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SUP × INF INEQUALITIES FOR THE SCALAR CURVATURE EQUATION IN DIMENSIONS 4 AND 5

We consider the following problem on bounded open set Ω of R n :

in Ω. We assume that :

then, we have a sup × inf inequality for the solutions of the previous equation, namely:

and,

a, b, A, B, K, Ω), for n = 5, and β = 1.

INTRODUCTION AND MAIN RESULT

We work on Ω ⊂⊂ R 4 and we consider the following equation:

-∆u = V u n+2 n-2 in Ω ⊂ R n , n = 4, 5, u > 0 in Ω. (E)
with,

         V ∈ C 1,β (Ω), 0 < a ≤ V ≤ b < +∞ in Ω, |∇V | ≤ A in Ω, |∇ 1+β V | ≤ B in Ω. (C β )
Without loss of genarality, we suppose Ω = B 1 (0) the unit ball of R n . The corresponding equation in two dimensions on open set Ω of R 2 , is:

-∆u = V (x)e u , (E ′ ) The equation (E ′ ) was studied by many authors and we can find very important result about a priori estimates in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF]. In particular in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] we have the following interior estimate:

sup K u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , inf Ω u, K, Ω).
And, precisely, in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], and [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], we have:

C sup K u + inf Ω u ≤ c = c(inf Ω V, ||V || L ∞ (Ω) , K, Ω),
and,

1 sup K u + inf Ω u ≤ c = c(inf Ω V, ||V || C α (Ω) , K, Ω).
where K is a compact subset of Ω, C is a positive constant which depends on inf Ω V sup Ω V , and, α ∈ (0, 1].

For n ≥ 3 we have the following general equation on a riemannian manifold:

-∆u + hu = V (x)u n+2 n-2 , u > 0. (E n )
Where h, V are two continuous functions. In the case c n h = R g the scalar curvature, we call V the prescribed scalar curvature. Here c n is a universal constant.

The equation (E n ) was studied a lot, when M = Ω ⊂ R n or M = S n see for example, [START_REF] Bahoura | Majorations du type sup u × inf u ≤ c pour l'équation de la courbure scalaire sur un ouvert de R n , n ≥ 3[END_REF][START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF][START_REF] Bahoura | Lower bounds for sup+inf and sup × inf and an extension of Chen-Lin result in dimension 3[END_REF], [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF], [START_REF] Yy | Prescribing scalar curvature on Sn and related Problems[END_REF]. In this case we have a sup × inf inequality.

In the case V ≡ 1 and M compact, the equation (E n ) is Yamabe equation. T.Aubin and R.Schoen proved the existence of solution in this case, see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF] and [START_REF] Lee | The Yamabe problem[END_REF] for a complete and detailed summary.

When M is a compact Riemannian manifold, there exist some compactness result for equation (E n ) see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF]. Li and Zhu see [START_REF] Yy | Yamabe Type Equations On Three Dimensional Riemannian Manifolds[END_REF], proved that the energy is bounded and if we suppose M not diffeormorfic to the three sphere, the solutions are uniformly bounded. To have this result they use the positive mass theorem. Now, if we suppose M Riemannian manifold (not necessarily compact) and V ≡ 1, Li and Zhang [START_REF] Yy | A Harnack type inequality for the Yamabe equation in low dimensions[END_REF] proved that the product sup × inf is bounded. On other handm see [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF], [START_REF] Bahoura | Estimations uniformes pour l'quation de Yamabe en dimensions 5 et 6[END_REF] and [START_REF] Bahoura | sup × inf inequality on manifold of dimension 3[END_REF] for other Harnack type inequalities, and, see [START_REF] Bahoura | Harnack inequalities for Yamabe type equations[END_REF] and [START_REF] Brezis | Some nonlinear elliptic equations have only constant solutions[END_REF] about some caracterisation of the solutions of this equation (E n ) in this case (V ≡ 1).

Here we extend a result of [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF] on an open set of R n , n = 4, 5. In fact we consider the prescribed scalar curvature equation on an open set of R n , n = 4, 5, and, we prove a sup × inf inequality on compact set of the domain when the derivative of the prescribed scalar curvature is β-holderian, β > 0.

Our proof is an extension of Chen-Lin result in dimension 4 and 5, see [START_REF] Chen | Estimates of the conformal scalar curvature equation via the method of moving planes[END_REF] , and, the movingplane method is used to have this estimate. We refer to Gidas-Ni-Nirenberg for the moving-plane method, see [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. Also, we can see in [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], one of the application of this method.

