∈ NF(x), and (ξ, η) ∈ T x M ×T x M . Following [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF], the extended MTW tensor at (x, v), evaluated on (ξ, η), is defined as

S (x,v) (ξ, η) = - 3 2 d 2 ds 2 s=0 d 2 dt 2 t=0 c (x,v) exp x (tξ), exp x (v + sη) .
It is said that (M, g) satisfies the extended Ma-Trudinger-Wang condition (MTW) if

(2.1) ∀ (x, v) ∈ T M with v ∈ NF(x), ∀ (ξ, η) ∈ T x M × T x M, ξ, η x = 0 =⇒ S (x,y) (ξ, η) ≥ 0 .
As before, if the last inequality in (2.1) is strict unless ξ = 0 or η = 0, then M is said to satisfy the extended strict 

∀ (x, v) ∈ T M with v ∈ I(x), ∀ (ξ, η) ∈ T x M × T x M, S (x,y) (ξ, η) ≥ 0. (2.2)
Let µ, ν be two σ-finite non-negative measures with positive bounded densities on a connected Riemannian manifold (M, g), and let ψ : M → R be a locally semiconvex c-convex function such that the map T : M → M given by

T (x) = exp x ∇ψ(x)
a.e. x ∈ M.

satisfies T # µ = ν (observe that in this setting we cannot talk about optimal maps, since µ may have infinite mass, and so M d(x, T (x)) 2 dµ(x) may be infinite). Denote by ψ c the c-transform of ψ and recall that

∂ c ψ(x) = {y ∈ M ; ψ(x) + ψ c (y) + c(x, y) = 0} .
Define the contact set of y ∈ M as

S(y) = {x ∈ M ; y ∈ ∂ c ψ(x)} = ∂ c ψ c (y).
As it will be seen in Section 3.2 (see in particular (3.15)), if (M, g) satisfies (MTW), then the equality exp -1 y (∂ c ψ c (y)) = ∇ -ψ c (y) holds for any y ∈ M . In particular, exp -1 y (S(y)) ⊂ I(y) is always a convex set. The following theorem, already present in the proof of [START_REF] Figalli | Regularity of optimal transport maps on multiple products of spheres[END_REF]Corollary 5.2], is a simple consequence of the results in [START_REF] Figalli | Continuity and injectivity of optimal maps for non-negatively cross-curved costs[END_REF].

Theorem 2.3. Assume that (M, g) satisfies (CI) and (MTW ⊥ ), and suppose that there exist two positive constants λ, Λ > 0 such that

λvol ≤ µ ≤ Λvol , λvol ≤ ν ≤ Λvol .
Then, for any y ∈ M , either S(y) is a singleton or all exposed points of exp -1 y (S(y)) belong to TCL(y).

Let us recall that, according to [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF], a manifold is said to have nonfocal cut locus if TFCL(x) = ∅ for all x ∈ M . As an immediate corollary of the above theorem and [6, Appendix C, Theorem 3] we obtain the following result, which extends the regularity result on the flat torus T n [START_REF] Cordero-Erausquin | Sur le transport de mesures priodiques[END_REF] and the real projective space to compact quotient of

S n 1 r 1 × . . . × S n i r i × R n with nonfocal cut locus, like for instance M = RP n 1 r 1 × . . . × RP n i r i × T n .
(Let us however point out that, since [6, Appendix C, Theorem 3] is proven in the compact case, we need to slightly modify its proof in order to deal with the fact that the mass of our measures in not necessarily finite.) Corollary 2.4. Let (M, g) be a compact quotient of S n 1 r 1 ×. . .×S n i r i ×R n with nonfocal cut locus. Then T CP holds. Moreover, if µ = f vol and ν = gvol with f, g > 0 and of class C ∞ , then the optimal transport is C ∞ too.

Further comments.

Thanks to existing results in the literature and some of the above results, we can list all the known examples of compact Riemannian manifolds satisfying T CP (to our knowledge, the list below is exhaustive):

-Flat tori in any dimension [START_REF] Cordero-Erausquin | Sur le transport de mesures priodiques[END_REF].

-Round spheres in any dimension [START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF] -Small C 4 deformations of round spheres in any dimension [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF][START_REF] Figalli | Nearly round spheres look convex[END_REF].

-Riemannian submersions of round spheres [START_REF] Kim | Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular)[END_REF].

-Products of round spheres [START_REF] Figalli | Regularity of optimal transport maps on multiple products of spheres[END_REF].

-Quotients of all the above examples by a discrete group of isometry [START_REF] Delanoë | Regularity of optimal transport on compact, locally nearly spherical, manifolds[END_REF].

-Compact quotients of products of spheres and Euclidean spaces with nonfocal cut locus (Corollary 2.4). -Compact Riemannian surfaces satisfying (CI) and (MTW) (Theorem 1.3). By Theorem 1.2(i), any Riemannian manifold verifying T CP must satisfy (CI) and (MTW). As shown by Theorem 1.3, the combination (CI)-(MTW) and T CP are equivalent on surfaces. We do not know if such a result holds in higher dimension.

In [START_REF] Delanoë | Positivity of C-curvature on surfaces locally near to sphere and its application[END_REF] the authors showed that small C 4 perturbations of S 2 equipped with the round metric satisfy (MTW ⊥ ). Thanks to [START_REF] Kim | Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular)[END_REF]Theorem 1.2(3)], this implies that any product of them satisfy (MTW) ⊥ . We dot not know if such Riemannian products satisfy T CP.

Finally, we point out that to our knowledge there is no concrete example of a Riemannian manifold satisfying (MTW) but not (MTW ⊥ ). As shown in [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 12.7], T CP implies Assumption (C). In addition, by [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 12.42], Assumption (C) and (CI) imply (MTW). Therefore, Theorem 1.2 is a straightforward consequence of the following result: Proposition 3.1. Let (M, g) be a smooth compact connected Riemannian manifold of dimension n ≥ 2 satisfying Assumption (C). Then (CI) holds.

