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ON THE MA–TRUDINGER–WANG CURVATURE ON SURFACES

A. FIGALLI, L. RIFFORD, AND C. VILLANI

Abstract. We investigate the properties of the Ma–Trudinger–Wang nonlocal
curvature tensor in the case of surfaces. In particular, we prove that a strict form of
the Ma–Trudinger–Wang condition is stable under C4 perturbation if the nonfocal
domains are uniformly convex; and we present new examples of positively curved
surfaces which do not satisfy the Ma–Trudinger–Wang condition. As a corollary of
our results, optimal transport maps on a “sufficiently flat” ellipsoid are in general
nonsmooth.
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Introduction

The Ma–Trudinger–Wang (MTW) tensor is a nonlocal generalization of sectional
curvature, involving fourth-order derivatives of the squared distance function [4, 7,
9, 10, 11, 18, 22, 25, 26, 27, 28, 29]. Various positivity or nonnegativity conditions
on this tensor have been introduced and identified as a crucial tool in the regularity
theory for the optimal transport in curved geometry [8, 10, 12, 19, 23, 24]; see [6] or
[28, Chapter 12] for a presentation and survey. Besides, this tensor has led to results
of a completely new kind concerning the geometry of the cut locus [10, 11, 24].
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It is therefore natural to investigate the stability of the Ma–Trudinger–Wang con-
ditions. But while the condition of, say, strictly positive sectional curvature is ob-
viously stable under C2 perturbation of the metric, it is not obvious at all that
the condition of positive Ma–Trudinger–Wang curvature tensor is stable under C4

perturbation, because this tensor is nonlocal. Partial results have already been ob-
tained: roughly speaking, stability of the nonnegative curvature condition under
Gromov–Hausdorff limits [29]; stability of the positive curvature condition under C4

perturbation, away from the focal locus [4, 29]; stability of the positive curvature
condition under C4 perturbation of the round spheres [10, 12].

In the present paper we shall continue these investigations, sticking to the case of
surfaces. Without making the problem trivial, this assumption does allow for more
explicit calculations. The main results of this paper are:

(1) simplified analytic expressions for the MTW curvature tensor on surfaces (for-
mulas (1.8) and (3.3)), and the discovery of a strict connection between the MTW
tensor and the curvature of the tangent focal locus near the tangent cut locus (Propo-
sition (3.1) and formula (3.4));

(2) the stability of the strict MTW condition under an assumption of uniform
convexity (near the tangent cut locus) of nonfocal domains (Theorem 4.1);

(3) new counterexamples of positively curved surfaces which do not satisfy the
MTW condition (Section 5).

We remark that a formula for the MTW curvature tensor on surfaces analogous
to (1.8) has been found independently in [5].

Our stability results should be compared to those in [11]. In the latter paper we
proved the stability around the round sphere M = Sn; in the present paper, we only
consider surfaces, but the assumption on M (convexity of nonfocal domains near the
tangent cut locus) is much less restrictive. Moreover, the link we find between the
MTW condition and the curvature of the tangent cut locus puts a new light on what
the MTW condition geometrically means, and it explains why stability holds on the
two-sphere (a result first proven in [10], see also [5]). It would be interesting to find
a similar connection between the MTW condition and some convexity properties of
the focal cut locus in higher dimension.

Let us further recall that on perturbations of Sn, the stability of the MTW con-
dition has strong geometric consequences, namely it implies the uniform convexity
of all injectivity domains [10, 11].

As far as counterexamples are concerned, we shall see in particular that some
ellipsoids do not satisfy the MTW condition. A striking consequence is that the
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smoothness of optimal transport on Riemannian manifolds may fail even on ellip-
soids.

Finally, let us observe that to show the stability of the strict MTW condition near
the tangent cut locus, we will need to prove a result on the focalization time at the
tangent focal cut locus, which we believe being of independent interest: if v ∈ TxM
is a focal velocity belonging to the tangent cut locus, then the tangent focal locus
and the segment joining 0 to v are orthogonal (Proposition A.6). As a corollary of
this fact, we obtain that the focal cut locus of any point x ∈ M has zero Hausdorff
dimension (Corollary A.8).

Notation:

Throughout all this paper (M, g) is a given C∞ compact Riemannian manifold
of dimension 2, equipped with its geodesic distance d, its exponential map exp :
(x, v) 7−→ expx v, and its Riemann curvature tensor Riem. We write g(x) = gx,
gx(v, w) = 〈v, w〉x. We further define

• tC(x, v): the cut time of (x, v):

tC(x, v) = max
{
t ≥ 0; (expx(sv))0≤s≤t is a minimizing geodesic

}
.

• tF (x, v): the focalization time of (x, v):

tF (x, v) = inf
{
t ≥ 0; det(dtv expx) = 0

}
.

• TCL(x): the tangent cut locus of x:

TCL(x) =
{
tC(x, v)v; v ∈ TxM \ {0}

}
.

• cut(x): the cut locus of x:

cut(x) = expx(TCL(x)).

• TFL(x): the tangent focal locus of x:

TFL(x) =
{
tF (x, v)v; v ∈ TxM \ {0}

}
.

• TFCL(x): the tangent focal cut locus of x:

TFCL(x) = TFL(x) ∩ TCL(x).

• fcut(x): the focal cut locus of x:

fcut(x) = expx
(
TFCL(x)

)
.
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• I(x): the injectivity domain of the exponential map at x; so

I(x) =
{
tv; 0 ≤ t < tC(x, v), v ∈ TxM

}
.

• NF(x): the nonfocal domain of the exponential map at x:

NF(x) =
{
tv; 0 ≤ t < tF (x, v), v ∈ TxM

}
.

• exp−1: the inverse of the exponential map; by convention exp−1
x (y) is the set of

minimizing velocities v such that expx v = y. In particular TCL(x) = exp−1
x (cut(x)),

and I(x) = exp−1
x (M \ cut(x)).

Recall that tF ≥ tC , or equivalently I(M) ⊂ NF(M) [15, Corollary 3.77]. (The
injectivity domain is included in the nonfocal domain.)

1. Two-dimensional Ma–Trudinger–Wang curvature

In this section we particularize to dimension two the general recipe for the com-
putation of the Ma–Trudinger–Wang curvature, as given in [11, Section 2 and Para-
graph 5.1]. W

1.1. Jacobi fields and Hessian operator. Let us fix a geodesic (γ(t))0≤t≤T with
γ(0) = x, γ(1) = y, γ̇(0) = σ, |σ| = 1, and T = tF (σ) = tF (x, σ). We choose a unit
vector σ⊥ orthogonal to σ, and identify tangent vectors at x to their coordinates in
the g-orthonormal basis (σ, σ⊥). Thus, modulo identification, TxM = R2, σ = (1, 0),
gx = Id R2 .

Next, we let (γα(t))t≥0 be the geodesic starting at x with initial velocity σα =
(cosα, sinα). We further define σ⊥α = (− sinα, cosα).

For any α ∈ [0, 2π] and τ ≥ 0 we let k(α, τ) be the Gauss curvature of M at
γα(τ). This function determines two “fundamental solutions” f0, f1 given by

(1.1)


f̈i(α, τ) + k(α, τ) fi(α, τ) = 0 i = 0, 1,

f0(α, 0) = 0, ḟ0(α, 0) = 1,

f1(α, 0) = 1, ḟ1(α, 0) = 0.

Here as in the sequel, dots stand for τ -derivatives, while we shall use primes for
α-derivatives. We further let

F(α, τ) =
f1(α, τ)

f0(α, τ)
.
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Our goal is to express the MTW curvature in terms of f0, F , and their derivatives
with respect to α. (In the case of the unit sphere, f1(τ) = cos τ , f0(τ) = sin τ ,
F(τ) = cot τ , and there is no α-dependence.) For this we only need to work with α
close to 0.