We have the following result in dimension 4, which is the consequence of the work of Chen-Lin.

Theorem A. For all a, b, m, A, B > 0, and for all compact K of Ω, there exists a positive constant c = c(a, b, A, B, K, Ω) such that:

sup K u × inf Ω ≤ c, where u is solution of (E) with V , C 2 satisfying (C β ) for β = 1.
Here, we give an inequality of type sup × inf for the equation (E) in dimension 4 and with general conditions on the prescribed scalar curvature, exactly we take a C 1,β condition. In fact we extend the result of Chen-Lin in dimension 4.

Here we prove: Theorem 1.1. . For all a, b, A, B > 0, 1 ≥ β > 0, and for all compact K of Ω, there exists a positive constant c = c(a, b, A, B, β, K, Ω) such that:

(sup K u) β × inf Ω u ≤ c,
where u is solution of (E) with V satisfying (C β ).

We have the following result in dimension 5, which is the consequence of the work of Chen-Lin.

Theorem B. For all a, b, m, A, B > 0, and for all compact K of Ω, there exists a positive constant c = c(a, b, m, A, B, K, Ω) such that:

sup K u ≤ c, if inf Ω u ≥ m,
where u is solution of (E) with V satisfying (C β ) = (C 1 ) for β = 1.

Here, we give an inequality of type sup × inf for the equation (E) in dimension 5 and with general conditions on the prescribed scalar curvature, exactly we take a C 2 condition (β = 1 in (C β )). In fact we extend the result of Chen-Lin in dimension 5.

Here we prove: Theorem 1.2. . For all a, b, A, B > 0, and for all compact K of Ω, there exists a positive constant c = c(a, b, A, B, K, Ω) such that:

(sup K u) 1/3 × inf Ω u ≤ c,
where u is solution of (E) with V satisfying (C β ) for β = 1.

THE METHOD OF MOVING-PLANE.

In this section we will formulate a modified version of the method of moving-plane for use later.

Let Ω an open set and Ω c the complement of Ω. We consider a solution u of the following equation:

∆u + f (x, u) = 0, u > 0, (E ′′ )
where f (x, u) is nonegative, Holder continuous in x, C 1 in u, and defined on Ω × (0, +∞). Let e be a unit vector in R n . For λ < 0, we let

T λ = {x ∈ R n , x, e = λ}, Σ λ = {x ∈ R n ,
x, e > λ}, and x λ = x + (2λ -2 x, e )e to denote the reflexion point of x with respect to T λ , where ., . is the standard inner product of R n . Define:

λ 1 ≡ sup{λ < 0, Ω c ⊂ Σ λ }, Σ ′ λ = Σ λ -Ω c for λ ≤ λ 1 , and Σ′ λ the closure of Σ ′ λ . Let u λ (x) = u(x λ ) and w λ (x) = u(x) -u λ (x) for x ∈ Σ ′
λ . Then we have, for any arbitrary function b λ (x),

∆w λ (x) + b λ (x)w λ (x) = Q(x, b λ (x)), where, Q(x, b λ (x)) = f (x λ , u λ ) -f (x, u) + b λ (x)w λ (x).
The hypothesis ( * ) is said to be satisfied if there are two families of functions b λ (x) and h λ (x) defined in Σ ′ λ , for λ ∈ (-∞, λ 1 ) such that, the following assertions holds:

0 ≤ b λ (x) ≤ c(x)|x| -2
, where c(x) is independant of λ and tends to zero as |x| tends to +∞,

h λ (x) ∈ C 1 (Σ λ ∩ Ω),
and satisfies:

∆h λ (x) ≥ Q(x, b λ (x)) in Σ λ ∩ Ω h λ (x) > 0 in Σ λ ∩ Ω in the distributional sense and, h λ (x) = 0 on T λ and h λ (x) = O(|x| -t1 ),
as |x| → +∞ for some constant t 1 > 0,

h λ (x) + ǫ < w λ (x),
in a neighborhood of ∂Ω, where ǫ is a positive constant independant of x.

