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Abstract Recent advances in clustering consider incorpo-

rating background knowledge in the partitioning algorithm,

using, e.g., pairwise constraints between objects. As a mat-

ter of fact, prior information, when available, often makes it

possible to better retrieve meaningful clusters in data. Here,

this approach is investigated in the framework of belief func-

tions, which allows us to handle the imprecision and the un-

certainty of the clustering process. In this context, the EV-

CLUS algorithm was proposed for partitioning objects de-

scribed by a dissimilarity matrix. It is extended here so as

to take pairwise constraints into account, by adding a term

to its objective function. This term corresponds to a penalty

term that expresses pairwise constraints in the belief func-

tion framework. Various synthetic and real datasets are con-

sidered to demonstrate the interest of the proposed method,

called CEVCLUS, and two applications are presented. The

performances of CEVCLUS are also compared to those of

other constrained clustering algorithms.
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Compiègne, France

⋆This work has been mostly developed while the author was with

Heudiasyc.

Keywords belief functions · evidence theory · Dempster-

Shafer theory · relational data · pairwise constraints ·

constrained clustering

1 Introduction

Clustering is a well-known issue in pattern recognition and

data mining. This problem consists in grouping objects with

similar characteristics into clusters. Data are generally de-

scribed either by numerical attributes (also called features)

or directly by pairwise dissimilarities. In the latter case, they

are referred to as relational data or more specifically dissim-

ilarity data. Relational clustering methods are considered to

be more general than clustering algorithms handling feature

vectors, since the latter can always be transformed into dis-

similarity data.

There exists a wide variety of clustering methods for at-

tribute and relational data. These methods may be divided

into two main families. The first one consists of hierarchi-

cal methods. Such methods provide an organization of the

objects into a sequence of nested groups [9,20]. The second

family encompasses clustering algorithms generating a par-

tition. In this framework, fuzzy partitions differ from crisp

partitions as they allow us to represent the uncertainty re-

garding the class membership of an object. A popular al-

gorithm deriving a fuzzy partition from attribute data is the

fuzzy c-means algorithm (FCM) [3]. Many variants of this

algorithm have been developed [21,15]. In particular, a re-

lational version, called Relational FCM, was introduced in

[14].

Recently, a new concept of partition, the credal partition,

has been proposed. Developed in the framework of belief

function theory, it extends the concepts of crisp and fuzzy

partition and makes it possible to represent both uncertainty

and imprecision regarding the class membership of an ob-
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ject. Several evidential clustering methods generating credal

partitions have been proposed [8,23–25].

Traditionally, clustering methods proceed by exploiting

the input data only. However, in some situations, prior in-

formation may be available from domain knowledge. This

background information can be translated into constraints

at different levels such as the model [38,11], cluster [5] or

instance level [27,28]. Incorporating such constraints into

unsupervised clustering algorithms has recently become a

topic of great interest as it helps extract correct groups [22,

36]. Here, we focus on two types of instance-level constraints

proposed in [35]: Must-Link constraints, which specify that

two objects should be in the same class and Cannot-Link

constraints indicating that two objects should be in different

clusters. This type of supervision constraints has been intro-

duced in several attribute-based clustering algorithms pro-

ducing hard [35], fuzzy [2,12,13] or credal partitions [1].

However, comparatively fewer methods have been devel-

oped for relational-based clustering [16,10] and none of them

generates a credal partition.

In this paper, we propose to combine the concepts of

relational and evidential clustering with that of constrained

clustering in order to introduce a new method, called CEV-

CLUS, which takes advantage of background knowledge and

generates a credal partition from dissimilarity data. The new

algorithm expresses pairwise constraints in the framework

of belief functions and integrates them in the evidential clus-

tering algorithm EVCLUS [8].

The remainder of the paper is organized as follows. In

Section 2, we outline the basics of belief functions theory

and the notion of credal partition; we then present the EV-

CLUS algorithm. The CEVCLUS algorithm is introduced in

Section 3 and applied to various synthetic and real datasets

in Section 4. Finally, Section 5 presents some conclusions

and directions for further research.

2 Background

2.1 Belief functions theory

The Dempster-Shafer theory of belief functions [7,31] is

a mathematical framework for representing and reasoning

with uncertain and imprecise knowledge.

Let Ω = {ω1, . . . ,ωc} be a finite set of elements called

the frame of discernment, or frame for short, and y a vari-

able defined on Ω . A mass function mΩ is a mapping from

the power set of Ω to [0,1] representing partial knowledge

about the actual value taken by y and verifying the following

constraint:

∑
A⊆Ω

m(A) = 1. (1)

Each subset A of Ω such that m(A) > 0 is called focal

set of m. The mass m(A) represents the quantity of belief

committed to A that cannot be assigned to any more specific

subset due to lack of knowledge. When all the focal sets

are singletons, m is said to be Bayesian: it corresponds to

a probability distribution. The mass function m is said cat-

egorical if it has a single focal set. In particular, complete

ignorance corresponds to the vacuous mass function such

that m(Ω) = 1, whereas full certainty about the value of y is

represented by a certain mass function such that m({ω})= 1

for some ω ∈ Ω .

A mass function m such that m( /0) = 0 is said to be nor-

malized. The normalization constraint, originally assumed

by Shafer [31], can be relaxed in the so-called open-world

assumption [32]. In this case, the mass function m( /0) > 0

is interpreted as a quantity of belief given to the hypothesis

that y might not belong to Ω .

The partial knowledge expressed by a mass function m

can be equivalently represented by the corresponding belief

function bel : 2Ω → [0,1] or the plausibility function pl :

2Ω → [0,1] defined, respectively, as

bel(A) = ∑
B⊆A,B 6= /0

m(B) ∀A ⊆ Ω . (2)

pl(A) = ∑
B∩A 6= /0

m(B) ∀A ⊆ Ω , (3)

These functions correspond to two facets of the same

information and one can be retrieved from the other by:

pl(A) = 1−m( /0)− bel(A), (4)

where A denotes the complement of A ⊆ Ω . The quantity

bel(A) measures the total support given to A, whereas pl(A)
is interpreted as the degree to which the evidence fails to

support the complement of A.