For any α, we define an orthonormal basis by setting e1(α, 0) = σα, e2(α, 0) = σ⊥α ,
and from this we deduce e1(α, τ), e2(α, τ) by parallel transport along γ. Then we
define fields J0 and J1 by their matrix in this local basis:

J0(α, τ) =

[
τ 0
0 f0(α, τ)

]
J1(α, τ) =

[
1 0
0 f1(α, τ)

]
.

(Each Ji should be thought of as an array of two Jacobi fields.) Let w = τσα with
τ < tF (σα), and let S(x,w) be the symmetric operator whose matrix, in the basis
(σα, σ

⊥
α ), is

S(α, τ) = τJ0(α, τ)−1 J1(α, τ) =

[
1 0
0 τF(α, τ)

]
.

Then S(x,w) is the extended Hessian operator, as defined in [11, Equation (2.6)]. (If
w ∈ I(x) then S(x,w) coincides with ∇2

xd( · , expxw)2/2, see [28, Chapter 14, Third
Appendix].)

1.2. MTW tensor. The Ma–Trudinger–Wang tensor is obtained basically by dif-
ferentiating the Hessian operator twice.

Let

Q(α) =

[
cosα sinα
− sinα cosα

]
,

so that for v = τ σα, the matrix of S(x,v) in the standard basis of R2 isQ(−α)S(α, τ)Q(α).
Equivalently,

(1.2)
〈
S(x,τ σα)ξ, ξ

〉
=
〈
S(α, τ)Q(α)ξ,Q(α)ξ

〉
.

Let now v = (t, 0), η = (η1, η2) ∈ R2 (intrinsically, this means η = η1 σ + η2 σ
⊥),

and s ∈ R small enough. Then v + sη = τσα, where

(1.3) τ = |v + sη| =
√

(t+ sη1)2 + (sη2)2, α = tan−1

(
sη2

t+ sη1

)
.



6 A. FIGALLI, L. RIFFORD, AND C. VILLANI

We differentiate (1.2) twice with respect to s:

d

ds

〈
S(x,τσα)ξ, ξ

〉
=
[〈(∂S

∂α

)
Qξ,Qξ

〉
+ 2
〈
SQξ,

(
∂Q

∂α

)
ξ
〉] (∂α

∂s

)
+
〈(∂S

∂τ

)
Qξ,Qξ

〉 (∂τ
∂s

)
.

d2

ds2

〈
S(x,τσα)ξ, ξ

〉
=(1.4) [〈(∂2S

∂α2

)
Qξ,Qξ

〉
+ 4
〈(∂S

∂α

)(
∂Q

∂α

)
ξ,Qξ

〉
+2
〈
S

(
∂Q

∂α

)
ξ,

(
∂Q

∂α

)
ξ
〉

+ 2
〈
SQξ,

(
∂2Q

∂α2

)
ξ
〉] (∂α

∂s

)2

+

[
2
〈( ∂2S

∂α ∂τ

)
Qξ,Qξ

〉
+ 4
〈(∂S

∂τ

)
Qξ,

(
∂Q

∂α

)
ξ
〉] (∂τ

∂s

) (
∂α

∂s

)
+
〈(∂2S

∂τ 2

)
Qξ,Qξ

〉 (∂τ
∂s

)2

+

[〈(∂S
∂α

)
Qξ,Qξ

〉
+ 2
〈
SQξ,

(
∂Q

∂α

)
ξ
〉] (∂2α

∂s2

)
+
〈(∂S

∂τ

)
Qξ,Qξ

〉 (∂2τ

∂s2

)
.

For a function f = f(α, τ), we will use a dot to designate a derivative with respect
to τ (“time”), and a prime to designate a derivative with respect to α: f ′ = ∂f/∂α,

ḟ = ∂f/∂t, etc. By direct computation, at s = 0 we have

S =

[
1 0
0 tF

]
∂S

∂α
=

[
0 0
0 tF ′

]
∂S

∂τ
=

[
0 0

0 F + tḞ

]
∂2S

∂α2
=

[
0 0
0 tF ′′

]
∂2S

∂α ∂τ
=

[
0 0

0 F ′ + tḞ ′
]

∂2S

∂τ 2
=

[
0 0

0 2Ḟ + tF̈

]
,

Q =

[
1 0
0 1

]
∂Q

∂α
=

[
0 1
−1 0

]
∂2Q

∂α2
=

[
−1 0
0 −1

]
,

τ = t,
∂τ

∂s
= η1,

∂2τ

∂s2
=
η2

2

t
,
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α = 0,
∂α

∂s
=
η2

t
,

∂2α

∂s2
= −2 η1 η2

t2
.

Plugging this back in (1.4), we obtain the following expression for the extended
Ma–Trudinger–Wang tensor, as defined in [10] (see also [11, Definition 2.2]):

2

3
S(x,v)(ξ, η) = − d2

ds2

∣∣∣∣
s=0

〈
S(x,τ(s)σα(s))ξ, ξ

〉
(1.5)

=
[
−(tF ′′)ξ2

2 + 4(tF ′)ξ1ξ2 + 2(tF)ξ2
2 + 2ξ2

1 − 2ξ2
2 − 2(tF)ξ2

1

] η2
2

t2

+
[
−2(F ′ + tḞ ′)ξ2

2 + 4(F + tḞ)ξ1ξ2

] η1 η2

t

−
(

2Ḟ + tF̈
)
ξ2

2η
2
1

+
[
−(tF ′)ξ2

2 + 2(tF)ξ1ξ2 − 2ξ1ξ2

] (
−2η1η2

t2

)
−
(
F + tḞ

) ξ2
2η

2
2

t
.

Whenever v ∈ I(x), S(x,v) coincides (modulo identification) with the “usual” MTW
tensor, see [11] for more details.

At this stage we note that the identity

d

dτ

(
f1ḟ0 − ḟ1f0) = 0

implies

(1.6) f1ḟ0 − ḟ1f0 = 1

(as the above identity holds at τ = 0), or equivalently

(1.7) Ḟ = − 1

f 2
0

.

It follows

F̈ =
2ḟ0

f 3
0

, Ḟ ′ = 2f ′0
f 3

0

.
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Plugging this in (1.5) yields

(1.8)
2

3
S(x,v)(ξ, η) =(

2

t2
− 2F

t

)
ξ2

1η
2
2 +

(
4

t2
− 4

f 2
0

)
ξ1ξ2η1η2 +

4F ′

t
ξ1ξ2η

2
2

+

(
2

f 2
0

− 2tḟ0

f 3
0

)
ξ2

2η
2
1 −

4f ′0
f 3

0

ξ2
2η1η2 +

(
− 2

t2
+
F
t
− F

′′

t
+

1

f 2
0

)
ξ2

2η
2
2.

Now, if we take η = ξ⊥ = (−ξ2, ξ1) we get

(1.9)
2

3
S(x,v)(ξ, ξ

⊥) = A(t) ξ4
1 + B(t) ξ3

1ξ2 + C(t) ξ2
1ξ

2
2 + D(t) ξ1ξ

3
2 + E(t) ξ4

2 ,

where

(1.10)



A(t) =
2

t2
− 2F

t

B(t) =
4F ′

t

C(t) =
5

f 2
0

− 6

t2
+
F
t
− F

′′

t

D(t) =
4f ′0
f 3

0

E(t) =
2

f 2
0

− 2tḟ0

f 3
0

.

1.3. MTW conditions. We say that the MTW condition (in short (MTW)) holds
if (1.9) is non-negative for all ξ, for any (x, v) in the injectivity domain I(M). The
strict form of the Ma–Trudinger–Wang condition amounts to saying that (1.9) is
positive whenever (ξ1, ξ2) 6= (0, 0),

(a) either for any choice of (x, v) in the injectivity domain I(M);
(b) or for any choice of (x, v) in the nonfocal domain NF(M).
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In case (a), we say that the strict MTW condition (denoted (MTW+)) holds.