Proof of Proposition 3.1. Assume by contradiction that I(x) (or equivalently I(x)) is not convex for some x ∈ M . We need the following result, whose proof is postponed to the end: Lemma 3.2. Assume I(x) is not convex. Then there are v -1 , v 1 ∈ I(x) such that:

-

v 0 = v -1 +v 1 2 does not belong to I(x); -the mapping v ∈ [v -1 , v 1 ] ∩ I(x) → exp x(v) ∈ M is injective. Set y i = exp x(v i ) for i = -1, 1, 0 (with v -1 , v 1 ,
v 0 as in the above lemma), and let ψ : M → R be the c-convex function defined by

ψ(x) = max c(x, y -1 ) -c(x, y -1 ), c(x, y 1 ) -c(x, y 1 ) ∀ x ∈ M.
The set of subgradients of ψ at x is given by the segment

∇ -ψ(x) = [v -1 , v 1 ] ⊂ T xM,
which by [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 10.25] means that

-∇ + x c(x, y) ⊂ [v -1 , v 1 ] ∀ y ∈ ∂ c ψ(x),
where ∇ + x c(x, y) denotes the set of supergradients of the semiconcave function x → c(x, y) at x. Since both v -1 and v 1 belong to the injectivity domain I(x), we have that c(x, •) is differentiable at both y -1 and y 1 , and

∇ xc(x, y i ) = -v i for i = -1, 1.
Moreover we observe that the mapping

F : y ∈ ∂ c ψ(x) -→ -∇ + x c(x, y) ⊂ [v -1 , v 1
] is convex-valued and upper semicontinuous. Thanks to Assumption (C), there exists a continuous curve t ∈ [0, 1] → y(t) ∈ M such that the mapping F •y is convexvalued, upper semicontinuous, and satisfies (F

• y)(0) = v -1 and (F • y)(1) = v 1 .
By [1, Theorem 9.2.1], for every ǫ > 0 we can find a Lipschitz function

f ǫ : [0, 1] → [v -1 , v 1 ] such that Graph(f ǫ ) ⊂ Graph F • y + ǫB = (t, v); t ∈ [0, 1], v ∈ F • y (t) + ǫB, in [0, 1] × [v -1 , v 1 ] (here B denotes the open unit ball in R 2 )
. By compactness and Lemma 3.2, this implies that there exists y ∈ ∂ c ψ(x) such that

v 1/2 ∈ -∇ + x c(x, y) \ I(x). The set -∇ +
x c(x, y) is the convex hull of the minimizing speeds joining x to y. Thus there are two minimizing speeds

v = v ′ ∈ [v -1 , v 1 ] ∩ I(x) joining x to y, and a constant λ ∈ (0, 1), such that v 1/2 = λv + (1 -λ)v ′ . This contradicts the fact that v ∈ [v -1 , v 1 ] ∩ I(x) → exp x(v)
is injective, and proves that (M, g) satisfies (CI).

It remains to prove Lemma 3.2.

Proof of Lemma 3.2. Without loss of generality we may assume that g x = Id R n . Therefore, it is sufficient to show that there are v

-1 , v 1 ∈ I(x) such that v 0 = v -1 +v 1 2
does not belong to I(x) and such that the mapping

v ∈ [v -1 , v 1 ] ∩ I(x) → |v| ∈ R is injective. Denote by τ C : U xM → (0, ∞) the restriction of the cut time t C (x, •) (see Appendix A) to the unit sphere U xM ⊂ T xM . Since I(x) is not convex, there are w 0 , w 1 ∈ TCL(x) and t ∈ (0, 1) such that wt = (1 -t)v -1 + tv 1 does not belong to I(x).
We claim that we may assume that τ C is differentiable at w 0 = w 0 /|w 0 |, and that the vector w 1w 0 satisfies

w 1 -w 0 , ξ(w 0 ) > 0,
where ξ(w 0 ) denotes the exterior unit normal to the TCL(x) at w 0 . (Note that, once τ C is assumed to be differentiable at w 0 , then ξ(w 0 ) exists and is unique since TCL(x) is given by the image of the map

w ∈ U xM → τ C ( w) w ∈ T xM .) Indeed, if not, for every w ∈ U xM such that τ C is differentiable at w we would have I(x) ⊂ S ξ(w) ,
where S ξ(w) ⊂ T xM denotes the closed affine halfspace associated with the normal ξ(w) at w = τ C ( w) w, that is,

S ξ(w) = {w + h; h, ξ(w) ≤ 0} .
However, since τ C is Lipschitz and so differentiable a.e., we would obtain

I(x) ⊂ S ξ(w) ∀ w ∈ TCL(x), (3.1)
which easily implies that I(x) is convex, absurd. Now, let w 0 , w 1 ∈ TCL(x) and t ∈ (0, 1) be such that τ C is differentiable at w 0 = w 0 /|w 0 |, wt = (1-t)w 0 + tw 1 does not belong to I(x), and w 1 -w 0 , ξ(w 0 ) > 0. This means that there is a maximal t ∈ (0, 1] such that w t ∈ I(x) for all t ∈ (0, t). Since w 1w 0 , ξ(w 0 ) > 0 and w t / ∈ I(x) for small positive times, there exists ǫ 0 > 0 small enough such that (1 + ǫ)w 0ǫw 1 belongs to I(x) and [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Definition 12.14], that is, for every x ∈ M and v 0 , v 1 ∈ I(x) it holds

(1 + ǫ)w 0 -ǫw 1 , w b t ∩ I(x) = {w 0 , w b t } . for all ǫ ≤ ǫ 0 . Hence, if we choose ǫ, ǫ ′ ≤ ǫ 0 such that |(1 + ǫ)w 0 -ǫw 1 | = |(1 -ǫ ′ )w b t |, then v -1 = (1 + ǫ)w 0 -ǫw 1 and v 1 = (1 -ǫ ′ )w b t satisfy the desired assumption. Remark 3.3. If (M, g) satisfies (CI), then (MTW) is equivalent to the fact that the cost c = d 2 /2 is regular in the sense of
v t = (1 -t)v 0 + tv 1 ∈ I(x) ∀ t ∈ [0, 1], (3.2) and c(x, y t ) -c(x, y t ) ≥ min c(x, y 0 ) -c(x, y 0 ), c(x, y 1 ) -c(x, y 1 ) , (3.3)
for any x ∈ M , where y t = exp x(v t ) for any t ∈ [0, 1]. Such a result appeared with an incomplete proof in [26, Proof of Theorem 12.36], but it is an easy consequence of the argument given there combined with Lemma 3.5 below.

3.2.

Sufficient conditions for T CP. Theorem 1.2(ii) follows from the following finer result. Proposition 3.4. Assume that M satisfies (SCI) and (MTW + ). Then, the optimal map from µ to ν is continuous whenever µ and ν satisfy:

(i) lim r→0 + µ(Br(x)) r n-1 = 0 for any x ∈ M ; (ii) ν ≥ c 0 vol for some constant c 0 > 0.
Proof of Proposition 3.4. The proof of Proposition 3.4 is divided in three steps.

Step 1: we first show that under assumptions (CI) and (MTW), the cost c = d 2 /2 is "regular" (see Remark 3.3).