The conjunctive rule makes it possible to aggregate two

distinct mass functions m1 and m2 defined on the same frame,

in order to get a new mass function containing all the infor-

mation of m1 and m2:

(m1©∩ m2)(A) = ∑
B∩C=A

m1(B)m2(C) ∀A ⊆ Ω . (5)

The quantity K12 = (m1©∩ m2)( /0) represents the degree

of conflict between m1 and m2, i.e., the degree of disagree-

ment between the information sources.

The concepts of marginalization and vacuous extension

allow us to manipulate mass functions defined on different

frames. Let mΩ×Θ be a mass function defined on the Carte-

sian product Ω ×Θ . The corresponding marginal mass func-

tion on Ω is:

m(Ω×Θ )↓Ω (A) = ∑
B⊆Ω×Θ ,B↓Ω=A

mΩ×Θ (B) ∀A ⊆ Ω , (6)
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where B↓Ω denotes the projection of B onto Ω , i.e., B↓Ω =

{ω ∈ Ω/∃θ ∈Θ , (ω ,θ ) ∈ B}.

Conversely, the vacuous extension [31] extends a mass

function mΩ to mΩ×Θ . It is defined as follows:

mΩ↑(Ω×Θ )(B) =

{

mΩ (A) if B = A×Θ ,
0 otherwise.

(7)

For decision making, it is possible to transform the mass

function into a pignistic probability distribution [33]:

BetP(ω) = ∑
A⊆Ω |ω∈A

m(A)

|A|
∀ω ∈ Ω , (8)

where |A| denotes the cardinality of A ⊆ Ω . This pignistic

transformation evenly distributes the mass assigned to each

subset A among the elements of A. For unnormalized mass

functions, a preliminary normalization step has to be per-

formed. This can be carried out by different methods. For

example, Dempster’s normalization consists in dividing all

the masses by 1−m( /0).

To quantify the degree of information given by a mass

function, several measures have been proposed [26]. The

most popular is the non-specificity measure, which evalu-

ates the degree of imprecision of a mass function m [17]. It

is defined as

N(m) = ∑
A⊆Ω\ /0

m(A) log2 |A|+m( /0) log2 |Ω |. (9)

2.2 Credal partitions

Let O = {o1, . . . ,on} be a collection of n objects to be clas-

sified into c clusters and let Ω = {ω1, . . . ,ωc} be the set of

clusters. A mass function mi on Ω can be used in order to

represent partial knowledge regarding the class membership

of object i. The n-tuple M = (m1, . . . ,mn) of mass functions

related to all objects is called a credal partition. This concept

models a wide variety of situations ranging from complete

ignorance to full certainty.

As an example, let us consider a collection of five objects

that need to be classified into two classes. A credal partition

is presented in Table 1. The class of the first object is known

with certainty, whereas the class of the fourth object is to-

tally unknown. The mass function m2 is Bayesian. The fifth

object, with the whole unit mass allocated to the empty set,

can be considered as an outlier.

We may remark that, when each mi is certain, the credal

partition boils down to a hard partition. When each mi is

Bayesian, M corresponds to a fuzzy partition of Ω .

As underlined in [24,25], a credal partition conveys a

large amount of information but it may be useful to sum-

marize it to help the user interpreting the results. The most

common operation consists in converting the credal partition

Table 1 Example of credal partition

A m1(A) m2(A) m3(A) m4(A) m5(A)
/0 0 0 0.1 0 1

{ω1} 1 0.9 0 0 0

{ω2} 0 0.1 0.8 0 0

Ω 0 0 0.1 1 0

into a fuzzy one using the pignistic transformation (8). Var-

ious classical tools can then be applied. Another strategy is

to assign each object to the subset of classes with the highest

mass. The resulting clustering structure, called a hard credal

partition, contains at most 2c groups and allow us to detect

ambiguous objects.

2.3 The EVCLUS algorithm

The EVCLUS evidential clustering algorithm was the first

method proposed to derive a credal partition from dissimi-

larity data [8]. Let us assume that the available data consist

of a n× n dissimilarity matrix ∆ = (δi j) such that the diag-

onal elements are zero and δi j = δ ji represents the dissimi-

larity between two objects oi and o j. As explained in [8], an

evidential partition can be derived from the input dissimilar-

ities by reasoning as follows.

Let us consider two objects oi and o j for which mass

functions mi and m j are already known. In the Cartesian

product Ω 2 = Ω ×Ω , the belief regarding the joint class

membership of both objects may be expressed by a mass

function denoted mi× j. This mass function is obtained by

combining the vacuous extensions of mi and m j [33]; it is

defined as follows:

mi× j(A×B) = mi(A) m j(B) A,B ⊆ Ω ,A 6= /0,B 6= /0,(10a)

mi× j( /0) = mi( /0)+m j( /0)−mi( /0) m j( /0). (10b)

In the Cartesian product Ω 2, let us denote by

θi j = {(ω1,ω1),(ω2,ω2), . . . ,(ωc,ωc)}

the event “Objects oi and o j belong to the same class”. The

plausibility pli× j(θi j) can be determined from mi× j:

pli× j(θi j) = ∑
A∩B 6= /0

mi(A) m j(B), (11)

Let Ki j be the degree of conflict between the mass func-

tions mi and m j corresponding to objects oi and o j. The fol-

lowing equality holds:

pli× j(θi j) = 1−Ki j. (12)

Thus, it seems reasonable to require that the more dis-

similar the objects, the less plausible it is that they belong to

the same class and the higher the degree of conflict between

their mass functions.
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To obtain a credal partition from ∆ , EVCLUS minimizes

an error function inspired from multidimensional scaling

(MDS) methods. In particular, the following error function

is close to Sammon’s stress function [30]:

JEVCLUS(M,a,b) =
1

C
∑
i< j

(aKi j + b− δi j)
2

δi j

, (13)

where a and b are two coefficients, and C is a normalizing

constant defined as

C = ∑
i< j

δi j. (14)

In addition, all the mass functions in M must be positive and

sum to unity. In order to avoid using a constrained optimiza-

tion algorithm, we may use the following parameterization:

mi(Ak) =
exp(αik)

2c

∑
l=1

exp(αil)

, (15)

where Ak, k ∈ {1, . . .2c} are the focal sets and the αik are the

(n×2c) real parameters representing the credal partition. In

this case, the positivity constraints are implicitly satisfied.