In case (b), we say that the extended strict MTW condition (denoted (MTW
+
))

holds.

A useful quantitative form of this inequality is

∀ ξ, η ∈ TxM, S(x,v)(ξ, η) ≥ K |ξ|2 |η|2 − C 〈ξ, η〉2,
where K,C are positive constants. If this holds true for all (x, v) ∈ I(M) (resp. for
all (x, v) ∈ NF(M)), we say that M satisfies the condition (MTW(K, C)) (resp.
(MTW(K, C))).

All these conditions may or may not be satisfied by M . They are anyway strictly
stronger than the condition of positive Gauss curvature. Examples and counterex-
amples are discussed at the end of this paper.

2. Curvature of tangent focal locus

It is near the tangent focal cut locus that the study of the MTW condition becomes
tricky. We shall see that there, the curvature of the tangent focal locus plays a crucial
role. In this section we compute this curvature.

2.1. Local behavior of TFL. Let us define the function α 7→ ρ(α) = tF (σα) =
tF (x, σα), so that the tangent focal locus of M at x is given by the equation {ρ =
ρ(α)} in polar coordinates. The function ρ is the first nonzero solution of the implicit
equation

(2.1) f0(α, ρ(α)) = 0.

The identity (1.6) implies that ḟ0 does not vanish in a neighborhood of {f0 = 0},
so by the implicit function theorem ρ is a smooth function of α. (As before, for a

function f = f(α, τ) we write f ′ = ∂f/∂α, ḟ = ∂f/∂τ .)
Differentiating (2.1) with respect to α and using (1.6) again yields

(2.2) ρ′(α) = −f
′
0

ḟ0

(α, ρ(α)) = −(f ′0 f1)(α, ρ(α)).

A second differentiation, combined with (2.2), yields

(2.3) ρ′′ = −f
′′
0 + 2ρ′ḟ ′0 + (ρ′)2f̈0

ḟ0

= −f1f
′′
0 + 2f 2

1 f
′
0ḟ
′
0,

where the right-hand side is evaluated at (α, ρ(α)). (The term f̈0 has disappeared

because f̈0 = −kf0 = 0.)
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Now we can apply classical formulas to compute the signed curvature κ(α) of
TFL(x) at (α, ρ(α)): with v = ρ(α)σα,

κ(α) =

det

[
v′1 v′′1
v′2 v′′2

]
(
(v′1)2 + (v′2)2

)3/2
=
ρ2 + 2(ρ′)2 − ρ ρ′′

(ρ2 + (ρ′)2)3/2

=
ρ2 + 2(f ′0f1)2 + ρf ′′0 f1 − 2ρf1ḟ1(f ′0)2 + 2ρf ′1f

′
0[

ρ2 + (f ′0f1)2
]3/2 ,(2.4)

evaluated at (α, ρ(α)). (In the last formula we have used again f1ḟ0 = 1 and f1ḟ
′
0 =

ḟ1f
′
0 − f ′1ḟ0, both deduced from (1.6).)

So the nonfocal domain is convex (resp. uniformly convex) around v = tσα if and
only (2.4) is nonnegative (resp. positive) for any α in a neighborhood of α.

2.2. Local behavior of TFCL. Now we particularize the preceding computation
by considering a velocity which is not only focal, but also a cut velocity. So let again
v = tσα ∈ TFCL, and let ρ = tC(v) = tF (v) = ρ(α). By Proposition A.6 in the
Appendix,

(2.5) ρ′(α) = 0.

By (1.6) we have f1 6= 0 at (α, ρ), so (2.5) is equivalent to

(2.6) f ′0(α, ρ) = 0.

Then the expressions obtained in Subsection 2.1 simplify as follows:

(2.7) ρ′′(α) = −f1f
′′
0 , κ(α) =

1

ρ

(
1 +

f1f
′′
0

ρ

)
,

where f1 and f ′′0 are evaluated at (α, ρ).

3. MTW conditions at the edge

From the expression of the MTW tensor given in (1.8), one can easily see that
S(x,v) varies smoothly with respect the metric, as long as f0 is bounded away from 0,
i.e. as long as v ∈ NF(x) is far away from TFL(x). Hence, when one is interested in
the stability of the Ma–Trudinger–Wang condition inside I(M), the critical part is
to understand this condition near the “natural boundary” of its domain of validity,
which is not the tangent cut locus, but rather the tangent focal cut locus.

The main theme of this section is that there is “almost” equivalence of the three
following conditions:



MA–TRUDINGER–WANG CONDITIONS 11

(a) the MTW tensor is “nonnegative” near TFCL

(b) the MTW tensor is “bounded below” near TFCL

(c) TFCL is “locally convex”.

Condition (c) really means that for any x, the nonfocal domain NF(x) is convex
in the neighborhood of any focal cut velocity. Since the description of the tangent
cut locus is easy away from focalization, condition (c) allows to prove a rather
strong geometric property, not known for general manifolds: injectivity domains are
semiconvex, i.e. smooth deformations of convex sets (see [13]). (Compare with the
open problem stated in [16, Problem 3.4].)

We do not know how far one can push the equivalence between (a), (b) and (c).
For the moment we shall only establish certain partial implications between variants
of these conditions.

Proposition 3.1. Let v = ρσα ∈ TFCL(x) and let κ be the signed curvature of
TFL(x) at v. Then:

(i) if κ > 0, there are δ,K,C > 0, depending only on upper bounds on |ḟi|, |f ′i |,
|f ′′i | (i = 0, 1), and on a lower bound on κ and on the injectivity radius of M , such
that for all α ∈ (α− δ, α + δ) and t ∈ (tF (σα)− δ, tF (σα)), v = tσα,

(3.1) ∀ (ξ, η) ∈ TxM × TxM, S(x,v)(ξ, η) ≥ K

(
ξ2

1 +
ξ2

2

f 2
0

)
|η|2 − C 〈ξ, η〉2.

(ii) if κ < 0, then

(3.2) lim inf
{

S(x,tσα)(ξ, ξ
⊥); t→ tF (σα)−, α→ α, ξ ∈ TxM, |ξ| = 1

}
= −∞.

The above proposition says the following remarkable thing: whenever TFL(x)
is uniformly convex near a point v ∈ TFCL(x), then (MTW(K, C)) holds in a
neighborhood of v in TxM . As already observed in [10, 11, 24], this analytic property
allows to deduce strong geometric consequences on the injectivity domains.

Remark 3.2. As can be easily seen from the proof of point (i), the constant K actu-
ally depends only on a lower bound on κ and on the injectivity radius of M , provided
δ is chosen sufficiently small. Moreover, as can be immediately seen from the proof,
the assumption that v̄ ∈ TFCL(x) is needed only to ensure that

∣∣f ′0(α, tF (α))
∣∣ is

sufficiently small in a neighborhood of (α, tF (α)). Hence all the results in Proposi-
tion 3.1 hold true for any v̄ = tF (α)σα ∈ TFL(x) such that

∣∣f ′0(α, tF (α))
∣∣ ≤ η, for

some universal constant η > 0.



12 A. FIGALLI, L. RIFFORD, AND C. VILLANI

Proof of Proposition 3.1. We start by rewriting (1.8). After repeated use of (1.6),
we obtain

2

3
S(x,v)(ξ, η) = −2f1

tf0

[(
f ′0
f0

− f ′1
f1

)
ξ2 η2 +

t ḟ0

f0

ξ2 η1 + ξ1 η2

]2

(3.3)

+
2

t2
ξ2

1 η
2
2

+ 4

(
1

t2
+
ḟ1

f0

)
ξ1 ξ2 η1 η2

+

(
2

f 2
0

+ 2t
ḟ0 ḟ1

f 2
0

)
ξ2

2 η
2
1

+
4

f 2
0

(
f ′0 ḟ1 − ḟ0 f

′
1

)
ξ2

2 η1 η2

+

[
− 2

t2
+
f1

tf0

− 1

t

(
f1

f0

)′′

+
1

f 2
0

+
2f1

tf0

(
f ′0
f0

− f ′1
f1

)2
]
ξ2

2 η
2
2.