Lemma 3.5. Let (M, g) be a Riemannian manifold satisfying (CI)-(MTW). Fix x ∈ M , v 0 , v 1 ∈ I(x), and let v t = (1 -t)v 0 + tv 1 ∈ T x M . For any t ∈ [0, 1], set y t = exp x (v t ). Then, for any x ∈ M , for any t ∈ [0, 1], (3.4) c(x, y t ) -c(x, y t ) ≥ min c(x, y 0 ) -c(x, y 0 ), c(x, y 1 ) -c(x, y 1 ) .
Proof of Lemma 3.5. Fix x ∈ M and v 0 , v 1 ∈ I(x). Note that, by continuity of c, it is sufficient to prove (3.4) with v 0 , v 1 ∈ I(x). Let us fix x ∈ M and define the function h

: [0, 1] → R by h(t) := -c(x, y t ) + c(x, y t ) = -c(x, y t ) + 1 2 |v t | 2 x ∀ t ∈ [0, 1]. (Observe that c(x, y t ) = |v t | 2 x/2, since v t ∈ I(x).
) Our aim is to show that h can only achieve a maximum at t = 0 or t = 1. Assume that the curve (y t ) 0≤t≤1 intersects cut(x) only a finite set of times 0 = t 0 < t 1 < . . . < t N < t N +1 = 1, always intersects cut(x) transversally, and never intersects fcut(x) = exp x (TFCL(x)). This implies that h is smooth on the intervals (t j , t j+1 ) for j = 0, . . . , N and is never differentiable at t = t j for j = 1, . . . , N . By semiconvexity of the function t → -c(x, y t ) necessarily ḣ(t + j ) > ḣ(t - j ), and so h(t) cannot achieve a local maximum in a neighborhood of the points t 1 , . . . , t N . In particular, there exists η > 0 such that h(t) cannot achieve its maximum in any interval of the form [t j -2η, t j + 2η] with j ∈ {1, . . . , N }. Let us show that h cannot have a maximum in any of the intervals I 0 := (t 0 , t 1η), I N := (t N + η, t N +1 ), and I j := (t j + η, t j+1η) with j ∈ {1, . . . , N -1} .

Let j ∈ {0, . . . , N } be fixed. The function y → c(x, y) is smooth in a neighborhood of the curve (y t ) t∈I j , so q t := -∇ y c(x, y t ) is well-defined for every t ∈ I j . Set, for every t ∈ [0, 1], qt := -∇ y c(x, y t ). Since v 0 , v 1 belongs to I(x) which is an open convex set (by assumption (CI)), the tangent vector qt always belong to I(y t ) and does not intersect TFL(y t ). Then, arguing as in [26, Proof of Theorem 12.36], there exists a constant C > 0 (depensing on η) such that

S (yt,sqt+(1-s)q t ) ( ẏt , q t -q t ) ≥ -C | ẏt , q t -q t | ∀ t ∈ I j , ∀s ∈ [0, 1]. Since (see [26, Proof of Theorem 12.36] or [13, Proof of Lemma 3.3]) ḣ(t) = ẏt , q t -q t ḧ(t) = 2 3 1 0 (1 -s)S (yt,sqt+(1-s)q t ) ( ẏt , q t -q t ) ds for any t ∈ I j , we get (3.5) ḧ(t) ≥ -C| ḣ(t)| ∀ t ∈ I j .
Now, as in [26, Proof of Theorem 12.36] we consider the functions h ε (t) = h(t) + ε(t -1/2) k , with k large enough (which will be chosen below). If by contradiction h ε attains a maximum at a time t 0 ∈ I j for some j, then at t 0 we get ḣε (t 0 ) = 0 and ḧε (t 0 ) ≤ 0, which gives

ḣ(t 0 ) = -εk(t 0 -1/2) k-1 , ḧ(t 0 ) ≤ -εk(k -1)(t 0 -1/2) k-2 .
This contradicts (3.5) for k ≥ 1 + C/2. Moreover, since h ε converges to h uniformly on [0, 1] as ε → 0, for ε sufficiently small the function h ε cannot achieve its maximum on any interval of the form I j . This implies that h ε (t) ≤ max{h ε (0), h ε (1)} for ε small, and letting ε → 0 we get (3.4). Finally, thanks to Lemma B.2, we observe that the assumption we did on the curve (y t ) 0≤t≤1 holds generically. So (as in [START_REF] Figalli | An approximation lemma about the cut locus, with applications in optimal transport theory[END_REF]) the result follows immediately by approximation.

As a consequence of the above result, if ψ : M → R is a c-convex function, then its c-subdifferential is always pathwise connected. As a matter of fact, if y 0 , y 1 both belong to ∂ c ψ(x), then there are v 0 , v 1 ∈ I(x) such that y 0 = exp x(v 0 ), y 1 = exp x(v 1 ), and

ψ(x) + c(x, y i ) = min x∈M ψ(x) + c(x, y i ) ∀ i = 0, 1.
The latter property can be written as

c(x, y i ) -c(x, y i ) ≥ ψ(x) -ψ(x) ∀ x ∈ M, i = 0, 1,
which, thanks to Lemma 3.5, implies

c(x, y t ) -c(x, y t ) ≥ min c(x, y 0 ) -c(x, y 0 ), c(x, y 1 ) -c(x, y 1 ) ≥ ψ(x) -ψ(x),
for every x ∈ M , where

y t = exp x ((1 -t)v 0 + tv 1 ), t ∈ [0, 1]
. This shows that the path t → y t belong to ∂ c ψ(x), as desired.

Step 2: We strengthen locally the previous result in a quantitative way.

Lemma 3.6. Let (M, g) be a Riemannian manifold satisfying (MTW), x ∈ M be fixed, A be a compact subset of I(x), and B ∈ M be a compact set containing x such that the convex envelope of exp -1

y B in T xM satisfies conv exp -1 y B ⊂ I(y) ∀ y ∈ exp x(A). (3.6)
Assume that there are K, C > 0 such that, for any y ∈ exp x(A) and any x ∈ exp y conv exp -1 y (B) , there holds

∀ (ξ, η) ∈ T y M × T y M, S (y,x) (ξ, η) ≥ K|ξ| 2 x |η| 2 y -C| ξ, η y ||ξ| x |η| y . (3.7) Furthermore, fix f ∈ C ∞ c ([0, 1]
) with f ≥ 0 and {f > 0} = (1/4, 3/4). Then there exists λ = λ(K, C, f ) > 0 such that for any x ∈ B and any

C 2 curve (v t ) 0≤t≤1 drawn in I(x) satisfying    |v t | x = 0 for t ∈ [0, 1/4] ∪ [3/4, 1], |v t | x ≤ K 8 d(x, x)| ẏt | 2 yt for t ∈ [1/4, 3/4], v t ∈ A for t ∈ [1/4, 3/4], (3.8) 
where y t = exp x (v t ), there holds for any t ∈ [0, 1] (3.9) c(x, y t )c(x, y) ≥ min c(x, y 0 )c(x, y 0 ), c(x, y 1 )c(x, y 1 ) + λf (t)c(x, x).

Proof of Lemma 3.6. We adapt the argument in Lemma 3.5, borrowing the strategy from [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]: first of all, using Lemma B.2 (as we did in the proof of Lemma 3.5), up to slightly perturbing v 0 and v 1 we can assume that v 0 , v 1 ∈ I(x), (y t ) 0≤t≤1 intersects cut(x) only at a finite set of times 0 = t 0 < t 1 < . . . < t N < t N +1 = 1, and moreover (y t ) 0≤t≤1 never intersects fcut(x). Using the notations of Lemma 3.5, we consider the function h : [0, 1] → R given by

h(t) = -c(x, y t ) + c(x, y t ) + λd(x, x) 2 f (t)/2 ∀ t ∈ [0, 1],
where λ > 0 is a positive constant to be chosen. On the one hand, since f (t) = 0 and v t is a segment for t ∈ [0, 1/4] ∪ [3/4, 1], arguing as in the proof of Lemma 3.5 we have that h| [0,1/4]∪[3/4,1] achieve its maximum at 0, 1/4, 3/4 or 1.