  

  h λ (x) and ∇ x h λ are continuous with respect to both variables x and λ, and for any compact set of Ω, w λ (x) > h λ (x) holds when -λ is sufficiently large. We have the following lemma:

Lemma 2.1. Let u be a solution of (E ′′ ). Suppose that u(x) ≥ C > 0 in a neighborhood of ∂Ω and u(x) = O(|x| -t2
) at +∞ for some positive t 2 . Assume there exist b λ (x) and h λ (x) such that the hypothesis ( * ) is satisfied for λ ≤ λ 1 . Then w λ (x) > 0 in Σ ′ λ , and ∇u, e > 0 on T λ for λ ∈ (-∞, λ 1 ).

For the proof see Chen and Lin, [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF].

Remark 2.2. If we know that w λ -h λ > 0 for some λ = λ 0 < λ 1 and b λ and h λ satisfy the hypothesis ( * ) for λ 0 ≤ λ ≤ λ 1 , then the conclusion of the lemma 2.1 holds.

PROOF OF THE RESULT:

Proof of the theorem 1, n = 4 :

To prove the theorem, we argue by contradiction and we assume that the (sup) β × inf tends to infinity.

Step 1: blow-up analysis We want to prove that:

R2 ( sup B R (0) u) β × inf B 3 R (0) u ≤ c = c(a, b, A, B, β),
If it is not the case, we have:

R2 i ( sup B Ri (0) u i ) β × inf B 3 Ri (0) u i = i 6 → +∞,
For positive solutions u i > 0 of the equation (E) and Ri → 0. Thus,

1 i Ri ( sup B Ri (0) u i ) (1+β)/2 → +∞,
and,

1 i Ri [ sup B Ri (0) u i ] (1+β)/2 → +∞,
Let a i such that:

u i (a i ) = max B Ri (0) u i ,
We set,

s i (x) = ( Ri -|x -a i |) 2/(1+β) u i (x),
we have,

s i (x i ) = max B Ri (ai) s i ≥ s i (a i ) = R2/(1+β) i sup BR i (0) u i → +∞,
we set, 1+β) .

R i = 1 2 ( Ri -|x i -a i |), We have, for |x -xi | ≤ R i i , Ri -|x -a i | ≥ Ri -|x i -a i | -|x -a i | ≥ 2R i -R i = R i Thus, u i (x) u i (x i ) ≤ β i ≤ 2 2/(
with β i → 1.
We set,

M i = u i (x i ), v * i (y) = u i (x i + M -1 i y) u i (x i ) , |y| ≤ 1 i R i M (1+β)/2 i = 2L i .
And,

1 i 2 R i 2 M β i × inf B 3 Ri (0) u i → +∞,
By the elliptic estimates, v * i converge on each compact set of R 4 to a function U * 0 > 0 solution of :

-∆U * 0 = V (0)U * 0 3 in R 4 , U * 0 (0) = 1 = max R 4 U * 0 .
For simplicity, we assume that 0 < V (0) = n(n -2) = 8. By a result of Caffarelli-Gidas-Spruck, see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we have:

U * 0 (y) = (1 + |y| 2 ) -1 . We set, v i (y) = v * i (y + e)
, where v * i is the blow-up function. Then, v i has a local maximum near -e.

U 0 (y) = U * 0 (y + e). We want to prove that:

min {0≤|y|≤r} v * i ≤ (1 + ǫ)U * 0 (r). for 0 ≤ r ≤ L i , with L i = 1 2i R i M (1+β)/2 i .
We assume that it is not true, then, there is a sequence of number r i ∈ (0, L i ) and ǫ > 0, such that:

min {0≤|y|≤ri} v * i ≥ (1 + ǫ)U * 0 (r i ).
We have:

r i → +∞.
Thus , we have for r i ∈ (0, L i ) :

min {0≤|y|≤ri} v i ≥ (1 + ǫ)U 0 (r i ).
Also, we can find a sequence of number l i → +∞ such that:

||v * i -U 0 || C 2 (B l i (0)) → 0. Thus, min {0≤|y|≤li} v i ≥ (1 -ǫ/2)U 0 (l i ).
Step 2 : The Kelvin transform and the Moving-plane method

Step 2.1: a linear equation perturbed by a term, and, the auxiliary function

Step 2.1.1:

D i = |∇V i (x i )| → 0.
We have the same estimate as in the paper of Chen-Lin. We argue by contradiction. We consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M (1+β)/2 i .
We use the assumption that the sup times inf is not bounded to prove w λ > h λ in Σ λ = {y, y 1 > λ}, and on the boundary.

The function v i has a local maximum near -e and converge to U 0 (y) = U * 0 (y + e) on each compact set of R 5 . U 0 has a maximum at -e.