Note that the coefficient −2f1/(tf0) is positive near the edge (near focalization).

(This follows from (1.6), observing that ḟ0 < 0 near the edge.) Let us examine the
behavior of the various coefficients:

• f0 → 0 as we approach the focal locus.

• Since f ′0(α, tF (α)) = 0, we may choose δ small enough that we can impose
|f ′0| ≤ φ, with φ arbitrarily small.

• In the coefficient of ξ2
2 η

2
2 the highest order terms ±2f1(f ′0)2/(tf 3

0 ) cancel each
other; in the end this coefficient is

γ =
1

f 2
0

[
1 +

f1 f
′′
0

t
− 2

f ′1 f
′
0

t

]
+O

(
1

f0

)
.

By (2.7), if the curvature κ of TFL(x) at (α, tF (α)) is nonzero and if φ is small
enough, then for δ sufficiently small

γ =
1

f 2
0

t κ (1 + ω),

where ω = ω(α, t) satisfies |ω| ≤ 1/4.
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• Then we choose f0 very small with respect to the other parameters. In the end

2

3
S(x,v)(ξ, η) =− 2f1

tf0

[(
f ′0
f0

− f ′1
f1

)
ξ2 η2 +

t ḟ0

f0

ξ2 η1 + ξ1 η2

]2

+
2

t2
ξ2

1 η
2
2 +

t κ

f 2
0

(1 + ω) ξ2
2 η

2
2

+O

(
1

f0

)
ξ1 ξ2 η1 η2 +O

(
1

f 2
0

)
ξ2

2 η
2
1 +O

(
1

f 2
0

)
ξ2

2 η1 η2.

(3.4)

Next, we write ∣∣∣∣O( 1

f 2
0

)
ξ2

2 η1 η2

∣∣∣∣ ≤ λ

f 2
0

ξ2
2 η

2
2 +O

(
1

f 2
0

)
ξ2

2 η
2
1,∣∣∣∣O( 1

f0

)
ξ1 ξ2 η1 η2

∣∣∣∣ ≤ λ ξ2
1 η

2
2 +O

(
1

f 2
0

)
ξ2

2 η
2
1,

where λ > 0 is arbitrarily small but fixed. We conclude that for f0 and δ small
enough,

(3.5)
2

3
S(x,v)(ξ, η) = −2f1

tf0

[(
f ′0
f0

− f ′1
f1

)
ξ2 η2 +

t ḟ0

f0

ξ2 η1 + ξ1 η2

]2

+
2

t2
(1 + ω) ξ2

1 η
2
2 +

t κ

f 2
0

(1 + ω) ξ2
2 η

2
2 +O

(
1

f 2
0

)
ξ2

2 η
2
1,

where, say, |ω| ≤ 1/2.

After these preparations we can prove Proposition 3.1.

(I) First we assume κ < 0 and we wish to prove instability. From (3.5),

(3.6)
2

3
S(x,v)(ξ, ξ

⊥) = −2f1

tf0

[(
f ′0
f0

− f ′1
f1

)
ξ1 ξ2 −

t ḟ0

f0

ξ2
2 + ξ2

1

]2

+
2

t2
(1 + ω) ξ4

1 +
t κ

f 2
0

(1 + ω) ξ2
1 ξ

2
2 +O

(
1

f 2
0

)
ξ4

2 ,

From the definition of tF we have f0(α, tF (α)) ≡ 0, so that we deduce

0 =
∂

∂α

[
f0(α, tF (α))

]
= f ′0(α, tF (α)) + ḟ0(α, tF (α)) t′F (α),
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and since t′F (α) = 0 this implies

0 =
∂

∂α

∣∣∣
α=α

[
f ′0(α, tF (α))

]
+ ḟ0(α, tF (α)) t′′F (α),

whence, recalling (2.7),

∂

∂α

∣∣∣
α=α

[
f ′0(α, tF (α))

]
= −ḟ0(α, tF (α)) t′′F (α)

= (ḟ0 f1 f
′′
0 )(α, tF (α))

= ḟ0(α, tF (α) tF (α)
(
κ tF (α)− 1

)
.

The latter quantity is positive since ḟ0(α, tF (α)) < 0 and κ < 0 by assumption.
Recalling that f ′0(α, tF (α)) = 0, we conclude that f ′0(α, tF (α)) is a small positive
number for α > α, α ' α. We fix such an α.

Then for t < tF (α), t ' tF (α), we have f ′0(α, t) 6= 0, ḟ0(α, t) 6= 0, and we can
choose a unit vector ξ = ξ(α, t) such that

ξ2

ξ1

=

(
f ′
1

f1
− f ′

0

f0

)
+

√(
f ′
1

f1
− f ′

0

f0

)2

+ 4t ḟ0
f0

−2t ḟ0
f0

' − f0(α, t)

f ′0(α, tF (α))
as t→ tF (α).

Then the first term in the right-hand side of (3.6) vanishes, and as t → tF (α)− we
have

2

3
S(x,tσα)(ξ, ξ

⊥) =
2

tF (α)2
(1 + ω) +

tF (α)κ

f ′0(α, tF (α))2
(1 + ω) +O(f 2

0 ).

This expression takes arbitrarily large negative values as α→ α, which proves (3.2).

(II) Next we assume κ > 0 and we wish to prove stability. The first three terms
in the right-hand side of (3.5) have the “right” sign, so the issue is to control the
remaining one. We introduce a small constant ε > 0, and distinguish three cases:

• If |η1| ≤ ε|η2|, then the “dangerous” term is obviously controlled by the term
involving κ, as soon as ε is small enough. Moreover |η|2 ≤ 2 η2

2, and so

S(x,v)(ξ, η) ≥ 2

t2
(1 + ω) ξ2

1 η
2
2 +

t κ

f 2
0

(1 + ω) ξ2
2 η

2
2 ≥ K

(
ξ2

1 +
ξ2

2

f 2
0

)
|η|2,

for K > 0 sufficiently small.
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• If |η2| ≤ ε−1 |η1| and∣∣∣∣∣t ḟ0

f0

ξ2 η1

∣∣∣∣∣ ≥ ε−1 |ξ1 η2| or

∣∣∣∣∣t ḟ0

f0

ξ2 η1

∣∣∣∣∣ ≤ ε |ξ1 η2|,

then choosing δ small enough we have∣∣∣∣(f ′0f0

− f ′1
f1

)
ξ2 η2

∣∣∣∣ ≤ 1

4

∣∣∣∣∣t ḟ0

f0

ξ2 η1

∣∣∣∣∣ ,
and so

− f1

tf0

[(
f ′0
f0

− f ′1
f1

)
ξ2 η2 +

tḟ0

f0

ξ2 η1 + ξ1 η2

]2

≥ −f1

2t

(
t2 ḟ 2

0

f 3
0

ξ2
2 η

2
1 +

ξ2
1 η

2
2

f0

)
,

which easily dominates the “dangerous” term for ε small enough. Hence (since
|η|2 ≤ 2 ε−1η2

1)

S(x,v)(ξ, η) ≥ −f1

2t

(
t2 ḟ 2

0

f 3
0

ξ2
2 η

2
1 +

ξ2
1 η

2
2

f0

)
+

2

t2
(1 + ω) ξ2

1 η
2
2 +

t κ

f 2
0

(1 + ω) ξ2
2 η

2
2

≥ c
(
ξ2

1 η
2
2 + ξ2

2 η
2
1 + ξ2

2 η
2
2

)
+ c

ξ2
2

f 2
0

|η|2,

for some small constant c > 0. Thanks to the inequality a2 ≤ 2 b2 + 2 (a + b)2, we
deduce that

ξ2
1 η

2
1 ≤ 2 ξ2

2 η
2
2 + 2

∣∣〈ξ, η〉∣∣2,
which easily implies S(x,v)(ξ, η) ≥ K

(
|ξ|2 + f−2

0 ξ2
2

)
|η|2 − C〈ξ, η〉2 for some positive

constants K,C.