Criterion (13) can be minimized iteratively with respect to

αik, a and b, using a gradient-based procedure. The par-

tial derivatives of JEVCLUS with the respect to all parameters

have the following expressions:

∂JEVCLUS

∂a
=

2

∑
i< j

δi j

n

∑
i=1

n

∑
j=i+1

Ki j(aKi j + b− δi j)

δi j

, (16a)

∂JEVCLUS

∂b
=

2

∑
i< j

δi j

n

∑
i=1

n

∑
j=i+1

(aKi j + b− δi j)

δi j

, (16b)

∂JEVCLUS

∂αil

=
2a

∑
i< j

δi j

n

∑
j=i+1

(aKi j + b− δi j)

δi j

∂Ki j

∂αil

, (16c)

∂Ki j

∂αil

= ∑
k,k′

∂mik

∂αil

m jk′ξkk′ , (16d)

with ξkk′ = 1 if Ak ∩A′
k = /0 and ξkk′ = 0 otherwise; mik =

mi(Ak) and

∂mik

∂αil

=

{

mik(1−mik) if l = k,

−mikmil otherwise.
(16e)

3 A constrained EVCLUS algorithm

3.1 Expression of the constraints

As explained in Section 2.3, the mass function mi× j (10a)

expresses the belief regarding the joint class membership of

two objects oi and o j. Thus, it can be used to translate Must-

Link and Cannot-Link constraints in the framework of belief

Table 2 Plausibilities for the events θi j and θi j

F pl1×2(F) pl1×3(F) pl1×4(F) pl1×5(F)
θi j 0.9 0.1 1 0

θi j 0.1 0.9 1 0

functions. More specifically, we can employ the plausibil-

ity pli× j(θi j) (11) and the plausibility pli× j(θi j) defined in

Equation (17) below as θi j represents the event “Objects oi

and o j belong to the same class” and θi j the complementary

event “Objects oi and o j do not belong to the same class”:

pli× j(θi j) = 1−mi× j( /0)− beli× j(θi j), (17a)

= 1−mi× j( /0)−
c

∑
k=1

mi({ωk}) m j({ωk}). (17b)

To illustrate this point, let us consider an example. From

the credal partition shown in Table 1, it is possible to com-

pute the joint class plausibilities expressed in Table 2. In par-

ticular, we observe a low plausibility pl1×2(θ12) and a high

plausibility pl1×2(θ12), and the converse for pl1×3. This re-

flects the knowledge derived from Table 1 regarding the joint

class membership for o1, o2 and o3. The credal partition con-

tains no information concerning the class of the fourth ob-

ject: its relationship with the object o1 is then unknown. In

that case, the values of the joint class plausibilities on both

events θ14 and θ14 are high. Conversely, an outlier like ob-

ject o5 gives low values for pl1×5(θ15) and pl1×5(θ15).

To sum up, the relationship between two objects can be

deduced from the plausibilities pli× j(θi j) and pli× j(θi j). In

particular, two objects oi and o j are surely in the same class

if pli× j(θi j) = 0 and pli× j(θi j) = 1. Conversely, two objects

oi and o j are surely in different classes if pli× j(θi j) = 0 and

pli× j(θi j) = 1.

3.2 Objective function of CEVCLUS

In an evidential clustering algorithm, the credal partition is

unknown and needs to be learnt from data. However, some

background knowledge may be available in the form of Must-

Link and Cannot-Link constraints. Both types of constraints

can be simply formulated with joint class plausibilities. As

explained before, a Must-Link constraint implies a low value

for pli× j(θi j) and a high value for pli× j(θi j). Conversely,

a Cannot-Link constraint requires pli× j(θi j) to be low and

pli× j(θi j) to be high.

A penalty term representing the cost of violating pair-

wise constraints can then be formulated as follows:

JCONST =
1

2(|M |+ |C |)
(JM + JC ) , (18a)

JM = ∑
(oi,o j)∈M

pli× j(θi j)+ 1− pli× j(θi j), (18b)

JC = ∑
(oi,o j)∈C

pli× j(θi j)+ 1− pli× j(θi j), (18c)
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where M and C correspond, respectively, to the sets of

Must-Link and Cannot-Link constraints and |M | and |C |

denote the cardinalities of these sets.

We propose to add the penalty term JCONST to the ob-

jective function JEVCLUS (13). The minimization of the new

criterion JCEVCLUS will allow us to obtain a credal partition

that, on the one hand, is compatible with the input dissim-

ilarity matrix and, on the other hand, respects the instance-

level constraints. This criterion will be defined as follows:

JCEVCLUS = JEVCLUS + ξ JCONST , (19)

where ξ ≥ 0 is a hyperparameter that controls the trade-off

between the fit to the distance data and the constraints.

For a credal partition M = (m1, . . . ,mn), the computation

of the objective function JCEVCLUS can be summarized by

the following algorithm:

Algorithm 1 Computation of JCEVCLUS.

Input: M, a, b, ξ , ∆ , M , C

Output: JCEVCLUS

for i = 1 to n do

for j = i+1 to n do

Compute the degree of conflict Ki j between mi and m j

Compute pli× j(θi j) using (12)

Compute pli× j(θi j) using (17)

end for

end for

Compute JEVCLUS using (13)

Compute JCONST using (18)

JCEVCLUS = JEVCLUS +ξ JCONST .

3.3 Optimization

As in EVCLUS, we use the parametrization (15) for the

mass functions. Any classical gradient-based procedure may

then be employed to minimize iteratively the objective func-

tion (19) with respect to the learning parameters αil , a and

b. The particular optimization algorithm1 used in the ex-

periments reported in the next section is described in Ap-

pendix A.

We can remark that the penalty term JCONST does not

depend on the coefficients a and b. Consequently, the partial

derivatives of JCEVCLUS with respect to a and b are similar

to the ones computed for JEVCLUS and are given by Equa-

tions (16a) and (16b), respectively.