We argue by contradiction and we suppose that:

D i = |∇V i (x i )| → 0.
Then, without loss of generality we can assume that:

∇V i (x i ) → e = (1, 0, ...0).
Where x i is :

x i = xi + M -1
i e, with xi is the local maximum in the blow-up analysis.

As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take the same notations):

I δ (y) = |y| |y| 2 -δe | |y| |y| 2 -δe| 2 , v δ i (y) = v i (I δ (y)) |y| n-2
|y -e/δ| n-2 , and,

V δ (y) = V i (x i + M -1 i I δ (y)). U δ (y) = U 0 (I δ (y)) |y| n-2 |y -e/δ| n-2 .
Then, U δ has a local maximum near e δ → -e when δ → 0. The function v δ i has a local maximum near -e.

We want to prove by the application of the maximum principle and the Hopf lemma that near e δ we have not a local maximum, which is a contradiction.

We set on Σ

′ λ = Σ λ -{y, |y -e δ | ≤ c0 ri } ≃ Σ λ -{y, |I δ (y)| ≥ r i }: h λ (y) = - Σ λ G λ (y, η)Q λ (η)dη.
with,

Q λ (η) = (V δ (η) -V δ (η λ ))(v δ i (η λ )) 3 .

And, by the same estimates, we have for η

∈ A 1 = {η, |η| ≤ R = ǫ 0 /δ}, V δ (η) -V δ (η λ ) ≥ M -1 i (η 1 -λ) + o(1)M -1 i |η λ |, and, we have for η ∈ A 2 = Σ λ -A 1 : |V δ (η) -V δ (η λ )| ≤ CM -1 i (|I δ (η)| + |I δ (η λ )|)
, And, we have for some λ 0 ≤ -2 and C 0 > 0:

w λ (y) = v δ i (y) -v δ i (y λ0 ) ≥ C 0 y 1 -λ 0 (1 + |y|) n , for y 1 > λ 0 .
Because , by the maximum principle:

min {li≤|I δ (y)|≤ri} v i = min{ min {|I δ (y)|=li} , v i min {|I δ (y)|=ri} v i } ≥ (1 -ǫ)U δ ( e δ ) ≥ (1 + c 1 δ -ǫ)U δ (( e δ ) λ ) ≥ (1 + c 1 δ -2ǫ)v δ i (y λ ), and for |I δ (y)| ≤ l i we use the C 2 convergence of v δ i to U δ .
Thus,

w λ (y) > 2ǫ > 0,
By the same estimates as in Chen-Lin paper (we apply the lemma 2.1 of the second section), and by our hypothesis on v i , we have:

0 < h λ (y) = O(1)M -1 i (y 1 -λ)(1 + |y|) -n < 2ǫ < w λ (y)
. also, we have the same etimate on the boundary, |I δ (η)| = r i or |y -e/δ| = c 2 r -1 i :

Step 2.1.1:

|∇V i (x i )| 1/β [u i (x i )] ≤ C
Here, also, we argue by contradiction. We use the same computation as in Chen-Lin paper, we choose the same h λ , except the fact that here we use the computation with M -(1+β) i in front the regular part of h λ .

Here also, we consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M (1+β)/2 i .
We argue by contradiction and we suppose that:

M β i D i → +∞.
Then, without loss of generality we can assume that:

∇V i (x i ) |∇V i (x i )| → e = (1, 0, ...0).
We use the Kelvin transform twice and around this point and around 0.

h λ (y) = ǫr -2 i G λ (y, e δ ) - Σ λ G λ (y, η)Q λ (η)dη.
with,

Q λ (η) = (V δ (η) -V δ (η λ ))(v δ i (η λ )) 3 .

And, by the same estimates, we have for

η ∈ A 1 V δ (η) -V δ (η λ ) ≥ M -1 i D i (η 1 -λ) + o(1)M -1 i |η λ |,
and, we have for

η ∈ A 2 , |I δ (η)| ≤ c 2 M i D 1/β i , |V δ (η) -V δ (η λ )| ≤ CM -1 i D i (|I δ (η)| + |I δ (η λ )|), and for M i D 1/β i ≤ |I δ (η)| ≤ r i , |V δ (η) -V δ (η λ )| ≤ M -1 i D i |I δ (η)| + M -(1+β) i |I δ (η)| (1+β) ,
By the same estimates, we have for |I δ (η)| ≤ r i or |y -e/δ| ≥ c 3 r -1 i :

h λ (y) ≃ ǫr -2 i G λ (y, e δ )+c 4 M -1 i D i (y 1 -λ) |y| n +o(1)M -1 i D i (y 1 -λ) |y| n +o(1)M -(1+β) i G λ (y, e δ ).
with c 4 > 0.