On the other hand, if t ∈ [1/4, 3/4] ∩ (t j , t j+1 ) for some j = 0, . . . , N , we can argue as in the proof of [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]Theorem 3.1] (see also [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF]Lemma 3.3]) to check that the identity ḣ(t) = 0 gives ḧ(t) > 0 for λ = λ(K, C, f ) sufficiently small. This implies that the function h cannot have any maximum on any interval (t j , t j+1 ) ∩ [1/4, 3/4]. Moreover, since ḣ(t + j ) > ḣ(t - j ) for j = 1, . . . , N , h cannot achieve its maximum at any of the points t j , j = 1, . . . , N .

Hence h necessarily achieves its maximum at 0 or 1, and we obtain (3.9).

Step 3: We conclude the proof of Proposition 3.4 arguing as in [13, Theorem 3.6] and [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]Theorem 5.1]. Assumption (i) above ensures that µ gives no mass to sets with finite (n -1)dimensional Hausdorff measure. Hence by McCann's Theorem [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF], there exists a unique optimal transport map between µ and ν, given by T (x) = exp x ∇ x ψ where ψ is a semiconvex function. Moreover, as shown by McCann, ∇ x ψ ∈ I(x) at all point of differentiability of ψ. By assumption the sets I(x) are (strictly) convex for all x, therefore the subdifferential of ψ satisfies ∇ -ψ(x) ⊂ I(x) for all x ∈ M . We want to prove that ψ is C 1 . To this aim, we need to show that ∇ -ψ(x) is everywhere a singleton. The proof is by contradiction.

Assume that there is

x ∈ M such that v 0 = v 1 ∈ ∇ -ψ(x). Let y 0 = exp x(v 0 ), y 1 = exp x(v 1 ). Then y i ∈ ∂ c ψ(x), i.e. ψ(x) + c(x, y i ) = min x∈M {ψ(x) + c(x, y i )} , i = 0, 1.
In particular

(3.10) c(x, y i ) -c(x, y i ) ≥ ψ(x) -ψ(x), ∀ x ∈ M, i = 0, 1.
For every δ > 0 small, denote by A δ ⊂ T xM the set swept by all the (3.11) where y t = exp x(v t ). Since the set I(x) is strictly convex, the segment I = [v 1/4 , v 3/4 ] lies a positive distance away from TCL(x), and for every y ∈ exp x(I ), the point x is at positive distance from TCL(y). Therefore, there is δ > 0 small enough such that Aδ ⊂ I(x) and conv exp -1 y Bδ(x) ⊂ I(y) ∀ y ∈ exp x Aδ . (3.12) By construction, any set A δ (with δ ∈ (0, δ), δ small) contains a parallelepiped E δ centered at v 1/2 = v 0 +v 1 2 , with one side of length ∼ |v 0v 1 | x and the other sides of length ∼ δ|v 0v 1 | 2

C 2 curves t ∈ [0, 1] → v t ∈ T xM which satisfy v t = (1 -t)v 0 + tv 1 for any t ∈ [0, 1/4] ∪ [3/4, 1] and |v t | x ≤ δ| ẏt | 2 yt for t ∈ [1/4, 3/4],
x, such that all points v in such a parallelepiped can be written as v t for some t ∈ [3/8, 5/8]. Therefore, there is c > 0 such that L n (E δ ) ≥ cδ n-1 , where L n denotes the Lebesgue measure on T xM . Since E δ lies a positive distance from TCL(x), we obtain

vol (Y δ ) ∼ L n (E δ ) ≥ cδ n-1 , where Y δ := exp x(E δ ). (3.13)
On the other hand, by (3.12) the cost c is smooth on Bδ(x)×exp x Aδ and moreover (MTW + ) holds. Hence, arguing as in [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]Lemma 2.3] we deduce that there are K, C > 0 such that the following property holds for any y ∈ exp x Aδ and any x ∈ exp y conv exp -1 y ( Bδ) , where conv(S) denotes the convex envelope of a set S:

∀ (ξ, η) ∈ T y M × T y M, S (y,x) (ξ, η) ≥ K|ξ| 2
x |η| 2 y -C ξ, η y |ξ| x |η| y . By Lemma 3.6, we deduce that for any δ ∈ (0, δ), any y ∈ Y δ , and any x ∈ Bδ(x) \ B 8δ/K (x), there holds

c(x, y) -c(x, y) ≥ min c(x, y 0 ) -c(x, y 0 ), c(x, y 1 ) -c(x, y 1 ) + 2λm f d(x, x) 2 ,
where m f = inf{f (t); t ∈ [3/8, 5/8]} > 0 and λ = λ(K, C, f ) > 0. Combining this inequality with (3.10), we conclude that for any δ ∈ (0, δ),

∀ y ∈ Y δ , ∀ x ∈ Bδ(x) \ B 8δ/K (x), y ∈ ∂ c ψ(x). (3.14)
We claim that taking δ ∈ (0, δ) small enough, we may assume that the above property holds for any x ∈ M \ B 8δ/K (x). Indeed, if not, there exists a sequence {δ k } ↓ 0, together with sequences {x k } in M \ Bδ(x) and {y k } ∈ Y δ k , such that y k ∈ ∂ c ψ(x k ) for any k. By compactness, we deduce the existence of x ∈ M \ Bδ(x) and y t ∈ exp x([v 0 , v 1 ]), with t ∈ [3/8, 5/8], such that y t ∈ ∂ c ψ(x). This implies that the c-convex potential ψ c : M → R satisfies x, x ∈ ∂ c ψ c (y t ). Moreover, (3.14) gives that ∂ c ψ c (y t ) ∩ Bδ(x) \ B 8δ/K (x) = ∅. However, by to the discussion after Lemma 3.5, we know that the set ∂ c ψ c (y t ) is pathwise connected, absurd.

In conclusion we have proved that for δ ∈ (0, δ) small all the mass brought into Y δ by the optimal map comes from B 8δ/K (x), and so

µ B 8δ/K (x) ≥ ν Y δ .
Thus, as µ B 8δ/K (x) ≤ o(1)δ n-1 and ν(Y δ ) ≥ c 0 vol (Y δ ) ≥ c ′ δ n-1 (by assumption (ii) and (3.13)), we obtain a contradiction as δ → 0.

3.3.

Proof of Theorem 1.3. Thanks to Theorem 1.2(i), we only need to prove the "if" part. As in the proof of Proposition 3.4, let ψ be a c-convex function such that T (x) = exp x ∇ x ψ . We want to prove that the subdifferential of ψ is a singleton everywhere.