In contrast, the mass functions expressed using the αil

(where i is the index of an object and Al a subset of Ω ) ap-

pear in JCONST . We must then compute the partial derivatives

of the objective function with respect to αil :

1 A Matlab implementation of the CEVCLUS algorithm is available

at https://www.hds.utc.fr/˜tdenoeux.

∂JCEVCLUS

∂αil

=
∂JEVCLUS

∂αil

+ ξ
1

2(|M |+ |C |)

∂JCONST

∂αil

. (20)

The first term of this derivative, concerning JEVCLUS , is

given in Equation (16c). The second term is computed as

follows:

∂JCONST

∂αil

= ∑
(oi,o j)∈M

(

∂ pl(θi j)

αil

−
∂ pl(θi j)

αil

)

+ ∑
(oi,o j)∈C

(

∂ pl(θi j)

αil

−
∂ pl(θi j)

αil

)

, (21a)

∂ pl(θi j)

αil

=−
∂mi( /0)

∂αil

+
∂mi( /0)

∂αil

m j( /0)

− ∑
Ak,|Ak|=1

∂mik

∂αil

m jk, (21b)

∂ pl(θi j)

αil

= ∑
Ak∩Ak′ 6= /0

m jk′
∂mik

∂αil

. (21c)

The computation of the gradient of JCEVCLUS can be sum-

marized as follows:

Algorithm 2 Computation of the gradient of JCEVCLUS .

Input: {αil |1 ≤ i ≤ n,1 ≤ j ≤ 2c}, a,b, ξ , ∆ , M , C

Output:
∂JCEVCLUS

∂a
,

∂JCEVCLUS

∂b
, { ∂JCEVCLUS

∂αil
|1 ≤ i ≤ n,1 ≤ l ≤ 2c}

for i = 1 to n do

for l = 1 to 2c do

Compute mil using (15)

end for

end for

for i = 1 to n do

for j = i+1 to n do

Compute the degree of conflict Ki j between mi and m j

end for

end for

Compute
∂JCEVCLUS

∂a
using (16a)

Compute
∂JCEVCLUS

∂b
using (16b)

for i = 1 to n do

for l = 1 to 2c do

Compute
∂JEVCLUS

∂αil
using (16c)

Compute
∂JCONST

∂αil
using (21)

∂JCEVCLUS

∂αil
= ∂JEVCLUS

∂αil
+ξ 1

2(|M |+|C |)
∂JCONST

∂αil

end for

end for

As in EVCLUS, the CEVCLUS algorithm may converge

to a local minimum. Thus, to obtain an optimal final solu-

tion, a suitable strategy is to perform several experiments

using different starting points and keep the solution with the

smallest criterion value.
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We can remark that the computational complexity of CEV-

CLUS (as that of EVCLUS) depends on n, the number of

objects and c, the number of clusters. As a matter of fact,

as most relational clustering, the complexity of CEVCLUS

scales quadratically with the number of objects and increases

exponentially with the number of clusters, since it searches

the set of all the subsets of Ω , i.e., 2c subsets. Thus, the al-

gorithm has a complexity of O(n2 × 2c). This issue can be

solved by reducing the number of subsets, for example by

constraining the focal sets to be either /0, Ω or to be com-

posed of at most two classes. In this way, the number of

subsets decreases to c2n. However, the unconstrained ver-

sion (with 2c subsets) was used in the experiments described

below.

3.3.1 Active learning

In some cases, there is no obvious way to get or to auto-

matically create pairwise constraints with the background

knowledge, but an expert may be able to provide relevant in-

formation. It is then possible to set up a scheme that actively

generates pairwise constraints. This approach, referred to as

active learning, selects the most informative and the less re-

dundant pairs of objects [12,1]. These objects are then pre-

sented to an expert, in order to identify the nature of the

corresponding constraints. The goal of this method is to im-

prove clustering performance using as few queries as possi-

ble.

As remarked in [6,34], constraints must be selected care-

fully: some constraints may be non-informative (Figure 1(a))

or even deteriorate the clustering performances (Figure 1(b)).

Thus, to select a pair of objects, we implemented the ap-

proach proposed in [1] and represented in Figure 1(c):

– The first object is selected as an object classified with a

high degree of uncertainty, in order to build an informa-

tive constraint.

– The second object corresponds to an object classified

with a low degree of uncertainty. If not, the constraint

may result in the misclassification of the two objects.

Here, we propose to use the non-specificity measure de-

fined by (9) to quantify the degree of certainty regarding

the class membership of an object. The points whose class

membership is uncertain are characterized by higher values

of non-specificity.

In most papers [1,12], in order to conduct experiments,

the true relationship between pairs of objects selected by an

active learning scheme is identified using the true partition

of the data. However, in the context of an application, an

expert may find it difficult to determine the nature of a con-

straint. If he/she has some doubts, he/she will not provide

the type of link between the two objects. However, it can

be very important to obtain some information about the se-

lected point that is classified with uncertainty. Therefore, we

(a) (b)

(c)

Fig. 1 Pairwise constraints patterns for a toy dataset where symbols

represent the real class. Some constraints are useless (a), some may

cause misclassification if both constrained objects are classified with a

low degree of uncertainty (b) and some are informative (c), leading the

algorithm towards better performances.

propose to ask the expert to provide its relationships with

several other objects classified with certainty in different

clusters. Thus, we increase the chance to retrieve at least

one informative constraint. Algorithm 3 outlines the steps

achieved during the active learning phase.

Algorithm 3 Active learning scheme.

Input: credal partition M, number of cluster c

Output: a set P of pairwise links

P = {}
Compute crisp partition P̂ (maximal pignistic probability rule on M)

Compute for each object the non-specificity measure N (9)

Select the first object oi⋆ such that i⋆ = arg max
i=1...n

N(mi)

for k = 1 to c do

Select object o j⋆ such that j⋆ = arg min
o j∈ωk

N(m j)

Add (oi⋆ ,o j⋆) in P

end for

Note that if the number of links required is different from

the number of clusters, then the algorithm can simply be per-

formed as many times as needed and finally the last pairwise

links obtained can be truncated in order to exactly fit with

the desired number of links.
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Fig. 2 Toys2c dataset.