• If |η2| ≤ ε−1|η1| and

ε |ξ1 η2| ≤

∣∣∣∣∣t ḟ0

f0

ξ2 η1

∣∣∣∣∣ ≤ ε−1 |ξ1 η2|,

then ξ2
2 η

2
1 ≤ O(f 2

0 ε
−1) ξ2

1 η
2
2 (note that ḟ0 is strictly negative near f0 = 0), so for

|ξ| = |η| = 1 we have

(3.7) S(x,v)(ξ, η) ≥ −C0

ε
,

for some constant C0 ≥ 0.
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On the other hand, |ξ2| = O(f0 ε
−1|ξ1| |η2|/|η1|) = O(f0 ε

−2) is bounded above by
ε/8 for f0 small enough, and we get∣∣〈ξ, η〉∣∣ ≥ |ξ1 η1| − |ξ2 η2| ≥

ε

4
.

Also ξ2
2/f

2
0 = O(1). Combining this with (3.5) and (3.7), for δ and f0 small enough

we do have

S(x,v)(ξ, η) ≥ K |ξ|2 |η|2 +
ξ2

2

f 2
0

|η|2 − C 〈ξ, η〉2

for K > 0 small, and for some large enough constant C. This completes the proof
of Proposition 3.1. �

4. Stability

If the condition (MTW+) is unstable, this can only be near TFCL. The main
result of this section shows that a geometric condition on the focal locus near this
“dangerous set” will prevent the instability.

For any x ∈M , let κ(x) = infα κ(α), where κ(α) is the signed curvature of TFL(x)
at (α, ρ(α)). (See Subsection 2.1.) Then we define κ(M) = infx∈M κ(x).

Theorem 4.1 (Stability of (MTW+) on surfaces with convex nonfocal domain).
Let (M, g) be a compact Riemannian surface satisfying (MTW+). If κ(M) > 0 then
any C4 perturbation of g satisfies (MTW(K, C)) for some constants K,C > 0.
This applies in particular to g itself.

In other words, there is δ > 0 such that for any other metric g̃ on M , if ‖g−g̃‖C4 <
δ then (M, g̃) satisfies (MTW(K, C)). Here the C4 norm is measured by means of
local charts on M .

Remark 4.2. Theorem 4.1 was proven in [10] in the particular case when M is the
sphere S2. In that case however, there is a stronger statement according to which
the extended condition (MTW(K, C)) survives perturbation.

Proof of Theorem 4.1. Let G be the set of Riemannian metrics on M , equipped with
the C4 topology. First we note that TFL(M) is continuous on G (the C2 topology
would be sufficient for that); and according to formula (2.4), the curvature of TFL(x)
at v is a continuous function of x, v and also of g̃ ∈ G.

Next, TCL(M) is continuous on G (also here the C2 topology would be sufficient.)
In particular, the injectivity radius of M is continuous on G; and TFCL(M, g̃) re-
mains within an open neighborhood of TFCL(M, g). (This set can shrink drastically,
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as the perturbation of the sphere shows.) So if ‖g − g̃‖C4 is small enough, we still
have κ(M, g̃) > 0.

For each (x, v) ∈ TFCL(M, g), the curvature of TFL(x) at v is positive; so Propo-
sition 3.1 (i) implies the existence of a neighborhood U(x,v) of (x, v) in TM , and a
neighborhood O(x,v) of g in G such that for any (y, w) ∈ U(x,v) and any g̃ ∈ O(x,v),

∀ ξ, η ∈ TyM \ {0}, S
eg
(y,w)(ξ, η) ≥ K |ξ|2y |η|2y − C 〈ξ, η〉2y.

By compactness, we can find an open neighborhood U of TFCL(M, g) and a neigh-
borhood O of g in G on which this inequality holds.

Outside of U , (1.8) shows that S
eg
(y,w)(ξ, η) is a uniformly continuous function of

(y, w) ∈ I(M, g̃), g̃ ∈ G, and ξ, η in the unitary tangent bundle. Then one can
conclude by the same compactness argument as in [11, Section 6]. �

Example 4.3. Consider an ellipsoid E which is not too far from the sphere. If it
satisfies a strict MTW condition and has uniformly convex nonfocal domains, then
any C4 perturbation of E will also satisfy the MTW condition. The point is that
the MTW condition may be checked numerically on E, since geodesics and focal loci
are given by known analytic expressions.

5. New counterexamples

Following [28, Chapter 12], let us agree that a manifold is regular if it satisfies
the Ma–Trudinger–Wang condition and has convex injectivity domains. Examples
of regular manifolds appear in [10, 11, 23, 24, 19]. Regularity of the manifold is a
necessary condition for the regularity theory of optimal transport [28, Chapter 12].

In the class of positively curved surfaces, counterexamples were constructed in
[17] and [24] (in the last paper, this is essentially a cone touching a paraboloid).
Here we shall construct new counterexamples, also with positive curvature.

5.1. Surfaces of revolutions. In this subsection, we give simple formulas for the
MTW curvature along certain well-chosen geodesics of surfaces with revolution sym-
metry.

Let N and S respectively stand for the North and South Poles on S2. We param-
eterize S2 \ {N,S} by polar coordinates (θ, r) from N , and define the Riemannian
metric

g = m(r)2 dθ2 + dr2,

where m is a positive smooth function. In the sequel, we shall identify points of S2

with their coordinates and denote by m(k) the k-th derivative of m.
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Only two of the Christoffel symbols of g are nonzero:

Γrθθ = −m(r)m(1)(r) and Γθrθ =
m(1)(r)

m(r)
;

so the equation for geodesics is{
θ̈ + 2Γθrθṙθ̇ = 0

r̈ + Γrθθ
(
θ̇
)2

= 0.

Further, the Gauss curvature of g at a point (θ, r) is equal to

(5.1) k(r) = −m
(2)(r)

m(r)
.

We assume that k > 0, so that m is strictly concave. We define r as the unique
value r such that m(1)(r) = 0, and we assume that m(3)(r) = 0, so that k(1)(r) = 0.
We write k = k(r).

Let γ : R+ → S2 be the unit-speed geodesic starting at θ = 0 in the θ-direction:

γ(t) = (t, r).

We shall study variations of γ. First of all, since the curvature is constant along γ,
the functions f0, f1 introduced in (1.1) are given by

(5.2) f0(t) =
sin(
√
kt)√
k

, f1(t) = cos(
√
kt).

Next, let γα be the geodesic starting at p = γ(0) with velocity σα = (cosα, sinα).
From (5.2) we deduce

∂γα
∂α

∣∣∣∣
α=0

=

(
0,

sin(
√
kt)√
k

)
.

Then

(5.3)
∂k

∂α

∣∣∣∣
α=0

= 0

∂2k

∂α2

∣∣∣∣
α=0

=
〈

(∇2k)
∂γα
∂α

,
∂γα
∂α

〉
(5.4)

=
(
m(2)(r)2 −m(4)(r)m(r)

) sin2(
√
kt)

k
.
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Differentiating the Jacobi equation, we obtain

∂2

∂t2

(
∂fi
∂α

)
+ k

(
∂fi
∂α

)
= 0

∂2

∂t2

(
∂2fi
∂α2

)
+ k

(
∂2fi
∂α2

)
= −

(
∂2k

∂α2

)
fi.