We begin by observing that, thanks to Lemma 3.5 and [26, Proposition 12.15], we have

(3.15) ∇ -ψ(x) = exp -1 x ∂ c ψ(x) ∀ x ∈ M.
First of all, we claim that the subdifferential of ψ at every point is at most onedimensional. Indeed, if ∇ -ψ(x) is a two-dimensional convex C set for some x ∈ M , then by (3.15) exp x (C) = ∂ c ψ(x) is a set with positive volume. But then, considering the optimal transport problem from ν to µ, the set ∂ c ψ(x) is sent (by ∂ c ψ c ) onto the point x, which implies µ({x}) ≥ ν(∂ c ψ(x)) > 0, impossible. Now, assume by contradiction that ψ is not differentiable at some point x 0 . Then there exist v

-1 = v 1 ∈ I(x 0 ) such that ∇ -ψ(x 0 ) ⊂ I(x 0 ) is equal to the segment [v -1 , v 1 ] = {v t } -1≤t≤1 , v t = 1+t 2 v 1 + 1-t 2 v -1 . (In this proof, to simplify the notation, it is more convenient to use [v -1 , v 1 ] to denote ∇ -ψ(x 0 ) instead of [v 0 , v 1 ].) We define y t = exp x 0 (v t ).
We claim that that the following holds:

(A) [v ε-1 , v 1-ε ] ⊂ I(x 0
) for all ε > 0 (i.e. v t ∈ TCL(x 0 ) for all t ∈ (-1, 1)). Since the proof of the above result is pretty involved, we postpone it to the end of this subsection. Now the strategy is the following: by (A) we know that the cost function c = d 2 /2 is smooth in a neighborhood of {x 0 } × {y t ; t ∈ [-3/4, 3/4]} and satisfies all the assumptions of [12, Lemma 3.1] (observe that, even if that result is stated on domains of R n , everything is local so it holds also on manifolds), and we can deduce that propagation of singularities hold. More precisely, [START_REF] Figalli | C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two[END_REF]Lemma 3.1] gives the existence of a smooth injective curve γ x 0 ∋ x 0 contained inside the set

Γ -3/4,3/4 = d(•, y -3/4 ) 2 -d(•, y 3/4 ) 2 = d(x 0 , y -3/4 ) 2 -d(x 0 , y 3/4 ) 2 , such that (3.16) 2ψ -2ψ(x 0 ) = -d(•, y 0 ) 2 + d(x 0 , y 0 ) 2 on γ x 0 .
(Recall that c = d 2 /2.) Moreover, restricting γ x 0 if necessary, we can assume that γ x 0 ∩ cut(y 0 ) = ∅. We now observe that, since

y t ∈ exp x 0 ([v -1 , v 1 ]) = ∂ c ψ(x 0 ), we have (3.17) 2ψ -2ψ(x 0 ) ≥ d(•, y t ) 2 -d(x 0 , y t ) 2 ∀ t ∈ [-1, 1].
Moreover, thanks to Lemma 3.5,

(3.18) -d(•, y 0 ) 2 + d(x 0 , y 0 ) 2 ≤ max -d(•, y t ) 2 + d(x 0 , y t ) 2 , -d(•, y τ ) 2 + d(x 0 , y τ ) 2
for all -1 ≤ t ≤ 0 ≤ τ ≤ 1. Hence, combining (3.16), (3.17), and (3.18), we deduce that 2ψ

-2ψ(x 0 ) = d(•, y t ) 2 -d(x 0 , y t ) 2 on γ x 0 ∀ t ∈ [-1, 1]
and

γ x 0 ⊂ -1<t<τ <1 Γ t,τ ,
where

(3.19) Γ t,τ = d(•, y t ) 2 -d(•, y τ ) 2 = d(x 0 , y t ) 2 -d(x 0 , y τ ) 2 .
This implies that y t ∈ ∂ c ψ(x) for any x ∈ γ x 0 . Moreover, if we parameterize γ x 0 as s → x s , by differentiating with respect to s the identity

d(x s , y t ) 2 -d(x s , y 0 ) 2 = d(x 0 , y t ) 2 -d(x 0 , y 0 ) 2 we obtain ẋs • ∇ + x d(x s , y t ) 2 -∇ x d(x s , y 0 ) 2 =
0 for all s, t (recall that γ x 0 ∩ cut(y 0 ) = ∅), that is, for any fixed s there exists a segment which contains all elements in the superdifferential of d(•, y t ) 2 at x s for all t ∈ [-1, 1]. Thanks to the convexity of I(x s ), we can apply (A) with x 0 replaced by x s . Hence, we can repeat the argument above starting from any point x s , and by a topological argument as in [12, Proof of Lemma 3.1] (showing that the maximal time interval on which we can extend the curve is both open and closed) we immediately get that γ x 0 is a simple curve which either is closed or has infinite length.

To summarize, we finally have the following geometric picture: there exists a smooth closed curve γ ⊂ M , which is either closed or has infinite length, such that: (A-a) For any x ∈ γ, y t ∈ cut(x) for all t ∈ (-1, 1).

(A-b) γ ⊂ -1<t<τ <1 Γ t,τ , where Γ t,τ = {d(•, y t ) 2 -d(•, y τ ) 2 = d(x 0 , y t ) 2 -d(x 0 , y τ ) 2 }.
Let us show that the compactness of M prevents this.

By differentiating with respect to t at t = 0 the identity

d(x, y t ) 2 -d(x, y 0 ) 2 = d(x 0 , y t ) 2 -d(x 0 , y 0 ) 2 ∀ x ∈ γ,
we obtain (using (A-a))

∇ y d(x, y 0 ) 2 -∇ y d(x 0 , y 0 ) 2 • ẏ0 = 0 ∀ x ∈ γ.
Observe that, since y 0 ∈ cut(x), ẏ0 = 0. Hence there exists a segment Σ ⊂ I(y 0 ) such that exp -1 y 0 (γ) ⊂ Σ. This is impossible since γ ⊂ M \ cut(y 0 ), so exp -1 y 0 (γ) is either closed or it has infinite length.

This concludes the proof of the C 1 regularity of ψ. It remains to show the validity of property (A) above.

Proof of (A).