Table 3 Datasets used in the experiments

Datasets Number of Number of Number of

objects n classes c attributes

Wine 178 3 13

Letters 227 3 16

Ecoli 272 3 7

20Newsgroups 1136 4 100

ChickenPieces 446 5 /

Toys2c 800 2 2

4 Experiments

4.1 Methodology

4.1.1 Datasets

In order to illustrate the interest of our approach, experi-

ments were first conducted using four well-known datasets

from the UCI repository2: Wine, Letters, Ecoli, 20News-

groups and a synthetic dataset: Toys2c. Toys2c consists of

two classes in a two-dimensional space. The first class was

generated according to a Gaussian distribution transformed

with the Cartesian equation of an ellipse and the second one

corresponds to the concatenation of two Gaussians (cf. Fig-

ure 2). Thus the separation between the two clusters is non-

linear.

In addition, we carried out experiments on the Chick-

enPieces dataset, which is composed of 446 binary images.

Each image represents the silhouette of a specific part of the

chicken. Table 3 synthesizes the main characteristics of the

six datasets.

In our experiments, we chose to normalize the Wine data-

set. Furthermore, the Letters dataset was transformed as pro-

posed in [2]: we kept only three classes, corresponding to the

three letters {I,J,L}, and we randomly selected 10% of the

data in each class.

2 Available at http://archive.ics.uci.edu/ml.

Table 4 The characteristics of the 20Newsgroups dataset.

class subject number of objects

1 Computer science 322

2 Entertainment 247

3 Natural sciences 186

4 Controversial subjects 382

total 1136

Similarly, the 20Newsgroups database was reduced. This

dataset is originally composed of messages collected from

20 different newsgroups3. Each message is described by a

100-dimensional feature vector corresponding to encoding

the presence or the absence of 100 given words in the mes-

sage. For our experiments, we created a sample by keeping

only four topics (corresponding to the classes) and by ran-

domly selecting 7% of patterns from each class, as explained

in [29]. Table 4 presents the characteristics of this dataset.

We can remark that most of the datasets contain attribute

data. Since CEVCLUS is a relational clustering algorithm,

data should be transformed in order to provide dissimilarity

matrices. For the Wine, Letters, Ecoli and Toys2c datasets,

we suppose we do not have background knowledge about

the best distance to use, so we chose by default to compute

the Euclidean distance between the available objects. Since

the 20Newsgroups database corresponds to a binary dataset,

we used a distance based on the correlation between the ob-

jects [29]:

Dcorr(x1,x2) =
1

2

(

1−
x1

⊤x2

‖x1‖2 + ‖x2‖2 − 2x1
⊤x2

)

. (22)

Finally, for the ChickenPieces dataset, dissimilarity ma-

trices were obtained using pairwise comparisons on the con-

tours of the images [4]: first, the contour lines of the silhou-

ette are detected using means of an edge detector. The con-

tour lines are then transformed into vectors with a constant

length in order to construct a string consisting of the an-

gles between the consecutive vectors. The result leads to a

rotation-invariant cyclic string. Distances beetween the dif-

ferent images are finally computed using a cyclic string edit

distance algorithm on the strings. We chose for our experi-

ments the dissimilarity matrix S=(si j) called chickenpieces-

20-904. Since the data are slightly asymmetric, we computed

a new matrix D = (δi j) as follows: δi j =
1
2
(si j + s ji).

4.1.2 Performance evaluation

As explained in Section 2.2, it is possible to obtain a fuzzy

partition by applying the pignistic transformation (8) to the

credal partition computed by CEVCLUS. This fuzzy parti-

tion can then be transformed into a crisp partition P̂ using the

3 Available at http://people.csail.mit.edu/jrennie/20Newsgroups.
4 Available on http://algoval.essex.ac.uk/data/sequence/chicken.
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maximal pignistic probability rule. Since the actual partition

P is known for all the datasets used, we can evaluate the ac-

curacy of our clustering algorithm by comparing P with the

crisp partition P̂. A popular measure of agreement between

two partitions P and P̂ is the Rand Index (RI) defined as:

RI(P, P̂) =
2( f + g)

n(n− 1)
, (23)

where f (respectively, g) is the number of pairs of objects si-

multaneously assigned to identical classes (respectively, dif-

ferent classes) in P and P̂.

4.1.3 Choice of the constraints

In this work, three methods for choosing pairwise constraints

have been used. First, we used random selection, which con-

sists in randomly picking pairs of objects in a dataset. The

true relationship between the two objects is then determined

using their real labels. This technique allows us to study the

behavior of the algorithm in various situations. It is used

in the experiments reported in Sections 4.2.1 and 4.2.2 to

demonstrate the interest of adding constraints and to com-

pare the performances of our algorithm with those of other

relational constrained clustering methods.

In real applications, instance-level constraints may some-

times be obtained from prior domain knowledge. Section

4.3.1 presents an example of such a situation.

Finally, the active learning strategy proposed in Section

3.3.1 is tested in Section 4.3.2.

4.1.4 Guidelines for tuning ξ

Parameter ξ controls the tradeoff between the pairwise con-

straints and the fit with the distance data. To find a suit-

able value for this parameter, several experiments were car-

ried out on some of the UCI datasets. Various values of ξ

were tried for a fixed number of constraints. Tables 5 and 6

present the evolution of the average Rand Index (computed

over 100 trials with a random selection of the constraints for

each trial) for different values of ξ . The confidence intervals

were computed as R± t0.975σ/10, where R is the average

Rand index over the 100 trials, σ is the standard deviation,

and t0.975 is the 0.975 quantile of the Student t distribution

with 99 degrees of freedom. In order to avoid local minima,

each trial consists of five runs of CEVCLUS with different

initializations, including one initialization coming from the

credal partition resulting of EVCLUS.

These results show that the performances of our algo-

rithm generally do not depend much on the precise value of

ξ , particularly when the number of constraints is small. For

the three datasets and the four values of C, the RI remains

constant for a wide range of ξ . Whereas the optimal value

depends on the dataset and the number of constraints, the

Table 5 Average Rand index and 95% confidence interval over 100

trials as a function of ξ for C = 20 and C = 50 randomly chosen con-

straints. The best results are displayed in bold.