We deduce
∂fi(t)

∂α
= 0

∂2fi(t)

∂α2
=

(∫ t

0

K(s) f1(s) fi(s) ds

)
f0(t)−

(∫ t

0

K(s) f0(s) fi(s) ds

)
f1(t),

where the function K is defined as

(5.5) K(s) :=
(
m(4)(r̄)m(r̄)−m(2)(r̄)2

) sin2
(√

k̄s
)

k̄
.

Let us assume

(5.6) m(r) = 1,

so that the matrix of the metric at (θ, r) in the basis (∂θ, ∂r) is the identity. Then
we can apply (1.10) to compute the MTW curvature along γ. (Recall that F = f1

f0
.)

The expression simplifies when

t =
π

2
√
k̄

=: t,

since then ḟ0(t) = f1(t) = 0. Hence

2

3
S(p̄,tσ0)(ξ, ξ

⊥) = Aξ4
1 + C ξ2

1ξ
2
2 + E ξ4

2 ,(5.7)

where

(5.8)



A =
2

t
2 −

2F
t

=
2

t
2

C =
5

f 2
0

− 6

t
2 +

f1

tf0

− F
′′

t
= 5 k̄ − 6

t
2 −
F ′′

t

E =
2

f 2
0

− 2tḟ0

f 3
0

= 2 k̄,
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with

F ′′(t) =
f ′′1 (t)

f0(t)
(5.9)

=
1

k̄

(
m(4)

(
r̄
)
m
(
r̄
)
−m(2)

(
r̄
)2
)∫ t

0

sin2
(√

k̄s
)

cos2
(√

k̄s
)
ds.

This expression is well suited to the construction of counterexamples: for that
it is sufficient to devise the function m in such a way that F ′′ is very large near
focalization.

In practice, it is convenient to consider the metric as induced by a graph. Let
F : [−a, a] → R+ be a smooth function satisfying F (−a) = F (a) = 0, F > 0 on
(−a, a); then we may “rotate” the graph (z = F (x)) along the x-axis, thus sweeping
a two-dimensional surface which is isometric to (S2, g) with

g = mF (r)2 dθ2 + dr2,

where mF is determined by the identity

∀x ∈ [−a, a], mF (r(x)) = F (x), r(x) =

∫ x

−a

√
1 + F (1)(u)2 du.

We assume F (0) = 1, F (1)(0) = F (3)(0) = 0, and define r =
∫ 0

−a

√
1 + (F (1))2. Then

mF (r̄) = 1

m
(1)
F

(
r̄
)

= 0

m
(2)
F

(
r̄
)

= F (2)(0)

m
(3)
F

(
r̄
)

= 0

m
(4)
F

(
r̄
)

= F (4)(0)− 4F (2)(0)3,

(5.10)

and we can apply (5.8).

5.2. Ellipsoids of revolution. Let
(
Eε
)

be an ellipsoid of revolution (of parameter
ε > 0) given in R3 by the equation

x2

ε2
+ y2 + z2 = 1.(5.11)

In the formalism of the previous subsection, this is the surface defined by rotating
the graph of the function Fε : [−ε, ε]→ R+ defined by

Fε(x) =

√
1−

(x
ε

)2

.(5.12)
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Ellipsoid
(
Eε
)

with ε = 0.29

Then

(5.13) Fε(0) = 1, F (1)
ε (0) = 0, F (2)

ε (0) = − 1

ε2
, F (3)

ε (0) = 0, F (4)
ε (0) = − 3

ε4
.

So all the computations in the preceding subsection apply with m = mFε . The
curvature along γ is k = 1/ε2, the focalization time along that geodesic is t = πε,
and we can compute the various terms in (5.7) for t = πε/2 :∫ πε

2

0

sin2(s/ε) cos2(s/ε) ds =
π ε

16
,

m(4)(r)m(r)−m(2)(r̄)2 =
4

ε4

(
1

ε2
− 1

)
,

(5.14)



A =
8

π2ε2

C =
5

ε2
− 24

π2ε2
− 1

2 ε4
+

1

2 ε2

E =
2

ε2
.
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Therefore the MTW condition is violated as soon as −C > 2
√
AE, or equivalently

1

2 ε4
− 1

2 ε2
− 5

ε2
+

24

π2ε2
>

8

π ε2
.

This is equivalent to

1−
(

11− 48

π2
+

16

π

)
ε2 > 0,

which in turn holds for

ε <
1√

11− 48
π2 + 16

π

∼ 0.2984.

Thanks to a classical result of Klingenberg on even-dimensional Riemannian man-
ifolds [20], we know that the injectivity and the conjugate radius coincide. Since
along our geodesic the curvature is maximal (this can be easily checked by an explicit
computation), we easily deduce that tC(γ̇(0)) = tF (γ̇(0)); in particular t < tC(γ̇(0)).
Hence, invoking for instance [28, Theorem 12.44], we deduce an extremely strong
negative result as regards the smoothness of optimal transport:

Corollary 5.1. If Eε is the ellipsoid of revolution defined by (5.11) with ε ≤ 0.29,
then there are C∞ positive probability densities f, g on Eε such that the solution T
of the optimal transport between µ(dx) = f(x) vol (dx) and ν(dy) = g(y) vol (dy),
with transport cost d2, is discontinuous.

5.3. Another counterexample to regularity. The previous subsection has shown
that the MTW condition does not like variations of curvature. In this subsection we
shall present another illustration of this phenomenon, by considering two half-balls
joined by a cylinder. Set

C =
{

(x, y, z) ∈ R3 | x2 + y2 = 1, z ∈ [−1, 0]
}
,

S+ =
{

(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0
}

and S− =
{

(x, y, z) ∈ R3 | x2 + y2 + (z + 1)2 = 1, z ≤ −1
}
.

Let us denote by M the cylinder with boundary defined by

M = C ∪ S+ ∪ S−.
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The nonsmooth surface M

This submanifold of R3 is not C∞, but it is sufficiently smooth to define an ex-
ponential mapping and the concept of regular costs. We denote by d the geodesic
distance on M and consider as usual the cost c = d2.

We set

A = (0,−1,−1), and B = (0,−1, 0).

If v = (v1, 0, v3) is a unit vector in TAM with v3 6= 0, then the geodesic γ starting
from A with initial speed v is given by

γ(t) =
(

cos
(
at− π

2

)
, sin

(
at− π

2

)
, bt− 1

)
if t ∈

[
0,

1

v3

]
,
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and γ(t) = cos

(
t− 1

v3

)(
cos

(
−π

2
+
v1

v3

)
, sin

(
−π

2
+
v1

v3

)
, 0

)
+

sin

(
t− 1

v3

)(
−v1 sin

(
−π

2
+
v1

v3

)
, v1 cos

(
−π

2
+
v1

v3

)
, v3

)
for t ≥ 1

v3

small enough.

In the sequel, given a unit vector v = (v1, 0, v3) ∈ TAM and l > 0, we denote by
B(v, l) the end-point of the geodesic starting from A with initial speed v and of
length l. We set

η =

1
0
1

 , V (s) =

0
0
1

+ sη, v(s) =
1

l(s)

 s
0

1 + s

 , l(s) =
√

1 + 2s2 + 2s.

Given s > 0, we set

B− = B(v(−s), l(−s)) and B+(s) = B(v(s), l(s)).

Then we have

B− =
(

cos
(
v1(−s) l(−s)− π

2

)
, sin

(
v1(−s) l(−s)− π

2

)
, v3(−s) l(−s)− 1

)
and B+ =(

cos

(
l(s)− 1

v3(s)

)
sin

(
v1(s)

v3(s)

)
+ v1(s) sin

(
l(s)− 1

v3(s)

)
cos

(
v1(s)

v3(s)

)
,

− cos

(
l(s)− 1

v3(s)

)
cos

(
v1(s)

v3(s)

)
+ v1(s) sin

(
l(s)− 1

v3(s)

)
sin

(
v1(s)

v3(s)

)
,

sin

(
l(s)− 1

v3(s)

)
v3(s)

)
.