To prove (A), we distinguish two cases:

(i) Either v -1 or v 1 does not belong to TCL(x 0 ). (ii) Both v -1 and v 1 belong to TCL(x 0 ). In case (i), by the convexity of I(x) we immediately get that either

[v -1 , v 1-ε ] ⊂ I(x) or [v ε-1 , v 1 ] ⊂ I(x) for any ε > 0, so (A) holds.
In case (ii), assume by contradiction that (A) is false. By the convexity of I(x 0 ) we have

[v -1 , v 1 ] ⊂ TCL(x 0 ). Let t ∈ [-1, 1] be such that |vt| x 0 is minimal on [v -1 , v 1 ]
(by uniform convexity of the norm, there exists a unique such point). We consider two cases:

(ii-a) exp -1

x 0 (yt) is not a singleton. (ii-b) exp -1 x 0 (yt) = vt. In case (ii-a), since |vt| x 0 is the unique vector of minimal norm on [v -1 , v 1 ], there exists v ∈ TCL(x 0 ) \ [v -1 , v 1 ] such that exp x 0 (v) = exp x 0 (vt) = yt (v cannot belongs to [v -1 , v 1 ] since |v| x 0 = |vt| x 0 ). However this is impossible since (3.15) implies v ∈ exp -1 x 0 ∂ c ψ(x 0 ) ⊂ ∇ -ψ(x 0 ) = [v -1 , v 1 ].
In case (ii-b), without loss of generality we assume that the metric at x 0 concides with the identity matrix. Let us recall that by [START_REF] Figalli | On the Ma-Trudinger-Wang curvature on surfaces[END_REF]Proposition A.6] the function w ∈ U x 0 M → t F (x 0 , w) has vanishing derivative at all w such that t F (x, w)w ∈ TFCL(x 0 ). Hence, since the derivative of t → |v t | x 0 is different from 0 at every t = t and |v t | x 0 ≤ t F (x 0 , v t ) for every t, we deduce that v t ∈ TCL(x 0 ) \ TFL(x 0 ) for all t = t. Let us choose any time s = t. Since v s ∈ TCL(x 0 ) \ TFL(x 0 ), there exists a vector v ′ such that exp x 0 (v ′ ) = exp x 0 (v s ) ∈ ∂ c ψ(x 0 ). By (3.15) 

this implies v ′ ∈ ∇ -ψ(x 0 ) = [v -1 , v 1 ]. Hence there exists a time s ′ = s such that v ′ = v s ′ . Moreover, since |v s | x 0 = |v s ′ | x 0 > |vt| x 0 ,
we get |s -t| = |s ′ -t|. Thus, by the arbitrariness of s ∈ [-1, 1] \ { t} we easily deduce that the only possibility is t = 0, and so

y t = y -t for all t ∈ [-1, 1].
By doing a change of coordinates in a neighborhood of the minimizing geodesic γ 0 going from x 0 to y 0 , we can assume that x 0 = (0, 0), [START_REF] Aubin | Set-valued analysis[END_REF][START_REF] Aubin | Set-valued analysis[END_REF] , that the metric g at x 0 and y 0 is the identity matric I 2 , and that the geodesic starting from x 0 with initial velocity v 0 is given by γ(t) = (t, 0). Now, to simplify the computation, we slightly change the definition of v δ and y δ for δ > 0 small (this should not create confusion, since we will adopt the following notation in all the sequel of the proof): denote by v δ the speed which belongs to the segment [v -1 , v 1 ] and whose angle with the horizontal axis is δ, that is

y 0 = (1, 0), v 0 = (1, 0), [v -1 , v 1 ] = (1, -1),
v δ = 1, tan δ , vδ := v δ v δ = cos δ, sin δ , t δ := v δ = 1 cos δ .
Consider γ δ the geodesic starting from x 0 with initial velocity v δ , and set

y δ := exp x 0 (v δ ), w δ := -γδ (1)
, and wδ := w δ w δ .

The geodesic flow sends x 0 , v δ to y δ , -w δ , and the linearization at δ = 0 gives ẏ0 = 0 and

-ẇ0 = 0, ḟ0 (1) , (3.20) 
where f 0 denotes the solution (starting with f 0 (0) = 0, ḟ0 (0) = 1) to the Jacobi equation associated with the geodesic starting from x 0 with initial velocity v 0 . The curve δ → y δ is a smooth curve valued in a neighborhood of y 0 . Moreover, since y δ = y -δ for any small δ, y δ has the form

y δ = y 0 + δ 2 2 Y + o(δ 2 )
for some vector Y . We now observe that, for every δ > 0, the vector ẏδ satisfies (because the distance function to x 0 is semiconcave and y δ is contained in the cut locus of x 0 ) ẏδ , w δ = ẏδ , w -δ , which can be written as ẏδ |y δ | , w δw -δ = 0.

Thanks to (3.20), we deduce that y δ takes the form

y δ = y 0 + δ 2 2 (λ, 0) + o(δ 2 ) (3.21)
for some λ ≥ 0.

We now need some notation. For every nonzero tangent vector v at x 0 , we denote by

f 0 (•, v), f 1 (•, v) the solutions to the Jacobi equation f (t) + k(t)f (t) = 0 ∀ t ≥ 0, (3.22)
along the geodesic starting from x 0 with unit initial velocity v/|v| which satisfy 

f 0 (0, v) = 0, ḟ0 (0, v) = 1, f 1 (0, v) = 1, ḟ1 (0, v) = 0. ( 3 
y δ = y 0 + δ 2 2 (1, 0) + O(δ 4 ), (3.25) 
because y δ = y -δ .

Define the curve δ → z δ by z δ := exp x 0 (u δ ) with u δ := τ δ vδ = τ δ cos δ, τ δ sin δ .

We now use a result from [START_REF] Figalli | On the Ma-Trudinger-Wang curvature on surfaces[END_REF]: since (MTW) holds, then the curvature of TFL(x 0 ) near any point of TFCL(x 0 ) has to be nonnegative, see [START_REF] Figalli | On the Ma-Trudinger-Wang curvature on surfaces[END_REF]Proposition 4.1(ii)]. Since [v -1 , v 1 ] ⊂ I(x 0 ) ⊂ NF(x 0 ) and v 0 ∈ TFCL(x 0 ), this implies that τ δt δ = O(δ 4 ), which also gives y δz δ = O(δ 4 ). (3.26) Denote by āδ the (unit) vector at time t = τ δ of the geodesic starting at x 0 with initial velocity vδ . As for ẏδ , we can express żδ in terms of a δ , a ⊥ δ , and f 0 τ δ , v δ = 0. For that, we note that uδ = τδ cos δτ δ sin δ, τδ sin δ + τ δ cos δ = τδ cos δ, sin δ + τ δsin δ, cos δ = τδ vδ + τ δ v⊥ δ , from which we deduce that 

z δ = y 0 + δ 2 2 (1, 0) + δ 3 3 ȧ0 + o(δ 3 ).
This contradicts (3.25) and (3.26), and concludes the proof of (A).

Appendix A. Some notations in Riemannian geometry

Given (M, g) a C ∞ compact connected Riemannian manifold of dimension n ≥ 2, we denote by T M its tangent bundle, by U M its unit tangent bundle, and by exp : (x, v) -→ exp x v the exponential mapping. We write g(x) = g x , g x (v, w) = v, w x , g x (v, v) = |v| x and equip M with its geodesic distance d. We further define:

• t C (x, v): the cut time of (x, v): t C (x, v) = max t ≥ 0; (exp x (sv)) 0≤s≤t is a minimizing geodesic .