C ξ Wine Letters Ecoli

20 0 0.87 ± 0.00 0.61 ± 0.00 0.88 ± 0.01

0.05 0.95 ± 0.00 0.61 ± 0.00 0.90 ± 0.00

0.1 0.95 ± 0.00 0.62 ± 0.00 0.91 ± 0.00

0.2 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

0.5 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

0.8 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

1 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

1.5 0.93 ± 0.00 0.62 ± 0.00 0.91 ± 0.00

2 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

2.5 0.93 ± 0.00 0.62 ± 0.00 0.91 ± 0.00

3 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

5 0.93 ± 0.00 0.63 ± 0.00 0.91 ± 0.00

50 0 0.87 ± 0.00 0.61 ± 0.00 0.88 ± 0.01

0.05 0.95 ± 0.00 0.61 ± 0.00 0.91 ± 0.00

0.1 0.96 ± 0.00 0.62 ± 0.00 0.91 ± 0.00

0.2 0.95 ± 0.00 0.63 ± 0.00 0.92 ± 0.00

0.5 0.95 ± 0.00 0.65 ± 0.01 0.92 ± 0.00

0.8 0.94 ± 0.00 0.64 ± 0.00 0.93 ± 0.00

1 0.94 ± 0.00 0.64 ± 0.00 0.92 ± 0.00

1.5 0.94 ± 0.00 0.64 ± 0.00 0.93 ± 0.00

2 0.93 ± 0.00 0.63 ± 0.00 0.93 ± 0.00

2.5 0.93 ± 0.01 0.64 ± 0.00 0.92 ± 0.00

3 0.93 ± 0.00 0.63 ± 0.00 0.92 ± 0.00

5 0.93 ± 0.00 0.64 ± 0.00 0.92 ± 0.00

Table 6 Average Rand index and 95% confidence interval over 100

trials as a function of ξ for C = 100 and C = 200 randomly chosen

constraints. The best results are displayed in bold.

C ξ Wine Letters Ecoli

100 0 0.87 ± 0.00 0.61 ± 0.00 0.88 ± 0.01

0.05 0.95 ± 0.00 0.61 ± 0.00 0.91 ± 0.00

0.1 0.96 ± 0.00 0.61 ± 0.00 0.91 ± 0.00

0.2 0.96 ± 0.00 0.63 ± 0.00 0.93 ± 0.00

0.5 0.96 ± 0.00 0.71 ± 0.01 0.94 ± 0.00

0.8 0.96 ± 0.00 0.71 ± 0.01 0.94 ± 0.00

1 0.96 ± 0.00 0.68 ± 0.01 0.94 ± 0.00

1.5 0.95 ± 0.00 0.65 ± 0.01 0.94 ± 0.00

2 0.94 ± 0.01 0.65 ± 0.00 0.94 ± 0.00

2.5 0.93 ± 0.01 0.65 ± 0.00 0.94 ± 0.00

3 0.92 ± 0.01 0.64 ± 0.00 0.94 ± 0.00

5 0.92 ± 0.01 0.64 ± 0.00 0.94 ± 0.00

200 0 0.87 ± 0.00 0.61 ± 0.00 0.88 ± 0.01

0.05 0.96 ± 0.00 0.61 ± 0.00 0.91 ± 0.00

0.1 0.97 ± 0.00 0.61 ± 0.00 0.91 ± 0.00

0.2 0.97 ± 0.00 0.63 ± 0.00 0.94 ± 0.00

0.5 0.98 ± 0.00 0.79 ± 0.01 0.96 ± 0.00

0.8 0.98 ± 0.00 0.84 ± 0.01 0.96 ± 0.00

1 0.98 ± 0.00 0.83 ± 0.01 0.96 ± 0.00

1.5 0.98 ± 0.00 0.77 ± 0.01 0.96 ± 0.00

2 0.97 ± 0.00 0.71 ± 0.01 0.96 ± 0.00

2.5 0.96 ± 0.01 0.68 ± 0.01 0.96 ± 0.00

3 0.94 ± 0.01 0.67 ± 0.01 0.96 ± 0.00

5 0.95 ± 0.01 0.62 ± 0.01 0.96 ± 0.00
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Fig. 3 Hard credal partition obtained using EVCLUS on the Toys2c

dataset. Each point is represented by a symbol corresponding to its real

class.

value ξ = 1 generally yields close to optimal results. This

value has been adopted in the rest of our experiments.

4.1.5 Comparison with reference methods

The performances of CEVCLUS have been compared to

those of two constrained clustering methods dedicated to re-

lational data. The first one is referred to as CCL [16] and

represents the first relational clustering algorithm proposed

to integrate background knowledge. It is a modification of

the complete-link approach in hierarchical clustering [9]. In

this algorithm, the input dissimilarity matrix is altered using

pairwise constraints. In order to compare the results with

ours, we cut the final dendrogram to obtain a crisp partition

with the appropriate number of classes. The second method,

called SSCARD [10], is based on the relational FCM al-

gorithm. As in CEVCLUS, a penalty term is added to the

objective function in order to integrate pairwise constraints.

This algorithm generates a fuzzy partition. It can be then

considered as the closest algorithm to CEVCLUS.

We can remark that other constrained clustering methods

exist, such as algorithms dedicated to attribute data [1,2,12,

35] or graph data [18,37]. However, we have restricted the

comparison to relational clustering algorithms.

4.2 Results

4.2.1 Benefits of adding constraints

We first illustrate the benefits of adding constraints using the

Toys2c dataset. The hard credal partition given by EVCLUS

is presented in Figure 3. We can see that the algorithm was

unable to detect to shape of the classes. Indeed, without any

prior information, the algorithm finds a linear boundary be-

tween the two groups of objects. The Rand Index obtained

is 0.73.
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Fig. 4 Belief masses assigned to ω1 using CEVCLUS on the Toys2c

dataset. Each point is represented by a symbol corresponding to its real

class. The size of each symbol is proportional to the mass function

assigned to the point. Solid and dashed lines represent Must-Link and

Cannot-Link constraints, respectively.
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Fig. 5 Belief masses assigned to ω2 using CEVCLUS on the Toys2c

dataset. Each point is represented by a symbol corresponding to its real

class. The size of each symbol is proportional to the mass function

assigned to the point. Solid and dashed lines represent Must-Link and

Cannot-Link constraints, respectively.