By construction,

c(A,B) = 1,

c(A,B−) = l(−s)2 = 1 + 2s2 − 2s,

c(A,B+) = l(s)2 = 1 + 2s2 + 2s.

Let X ∈M be a point given by (θ, z) in cylindrical coordinates, that is

X = (cos(θ), sin(θ), z) .
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Then we have

c(X,B) =
(
θ +

π

2

)2

+ z2,

c(X,B−) =
(
θ +

π

2
− v1(−s) l(−s)

)2

+
(
z + 1− v3(−s) l(−s)

)2

,

Therefore,

∆ = c(A,B)− c(X,B) = 1−
(
θ +

π

2

)2

− z2,

and

∆− = c(A,B−)− c(X,B−)

= l(−s)2 −
(
θ +

π

2
− v1(−s) l(−s)

)2

−
(
z + 1− v3(−s) l(−s)

)2

=

[
1−

(
θ +

π

2

)2

− z2

]
+ 2s2 − 2s− v1(−s)2 l(−s)2 + 2

(
θ +

π

2

)
v1(−s) l(−s)

−
(

1− v3(−s) l(−s)
)2

− 2z
(

1− v3(−s) l(−s)
)

= ∆ + 2
(
θ +

π

2

)
v1(−s) l(−s) + 2(1 + z)

(
v3(−s) l(−s)− 1

)
.

We compute easily

l(s) = 1 + s+ s3 − 7s4 + 114s5 + o(s5)

v1(s) = s− s2 + s3 − 2s4 + 10s5 + o(s5)

v3(s) = 1− s3 + 8s4 − 8s5 + o(s5)

v1(s)/v3(s) = s− s2 + s3 − s4 + s5 + o(s5)

cos(v1(s)/v3(s)) = 1− s2/2 + s3 − (35/24)s4 + 11s5/6 + o(s5)

sin(v1(s)/v3(s)) = s− s2 + (5/6)s3 − s4/2 + 61s5/120 + o(s5)

l(s)− 1/v3(s) = s+ s4 + 106s5 + o(s5)

cos(l(s)− 1/v3(s)) = 1− s2/2 + s4/24− s5 + o(s5)

sin(l(s)− 1/v3(s)) = s− s3/6 + s4 +
(

106 +
1

120

)
s5 + o(s5)

Let α(s) > 0 be such that the point

Xα =
(

cos
(
α− π

2

)
, cos

(
α− π

2

)
,−1− α

)
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has the same first two coordinates as B+. In this way, we have

cos
(
α− π

2

)
=

cos
(
l(s)− 1

v3(s)

)
sin
(
v1(s)
v3(s)

)
+ v1(s) sin

(
l(s)− 1

v3(s)

)
cos
(
v1(s)
v3(s)

)
√

cos2
(
l(s)− 1

v3(s)

)
+ v1(s)2 sin2

(
l(s)− 1

v3(s)

) .

Also

(5.15) c(Xα, B
+) =

((
1 + α

)
+ arcsin

(
v3(s) sin

(
l(s)− 1

v3(s)

)))2

.

Since
α(s) = s+ s4/3 + 23s5/60 + o(s5),

(5.15) implies

c(Xα, B
+) = 1 + 4s+ 4s2 + 2s4/3 +

(21

10
+ 228

)
s5 + o(s5),

and

∆+ = c(A,B+)− c(Xα, B
+)

= −2s− 2s2 − 2s4/3−
(21

10
+ 228

)
s5 + o(s5).

We check that

∆ = −2s− 2s2 − 2s4/3−
(5

6
+

4

3

)
s5 + o(s5) > ∆+,

and
∆− = ∆.

Given s small enough and fixed, we can approximate Xα(s) by X such that

c(A,B)− c(X,B) > max
{
c(A,B−)− c(X,B−), c(A,B+)− c(X,B+)

}
.

This inequality shows that the cost c is not regular [28, Chapter 12]. Now let us
regularize M into a smooth surface M ′; this can be done in such a way that the Gauss
curvature of M ′ takes values in [0, 1]. Then by a classical result of Klingenberg [21]
we have tC ≥ π throughout the unit tangent bundle of M ′. Since d(A,B) = 1 < π,
we can include A and X into a region Ω, and B,B+, B− in an open set Λ, such
that for any x ∈ Ω, the convex hull of logx Λ stays away from TCL(x); and for any
y ∈ Λ, the convex hull of logy Ω stays away from TCL(y). For small values of the
regularization parameter, the squared distance is not regular Ω × Λ ⊂ M ′ ×M ′,
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otherwise we could pass to the limit (as in [29]) to deduce the same property for
the limit M . Then we can apply the method of Loeper [22] [28, Proof of Theorem
12.36] to show that M ′ does not satisfy the MTW condition.

Appendix: On the Riemannian cut locus of surfaces

A.1. Generalities. Let M be a smooth, compact, connected n-dimensional Rie-
mannian manifold equipped with a Riemannian metric 〈·, ·〉 and a geodesic distance
d. We recall that d : M ×M → R is defined by

d(x, y)2 = inf

{∫ 1

0

|γ̇(t)|2 dt | γ ∈ Lip([0, 1];M), γ(0) = x, γ(1) = y

}
.

Let x ∈ M be fixed, we denote by dx = d(x, ·) the distance to the point x. The
function dx is locally semiconcave on M \ {x}. We denote by Σx the singular set of
d2
x (or equivalently of dx in M \ {x}), that is

Σx =
{
y ∈M ; d2

x not differentiable at y
}
.

Since the function dx is locally semiconcave, thanks to Rademacher’s Theorem, it is
differentiable almost everywhere. For every y ∈ M , we call limiting gradient of dx
at y the subset of TyM defined as

D∗dx(y) =
{
w ∈ TyM ; ∃wk → w s.t. wk = ∇dx(yk), yk → y

}
.

For every y ∈ M \ {x}, there is a one-to-one correspondence between D∗dx(y) and
the set of minimizing geodesics joining x to y: for every w ∈ D∗dx(y), there is a
minimizing geodesic γ : [0, 1] → R joining x to y such that γ̇(1) = d(x, y)w. Then
we have

Σx =
{
y ∈M ; ∃v 6= v′ ∈ TCL(x) s.t. expx(v) = expx(v

′) = y
}
.

We denote by Jx the set

Jx =
{

expx(v); v ∈ TCL(x) s.t. dv expx is singular
}

= fcut(x).

We notice that if y ∈ Σx is such that the set D∗dx(y) is infinite, then it belongs to
Jx. The following result holds [1]:

Proposition A.2. If M is a compact Riemannian manifold, then for any x ∈ M
we have

cut(x) = Σx = Σx ∪ Jx.
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In the sequel, we shall say that a point y ∈ cut(x) (or by abuse of language that
the tangent vector v = exp−1

x (y) is purely focal) if y does not belong to Σx, that is if
the function dx is differentiable at y. We denote by J0

x the set of purely focal points.
In particular, we have

cut(x) = Σx = Σx ∪ J0
x .

A.2. Cut loci on surfaces. Let M be a smooth, compact, connected Riemannian
surface equipped with a Riemannian metric 〈·, ·〉 and x ∈ M be fixed. For every
y ∈M , we call generalized gradient of dx at y, the convex subset of TyM defined by

∂dx(y) = conv (D∗dx(y)) .

The set ∂dx(y) being convex, it has dimension 0, 1 or 2. In fact, given y 6= x, the
function dx is differentiable at y if and only ∂dx(y) has dimension 0. We set for
i = 1, 2,

Σi
x =

{
y ∈M \ {x} ; dim(∂dx(y)) = i

}
.

Proposition A.3. The set Σ2
x is discrete, and Σ1

x is countably 1-rectifiable.