• t F (x, v): the focalization time of (x, v):

t F (x, v) = inf t ≥ 0; det(d tv exp x ) = 0 .
• TCL(x): the tangent cut locus of x:

TCL(x) = t C (x, v)v; v ∈ T x M \ {0} .
• cut(x): the cut locus of x: cut(x) = exp x (TCL(x)).

• TFL(x): the tangent focal locus of x:

TFL(x) = t F (x, v)v; v ∈ T x M \ {0} .
k = 2, . . . , n, which means in particular that all the sets Σ 2

x , . . . , Σ n x have Hausdorff dimension bounded by n -2. Thus, we only need to show that the set

J x = J x ∩ Σ 0 x ∪ J x ∩ Σ 1 x has Hausdorff dimension ≤ n-2. The fact that J 0 x = J x ∩Σ 0 x has Hausdorff dimension ≤ n -2 is a consequence of [25, Theorem 5.1]. Now, consider ȳ ∈ J 1 x = J x ∩ Σ 1
x . Then there are exactly two minimizing geodesics γ 1 , γ 2 : [0, 1] → M joining x to ȳ. By upper semicontinuity of the set of minimizing geodesics joining x to y, for i = 1, 2 we can modify the metric g in a small neighborhood of γ i (1/2) into a new metric g i in such a way that the following holds: there exists an open neighborhood V i of ȳ such that, for any y ∈ J 1

x ∩ V i , there is only one minimizing geodesic (with respect to g i ) joining x to y. In that way, we have

J 1 x ∩ V 1 ∩ V 2 ⊂ J 0 x 1 ∪ J 0
x 2 , where J 0

x i denotes the set J 0 x = J x ∩ Σ 0 x with respect to the metric g i . Hence we conclude again by [START_REF] Pignotti | Rectifiability results for singular and conjugate points of optimal exit time problems[END_REF]Theorem 5.1].

As a corollary the following holds:

Lemma B.2. Let x ∈ M , v 0 , v 1 ∈ I(x)
and x ∈ M be fixed. Up to slightly perturbing v 0 and v 1 , we can assume that v 0 , v 1 ∈ I(x), (y t ) 0≤t≤1 intersects cut(x) only at a finite set of times 0 < t 1 < . . . < t N < 1, and moreover (y t ) 0≤t≤1 never intersects fcut(x) = exp x (TFCL(x)).

Proof of Lemma B.2. The proof of this fact is a variant of argument in [START_REF] Figalli | An approximation lemma about the cut locus, with applications in optimal transport theory[END_REF]: fix σ > 0 small enough so that

w ⊥ v 1 -v 0 , |w| x ≤ σ =⇒ v 0 + w, v 1 + w ∈ I(x),
and consider the cylinder C σ in T x M given by {v t + w}, with t ∈ [0, 1] and w as above. By convexity of TFL(x), for σ sufficiently small we have C σ ⊂ NF(x). Let us now consider the sets

C c σ = C σ ∩ exp -1 x exp x(C σ ) ∩ cut(x) , C cf σ = C σ ∩ exp -1 x exp x(C σ ) ∩ fcut(x) . Since C σ ⊂ NF(x), exp -1
x is locally Lipschitz on exp x(C σ ), and therefore (A.1) and (B.1) imply

H n-1 (C c σ ) < +∞, H n-1 (C cf σ ) = 0.
We now apply the co-area formula in the following form (see [8, p. 109] and [9, Sections 2.10.25 and 2.10.26]): let f : v t + w -→ w (with the notation above), then

H n-1 (A) ≥ f (A) H 0 [A ∩ f -1 (w)] H n-1 (dw)
for any A ⊂ C σ Borel. Since the right-hand side is exactly #{t; v t + w ∈ A} H n-1 (dw), we immediately deduce that particular there is a sequence w k → 0 such that each (v t + w k ) intersects C c σ finitely many often, and (v t + w k ) never intersects C cf σ . We now also observe that, if y ∈ cut(x) \ fcut(x), then cut(x) is given in a neighborhood of y by the intersection of a finite number of smooth hypersurfaces (see for instance [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]). Thus, up to slightly perturbing v 0 and v 1 , we may further assume that at the points y t j the curve t → y t intersects cut(x) transversally.

Appendix C. Proofs of Corollaries 2.1, 2.2, 2.4, and Theorem 2.3 C.1. Proof of Corollary 2.1. By Theorem 1.2(ii), it suffices to show that (M, g) satisfies (SCI). We argue by contradiction. Let v 0 = v 1 ∈ I(x) be such that v t = (1t)v 0 + tv 1 ∈ I(x) for all t ∈ (0, 1). Then, since TFL(x) is strictly convex, v t ∈ TFL(x) for all t ∈ (0, 1). For any t ∈ (0, 1), set y t = exp x(v t ) and qt = -d vt exp x(v t ) as in the proof of Lemma 3.5. Then there exists q t ∈ I(y t ) with q t = qt such that exp yt (q t ) = exp yt (q t ) = x. We now choose a sequence of points {x k } → x such that y t ∈ cut(x k ) and -∇ y c(x k , y t ) → q t for all t ∈ [0, 1] (see for instance [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] for such a construction). By repeating the proof of Lemma 3.5 with the smooth function

h k (t) = -c(x k , y t ) + |v t | 2
x/2 over the time interval [0, 1] (see [START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF]), one can see that ḧk (t) is given by ḧk

(t) = 2 3 1 0 (1 -s)S (yt,(1-s)qt-s∇yc(x k ,yt)) ẏt , qt -[-∇ y c(x k , y t )] ds, which by (MTW + ) is strictly positive whenever ḣk (t) = ẏt , qt -[-∇ y c(x k , y t )] yt = 0.
As in the proof Lemma 3.5, these facts implies easily that, for any t ∈ (0, 1),

d(x k , y t ) 2 -|v t | 2 x = 2h k (t) ≥ 2 min{h k (0), h k (1)} + r(t) = min d(x k , y 0 ) 2 -d(x, y 0 ) 2 , d(x k , y 1 ) 2 -d(x, y 1 ) 2 + r(t),
where r : [0, 1] → [0, 1] is a continuous function (independent of k) such that r > 0 on [1/4, 3/4]. Hence, choosing for instance t = 1/2 and letting k → ∞ we get x ≥ min c(x, y 0 )c(x, y 0 ), c(x, y 1 )c(x, y 1 ) .

0 = d(x, y 1/2 ) 2 -d(x, y 1/2 ) 2 ≥ d(x, y 1/2 ) 2 -|v 1/2 | 2 x > min d(x, y 0 ) 2 -d(x, y 0 ) 2 , d(x, y 1 ) 2 -d(x,
By choosing x = x we deduce that c(x, y t ) ≥ 1 2 |v t | 2 x,, which implies that v t ∈ I(x), as desired. C.3. Proof of Theorem 2.3. Fix y ∈ M , assume that S(y) is not a singleton and suppose by contradiction that there exists q 0 ∈ exp -1 y (S(y)) ∩ I(y) ⊂ T y M an exposed point for exp -1 y (S(y)). Let us define the "c-Monge-Ampère" measure |∂ c φ| as |∂ c φ|(A) = vol ∪ x∈A ∂ c φ(x) for all A ⊂ M Borel.