As shown in Figures 4 and 5, adding 20 constraints leads

the algorithm towards a different, more suitable solution.

The hard credal partition displays a non linear boundary

which is closer to the desired boundary. The new Rand index

has increased to 0.90.

The evolution of the average Rand Index (computed over

100 trials) as a function of the number of pairwise con-

straints for the Toys2c, Wine, Letters and Ecoli datasets is

represented in Figures 6, 7, 8 and 9 respectively. For each

trial, CEVCLUS was run 10 times with different initializa-

tions, in order to avoid local minima.

We first remark that the total Rand Index increases with

the number of constraints. Thus, introducing constraints im-

proves the classification accuracy on constrained objects.

Most of the time, we also observe that the Rand Index com-

puted over unconstrained objects increases with the num-

ber of constraints too. Therefore, constraining some pairs of
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Fig. 6 Toys2c dataset : average Rand Index and 95% confidence inter-

val as a function of the number of randomly selected constraints.
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Fig. 7 Wine dataset : average Rand Index and 95% confidence interval

as a function of the number of randomly selected constraints.
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Fig. 8 Letters dataset : average Rand Index and 95% confidence inter-

val as a function of the number of randomly selected constraints.
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Fig. 9 Ecoli dataset : average Rand Index and 95% confidence interval

as a function of the number of randomly selected constraints.

objects also improves the clustering of other, unconstrained

objects.

However, this behavior is not observed with the Wine

dataset (Figure 7). Indeed, the EVCLUS algorithm already

yields good results on this dataset. Boundaries between

classes do not need to be strongly modified, but a local re-

finement slightly improves the quality of the clustering. As a

matter of fact, regions where objects are classified with un-

certainty correspond to areas where real classes are mixed.

In those regions, an unconstrained object can be close to

constrained objects assigned to different classes. It leads the

unconstrained object towards an uncertain class member-

ship. Conversely, constrained objects located in those re-

gions are well-classified thanks to their constraints. Hence,

such objects contribute to obtaining better results, as shown

by Figure 7.

4.2.2 Performance comparison

The results with CEVCLUS were compared to those ob-

tained with CCL [16] and SSCARD [10] on the six datasets.

For the three algorithms, we used the same input dissimi-

larities and the same number of clusters. Credal and fuzzy

partitions were transformed into crisp ones in order to make

decisions. Figures 10 to 15 present the evolution of the mean

Rand Index obtained (computed over 100 trials) according

to the number of constraints.

These experimental results clearly show the superior-

ity of our approach. Indeed, most of the time CEVCLUS

is equivalent to or outperforms SSCARD and CCL, and it

generally achieves better results when there are a few con-

straints. These results can be simply explained: instance-

level constraints contain useful information allowing us to

improve the clustering solution and the credal partition pro-

vides the flexibility to easily accomplish this task.

The behavior of the algorithms may sometimes seem

surprising at first glance. For example, adding constraints in
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Fig. 10 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the Toys2c dataset.
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Fig. 11 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the Wine dataset.
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Fig. 12 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the Letters dataset.
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Fig. 13 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the Ecoli dataset.
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Fig. 14 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the 20Newsgroups dataset.
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Fig. 15 Average Rand Index and its 95% confidence interval obtained

by different algorithms for the ChickenPieces dataset.
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the CCL algorithm sometimes decreases the quality of the

solution. Indeed, for CCL, a set of constraints modifies dis-

tances and influences the aggregation of clusters. Depending

on the dataset, this can result in better (Figure 10) or worse

performances (Figure 13). We can also remark that CCL is

more sensitive to the choice of constraints than CEVCLUS

or SSCARD, as shown by the larger confidence intervals.

For the Wine dataset, the SSCARD algorithm slightly

outperforms CEVCLUS when more than 30 constraints are

used. As a matter of fact, with CEVCLUS, the unconstrained

objects have a high degree of uncertainty regarding their

class membership. This indecision leads to a slower improve-

ment of the partition as compared to SSCARD.

Finally, we may remark that, for the three algorithms,

adding constraints sometimes have no impact on the results,

or a very small one (see Figure 14). This phenomenon con-

cerns datasets that need either a higher number of constraints

or a particular selection of the constraints. The next para-

graphs investigate both cases in greater detail.

4.3 Applications

4.3.1 Generation of constraints by simple rules

In all the above experiments, pairwise constraints were ar-

tificially generated using the random selection method. In

this following section, we show how Must-Link and Cannot-

Link constraints may be retrieved using real domain knowl-

edge. For that purpose, we used the 20Newsgroups data-

base, which is composed of messages. In order to constitute

two sets of Must-Link and Cannot-Link constraints, we built

some rules from the characteristics of the messages.

The basic idea is to define a Must-Link constraint be-

tween two messages when they contain at least two pre-

selected words, and a Cannot-Link constraint when each

message includes a pair of words related to different topics.

For example, all the documents including the words “Bible”

and “religion” should be assigned to the same class, whereas

a document containing these two words and a document

containing the words “computer” and “disk” should not be-

long to the same class. It should be emphasized that we de-

cided to select pairs of words and not single ones for the cre-

ation of constraints because a word that is supposed to be-

long to a group may appear in an other group. For instance,

the word “mac” is a computer science word, but is also the

prefix of family names. Consequently, it can be found in

messages from every group. Figure 16 presents the sets of

words associated with the different topics.

In that way, 3947 constraints were created. We can re-

mark that, among these constraints, some of them may have

been incorrectly defined. Indeed, based on the real label of

the constrained objects, we observed that 4.1% of constraints

Bible religion

jesus god

disease medicine

patients

computer disk dos

win mac

win games

Fig. 16 Scheme of the rules used to build Must-Link and Cannot-Link

constraints for the 20Newsgroups dataset. The circles represent groups

of identical words and the dashed lines linking groups correspond to

the notion of dissimilarity between them.