We stress that Σ2
x is not necessarily a closed set, as it may have accumulation

points which do not belong to Σ2
x. The following proposition on the propagation of

singularities will be useful:

Proposition A.4. Let y ∈ Σx, p0 ∈ ∂dx(y) \D∗dx(y), and q ∈ TyM \ {0} such that

〈q, p− p0〉y ≥ 0, ∀ p ∈ ∂dx(y).

Then there exists a Lipschitz arc y : [0, ε]→M such that ẏ(0) = q and

y(s) ∈ Σx, ∀ s ∈ [0, ε].

The above two results can be found in [1].

A.3. On focal velocities in dimension 2. We assume from now on that 〈·, ·〉 is
a given Riemannian metric on a smooth compact surface M . Let x ∈ M be fixed,
we denote by S1

x the unit sphere in TxM , that is

S1
x = {v ∈ TxM ; |v|x = 1} .

We define the focal function (at x) and the cut function (at x) by

tF = tF (x, ·) : v ∈ S1
x 7−→ tF (x, v) and tC = tC(x, ·) : v ∈ S1

x 7−→ tC(x, v)

The function tF is smooth on S1
x (its domain), while tC is Lipschitz. For every pair

v 6= v′ ∈ S1
x with v close to v′, we denote by I(v, v′) the shortest of the two curves

in S1
x which joins v to v′.
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Lemma A.5. There is ε > 0 such that for every pair v 6= v′ ∈ S1
x satisfying

|v′− v|x < ε and expx(tC(v)v) = expx(tC(v′)v′), there is v̄ ∈ I(v, v′) such that either
tC(v̄)v̄ is purely focal (that is D∗dx(expx(tC(v̄)v̄) is a singleton), or v̄ is focal and
t′F (v̄) = 0.

Proof of Lemma A.5. There is ε > 0 such that for any v 6= v′ ∈ S1
x with |v′−v|x < ε,

if we denote by γ, γ′ the two minimizing geodesics with constant speed tC(v) = tC(v′)
joining x to the point

y = expx(tC(v)v) = expx(tC(v′)v′),

then the set C = γ([0, 1]) ∪ γ′([0, 1]) separates M into two connected components.
Moreover, we can also assume that for each velocity w in the small interval I(v, v′),
any point expx(tw) with t ∈ (0, tC(w)) belongs to the smallest component O. Let
v, v′ ∈ S1

x with |v′ − v|x < ε be fixed. Denote by v̄ a speed in I(v, v′) such that

tC(w) ≥ tC(v̄) ∀w ∈ I(v, v′).

We claim that either v̄ is purely focal, or that v̄ is focal and satisfies t′F (v̄) = 0.
Indeed, assume that v̄ is not purely focal. Set y = expx(tC(v̄)v̄), and note that y
belongs to O∩Σx. By Proposition A.4, there is no p0 ∈ ∂dx(y) \D∗dx(y) and q 6= 0
such that

〈q, p− p0〉 ≥ 0, ∀ p ∈ ∂dx(y),

and such that the Lipschitz curve given by Proposition A.4 makes the function
dx strictly decreasing. This means that there is necessarily a non-constant curve
w : [0, 1] 7→ D∗dx(y) such that w(1) = w̄, where w̄ is the velocity at time tC(v̄) of
the minimizing geodesic starting at x with speed v̄. For every t close to 1, denote by
vt the speed in S1

x such that expx(tC(vt)vt) = expx(tC(v̄)) and such that the speed
of the minimizing geodesic starting at x with speed vt has the velocity w(t) at time
s = tC(v̄). Any vt is focal and satisfies tF (vt) = tF (v̄) = tC(v̄). This shows that v̄ is
focal and that t′F (v̄) has to be zero. �

To our knowledge, the following result and its corollary are new.

Proposition A.6. Let v ∈ S1
x be such that tC(v) = tF (v). Then t′F (v) = 0.

For the proof we shall use the following lemma from [1]. Here, · will denote the
Euclidean scalar product in Rn.

Lemma A.7. Let Ω be an open subset of Rn and F : Ω → Rn a map of class C2.
Let z̄ ∈ Ω be such that DF (z̄) has rank n− 1. Set ȳ = F (z̄), let θ be a generator of
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Ker DF (z̄) and w̄ be a nonzero vector orthogonal to Im DF (z̄). Suppose that

∂2F

∂θ2
(z̄) · w̄ > 0.

Then there exist ρ, σ > 0 such that the equation

F (z) = ȳ + sw, z ∈ B(z̄, ρ),

has no solution if −σ < s < 0.

Proof of Proposition A.6. Without loss of generality, we may assume that the metric
〈·, ·〉 in TxM is given by the Euclidean metric. In this way, we can see a speed v ∈ S1

x

as an angle on S1. Define F : R2 → S2 by

F (θ, r) = expx(r cos θ, r sin θ).

(Up to a change of coordinates, we may indeed assume that F is valued in R2.) By
construction of the focal function tF , for all θ we have

∂F

∂θ
(θ, tF (θ)) = 0,

therefore
∂2F

∂θ2
(θ, tF (θ)) + t′F (θ)

∂2F

∂θ ∂r
(θ, tF (θ)) = 0

Since ∂2F
∂θ∂r

(θ, tF (θ)) never vanishes, we have to show that

∂2F

∂θ2
(θ, tF (θ)) = 0,

for every θ such that tC(θ) = tF (θ). Let θ̄ be fixed such that tC(θ̄) = tF (θ̄). Argue
by contradiction and assume that

∂2F

∂θ2
(θ̄, tF (θ̄)) 6= 0,

Set z̄ = (θ̄, tC(θ̄)) and ȳ = F (z̄). Two cases may appear.

Case 1: ȳ ∈ J0
x

By Lemma A.7, there is a small ball B(z̄, ρ) such that the equation

F (z) = ȳ + sw

has no solution for small negative s. Therefore, for each s = −1/k with k ∈ N,
there is a minimizing geodesic γk : [0, 1]→M joining x to the point ȳ + skw whose
initial speed vk does not belong to B(z̄, ρ). Taking the limit as k → +∞, we obtain
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a minimizing geodesic γ̄ : [0, 1] → M joining x to ȳ with initial speed v̄ /∈ B(z̄, ρ).
This contradicts the fact that ȳ is purely focal.

Case 2: ȳ ∈ Jx \ J0
x

Denote by V the set of θ ∈ S1 such that F (θ, tC(θ)) = ȳ. Two cases may appear.

Subcase 2.1: θ̄ is isolated in V .
Thus the minimizing geodesic γ̄ : [0, 1] → M joining x to z̄ is isolated among the
set of minimizing geodesics joining x to ȳ. Therefore, we can modify the Riemann-
ian metric outside a neighborhood of γ̄([0, 1]) in such a way that γ̄ becomes the
unique minimizing geodesic between x and ȳ. Since the modification of the metric
has been done far from γ̄, the function tF and the new focal function t̂F coincide in
a neighborhood of θ̄ which is purely conjugate. By Case 1, we obtain that t′F (θ̄) = 0.

Subcase 2.2: θ̄ is not isolated in V .
Thus there is a sequence {θk} in V converging to θ̄. By Lemma A.5, this yields a
sequence {θ′k} converging to θ̄ such that each θ′k is either purely focal or such that
t′F (θ′k) = 0. In any case, thanks to Case 1 above and the continuity of t′F , one has
t′F (θ̄) = 0. �

We deduce as a consequence of Proposition A.6 an improvement of the classical
result H1

(
J0
x

)
= 0, as follows:

Corollary A.8. The set Jx has zero Hausdorff dimension.

Proof. Consider the smooth map Ψ : v ∈ S1
x 7→ exp(tF (v)v). Any v ∈ TFCL(x) is a

critical point of Ψ. We conclude by Sard’s Theorem. �

Remark A.9. In fact, a generalization of Corollary A.8 holds in any dimension:
the set Jx has Hausdorff dimension at most n− 2; see [12].
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