As shown for instance in [10, Lemma 3.1] (see also [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF]), under our assumptions on µ and ν the following upper and lower bounds on |∂ c φ| hold: x ∇ e x ψ : M → M sends µ to ν. Moreover, since set of subgradients ∇ -ψ(x) at any point x belongs to I(x) ⊂ T x M (see for instance [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF]), by identifying the tangent spaces T e

λ Λ vol ( 
x M and T e π(e x) M we obtain

∇ -ψ( x) = ∇ -ψ π( x) ⊂ I( π( x)).
However, since M is a product of spheres and R n , thanks to the nonfocality assumption on M it is easily seen that TCL( π( x)) ⊂⊂ I( x)

(again we are identifying T e x M with T e π(e x) M ). This implies that ∇ -ψ( x) lies at a positive distance from TCL( x) for every x ∈ M . In particular, for every y ∈ M , the set S( y) = x ∈ M ; y ∈ ∂ e c ψ( x) cannot intersect cut( y). By Theorem 2.3 this implies that S( y) is a singleton for every y, so ψ e c is C 1 . Since ψ e c is the potential associated to the transport problem from ν to µ (that is, exp e y ∇ e y ψ e c is the optimal map sending ν onto µ, see for instance [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]) and the hypotheses on µ and ν are symmetric, we can exchange the role of x and y to deduce that ψ is C 1 too. This implies that also ψ is C 1 , and so T is continuous as desired.

Let us also observe that, since also ψ c is C 1 , the transport map T is injective. As already observed in [START_REF] Figalli | Regularity of optimal transport maps on multiple products of spheres[END_REF], the continuity and injectivity of T combined with the result in [LTW] implies higher regularity (C 1,α /C ∞ ) of optimal maps for more smooth (C α /C ∞ ) densities. This concludes the proof. 

3 . 3 3. 1 .

 331 Proofs of Theorems 1.2 and 1.Necessary conditions for T CP. We want to prove that Theorem 1.2(i) holds. Actually, we will show a slightly stronger result: (CI) is satisfied provided the cost function satisfies Assumption (C) (this condition first appeared in [26, page 205]): Assumption (C): For any c-convex function ψ and any x ∈ M , the c-subdifferential ∂ c ψ(x) is pathwise connected.

( 3 .

 3 27) żδ = τδ āδ + f 0 τ δ , v δ τ δ ā⊥ δ = τδ āδ . This gives zδ = τδ āδ + τδ ȧδ and ... z δ = ... τ δ āδ + 2τ δ ȧδ + τδ äδ . Moreover, since τ δ -1 cos(δ) = τ δt δ = O(δ 4 ), we have τ0 = ṫ0 = 0, τ0 = ẗ0 = 1, zδ = ā0 = -w 0 , ... z δ = 2 ȧ0 (= -ẇ0 = 0), which yields

C. 4 .

 4 A) ≤ |∂ c φ|(A) ≤ Λ λ vol (A) for all A ⊂ M Borel.Now, let us consider the change of coordinates x → q = -Dc(x, y) which sends M \ cut(y) onto I(y). Since x 0 = exp y (q 0 ) ∈ cut(y), the cost d 2 /2 is smooth in a neighborhood of {x 0 } × {y}. Moreover, the support of |∂ c φ| is the whole manifold M . So, we can apply [10, Theorem 8.1 and Remark 8.2] to obtain that no exposed points can exist inside the open set I(y). This gives a contradiction and concludes the proof. Proof of Corollary 2.4. Let µ to ν be two probability measures such thatλvol ≤ µ ≤ Λvol , λvol ≤ ν ≤ Λvolfor two positive constants λ, Λ > 0. By[START_REF] Kim | Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular)[END_REF], any compact quotientM of M = S n 1 r 1 × . . . × S n i r i × R n satisfies MTW ⊥ .Moreover, if π : M → M denotes the quotient map, we can use ( π) -1 to lift µ and ν onto two σ-finite measure µ and ν which will still satisfy the boundsλ vol ≤ µ ≤ Λ vol , λ vol ≤ ν ≤ Λ vol .,where vol denotes the volume density on M . Now, let T = exp x ∇ x ψ : M → M denote the transport map from µ to ν, and set c = d 2 /2, with d the Riemannian distance on M . Observe that, since M is compact, the c-convex function is semiconvex too. Then it is easily checked that the function ψ : M → R defined by ψ = ψ • π is c-convex, locally semiconvex, and T = exp e
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  Proof of Corollary 2.2. By Theorem 1.3, it is sufficient to prove that (CNF) and (MTW) imply (CI). Arguing as in[START_REF] Figalli | Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2[END_REF], we can show that the following "extended version" of Lemma 3.5 holds:Lemma C.1. Let (M, g) be a Riemannian manifold satisfying (CNF)-(MTW). Fix x ∈ M , v 0 , v 1 ∈ I(x), and let v t = (1t)v 0 + tv 1 ∈ T x M . For any t ∈ [0, 1], set y t = exp x (v t ).Then, for any x ∈ M , for any t ∈ [0, 1],

			y 1 ) 2 = 0,
	a contradiction.		
	C.2. c(x, y t ) -	1 2	|v t | 2

• TFCL(x): the tangent focal cut locus of x: TFCL(x) = TCL(x) ∩ TFL(x).

• fcut(x): the focal cut locus of x: fcut(x) = exp x (TFCL(x)).

• I(x): the injectivity domain of the exponential map at x:

• NF(x): the nonfocal domain of the exponential map at x:

• exp -1 : the inverse of the exponential map; by convention exp -1 x (y) is the set of minimizing velocities v such that exp x v = y. In particular TCL(x) = exp -1

x (cut(x)), and

We notice that, for every x ∈ M , the function [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF][START_REF] Itoh | The Lipschitz continuity of the distance function to the cut locus[END_REF][START_REF] Li | The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations[END_REF]) while the function t F (x, •) : U x M → R is locally semiconcave on its domain (see [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF]). In particular, the regularity property of t C (x, •) yields (A.1)

Appendix B. On the size of the focal cut locus

Recall that, for every x ∈ M , the focal cut locus of a point x is defined as fcut(x) = exp x (TFCL(x)).

The focal cut locus of x is always contained in its cut locus. However it is much smaller, as the following result (which we believe to be of independent interest) shows:

Proposition B.1. For every x ∈ M the set fcut(x) has Hausdorff dimension bounded by n -2. In particular we have

Proof. For every k = 0, 1, . . . , n, denotes by Σ k

x the set of y = x ∈ M such that the convex set ∇ +

x c(x, y) has dimension k. By [3, Corollary 4.1.13], since the function y → c(x, y) is semiconcave, the set Σ k

x is countably (nk) rectifiable for every