Table 7 Rand index for the 20newsgroups dataset using CEVCLUS,

SSCARD and CCL.

nb constraints CEVCLUS SSCARD CCL

0 0.63 0.64 0.27

3947 0.68 0.65 0.54

Table 8 The ChickenPieces characteristics.

class piece number of objects

1 breast 96

2 back 76

3 thigh and back 61

4 wings 117

5 drumstick 96

total 446

correspond a wrong type of link, i.e., a Cannot-Link (a Must-

Link, respectively) for two objects in the same class (in a

different class, respectively).

First, the EVCLUS algorithm was run, yielding a Rand

index of 0.63. Then, ten trials of CEVCLUS were carried

out with ξ = 1, and we selected the solution with the low-

est value of the objective function. The Rand Index obtained

was increased to 0.68. Hence, incorporating constraints al-

lowed us to improve the solution. As a comparison, Table 7

presents the results obtained using the same set of constraints

with SSCARD and CCL. The best performances are ob-

tained using the CEVCLUS algorithm.

We can observe that, as expected, the results reported

in Table 7 are similar to those obtained using random con-

straints (see Figure 14). As a matter of fact, this section only

stresses out a concrete case of constraint generation using

the background knowledge.

4.3.2 Active learning

The active learning strategy was tested with the Chicken-

Pieces dataset. We recall that the dataset is composed of 446

binary images, each one of which represents the silhouette

of a specific part of the chicken. Table 8 shows the distribu-

tion of the classes.
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Fig. 17 ChickenPiece dataset: graphical user interface for active learn-

ing. Symbols “?” (respectively, “6=”) correspond to a unknown rela-

tionship (respectively, Cannot-link constraint) between two objects.

Although not represented in the figure, a Must-Link constraint can also

be set with the symbol “=”.

First, we performed the EVCLUS algorithm five times

and select the output having the lowest objective function in

order to get an initial credal partition. Objects were then se-

lected using the non-specificity measure and were presented

to an expert via a graphical user interface (Figure 17). The

image in the center represents the object of interest (that is

classified with uncertainty) while the others are references

(i.e., objects classified with certainty). Remark that the clos-

est reference to the object of interest is indicated to the ex-

pert by a frame. It corresponds to the constraint supposing

to be one of the most informative. The expert determines the

nature of the constraints he/she knows. Then, CEVCLUS

can be applied. The new credal partition makes it possible

to incorporate additional constraints, and CEVCLUS can be

run again. This process is iterated until the stabilization of

the credal partition.

Table 9 shows the evolution of the Rand index as a func-

tion of the number of questions. We can observe that using

even a few constraints significantly improves the final solu-

tion. As no random process is involved in the active learning

scheme, it always yields the same results if the expert does

not modify his/her answers.

The results can be compared to those reported in Fig-

ure 15. We observe that the proposed active learning strat-

egy yields better partitions than those obtained using random

constraint selection, even with a very small number of ques-

Table 9 ChickenPiece dataset: evolution of the Rand Index during the

active learning scheme

nb of questions nb constraints RI

1 0 0.76

2 5 0.80

3 12 0.82

4 19 0.83

5 20 0.83

tions. This confirms the interest of using this strategy when

expert knowledge is available.

5 Conclusion

A new constrained clustering method has been introduced.

The new algorithm, called CEVCLUS, is based on the EV-

CLUS [8] algorithm, proposed in the theoretical framework

of belief functions. It is designed for dissimilarity data and

makes it possible to integrate background knowledge in the

form of pairwise constraints.

Experiments conducted on a synthetic database have

shown that introducing constraints allows us to guide the al-

gorithm towards a desired solution. We have then illustrated

the performances of the algorithm on various datasets, and

compared our approach with two other constrained cluster-

ing methods. Our method outperforms the reference meth-

ods in most experiments, demonstrating the interest of ex-

ploiting the credal partition in order to elicit constraints.

Finally, two applications have been proposed in order

to present different ways of retrieving pairwise constraints.

The first one consists in generating rules to construct con-

straints from domain knowledge. Such a strategy may pro-

vide an large amount of constraints, which are not neces-

sarily informative but are fast to create. The second strat-

egy corresponds to an active learning scheme and involves

the use of a graphical user interface. In order to select au-

tomatically informative pairs of patterns, we took advantage

of the richness of the evidential framework. As an active

learning scheme corresponds to a human-based approach,

this method provides fewer constraints than the former ap-

proach, but they proved to be very informative.

In both cases, we assumed that the constraints are as-

signed with total certainty. In the future, we intend to con-

sider soft constraints, following [19]. We may address this

problem in the evidential framework by associating a degree

of plausibility to each constraint. Taking into account such

constraints while keeping the resulting optimization prob-

lem tractable is a difficult problem, which we are currently

investigating.
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A Optimization algorithm

The minimization of JCEVCLUS can be performed using any uncon-

strained nonlinear programming algorithm. In the experiments reported

in Section 4, we used the same gradient-based optimization as in [8].

This method is briefly sketched below.

Let w be the vector of parameters and J(w) the objective func-

tion to be minimized. The algorithm is a variant of gradient descent in

which each parameter wi has its own step size η j, and the step sizes are

adapted during the optimization process, depending on the evolution of

the objective function and on the sign of the derivatives at successive

iterations. Let t be the iteration counter. Let us first assume that the ob-

jective function has decreased between iterations t −1 and t . Then the

following rule is applied to update each step size η j:

η j(t) =







β η j(t −1) if
∂ J

∂ w j

(t −1) ·
∂ J

∂ w j

(t)> 0

γ η j(t −1) otherwise,

(24)

where β > 1 and γ < 1 are two coefficients. Hence, the step size is in-

creased if the derivatives have kept the same sign during two iterations,

and it is increased if the sign of the derivative has changed, which indi-

cates that we have “jumped over” a minimum. The parameters are then

updated by:

w j(t +1) = w j(t)−η j(t)
∂ J

∂ w j

(t). (25)

If now the objective function has increased between iterations t−1 and

t , all step sizes are decreased simultaneously:

η j(t) = δ η j(t −1) ∀ j (26)

with δ < 1, and the parameters are updated starting from where they

were at the previous iteration:

w j(t +1) = w j(t −1)−η j(t)
∂ J

∂ w j

(t −1). (27)

As in [8], we set the parameters β , γ and δ to 1.2, 0.8 and 0.5 in

our experiments.