And, we have for some λ 0 ≤ -2 and C 0 > 0:

v δ i (y) -v δ i (y λ0 ) ≥ C 0 y 1 -λ 0 (1 + |y|) n , for y 1 > λ 0 .
By the same estimates as in Chen-Lin paper (we apply the lemma 2.1 of the second section), and by our hypothesis on v i , we have: Step 2.2 conclusion : a linear equation perturbed by a term, and, the auxiliary function Here also, we use the computations of Chen-Lin, and, we take the same auxiliary function h λ (which correspond to this step), except the fact that here in front the regular part of this function we have M

0 < h λ (y) < 2ǫ < w λ (y).
-(1+β) i .
Here also, we consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M (1+β)/2 i .
We set,

v i (z) = v * i (z + e)
, where v * i is the blow-up function. Then, v i has a local maximum near -e.

U 0 (z) = U * 0 (z + e).

We have, for

|y| ≥ L ′-1 i , L ′ i = 1 2 R i M i , vi (y) = 1 |y| n-2 v i y |y| 2 . |V i (x i + M -1 i y |y| 2 ) -V i (x i )| ≤ M -(1+β) i (1 + |y| -1 ). x i = xi + M -1
i e, Then, for simplicity, we can assume that, vi has a local maximum near e * = (-1/2, 0, ...0). Also, we have:

|V i (x i + M -1 i y |y| 2 ) -V i (x i + M -1 i y λ |y λ | 2 )| ≤ M -(1+β) i (1 + |y| -1 ). h λ (y) ≃ ǫr -2 i G λ (y, 0) - Σ ′ λ G λ (y, η)Q λ (η)dη.
where, Σ ′ λ = Σ λ -{η, |η| ≤ r -1 i }, and,

Q λ (η) = V i (x i + M -1 i y |y| 2 ) -V i (x i + M -1 i y λ |y λ | 2 ) (v i (y λ )) 3 .
we have by the same computations that:

Σ ′ λ G λ (y, η)Q λ (η)dη ≤ CM -(1+β) i G λ (y, 0) << ǫr -2 i G λ (y, 0).
By the same estimates as in Chen-Lin paper (we apply the lemma 2.1 of the second section), and by our hypothesis on v i , we have:

0 < h λ (y) < 2ǫ < w λ (y).
also, we have the same estimate on the boundary, |y| = 1 r i .

Proof of the theorem 2, n = 5:

To prove the theorem, we argue by contradiction and we assume that the (sup) 1/3 × inf tends to infinity.

Step 1: blow-up analysis We want to prove that:

R3 ( sup B R (0) u) 1/3 × inf B 3 R (0) u ≤ c = c(a, b, A, B),
If it is not the case, we have:

R3 i ( sup B Ri (0) u i ) 1/3 × inf B 3 Ri (0) 
u i = i 6 → +∞,
For positive solutions u i > 0 of the equation (E) and Ri → 0. Thus,

1 i Ri ( sup B Ri (0) u i ) 2/3 → +∞,
and,

1 i Ri [ sup B Ri (0) u i ] 4/9 → +∞,
Let a i such that:

u i (a i ) = max B Ri (0) u i ,
We set,

s i (x) = ( Ri -|x -a i |) 9/4 u i (x),
we have,

s i (x i ) = max B Ri (ai) s i ≥ s i (a i ) = R9/4 i sup BR i (0) u i → +∞,
we set,

R i = 1 2 ( Ri -|x i -a i |), We have, for |x -xi | ≤ R i i , Ri -|x -a i | ≥ Ri -|x i -a i | -|x -a i | ≥ 2R i -R i = R i Thus, u i (x) u i (x i ) ≤ β i ≤ 2 9/4 . with β i → 1.
We set,

M i = u i (x i ), v * i (y) = u i (x i + M -2/3 i y) u i (x i ) , |y| ≤ 1 i R i M 4/9 i = 2L i .
And,

1 i 3 R i 3 M 1/3 i × inf B 3 Ri (0) u i → +∞,
By the elliptic estimates, v * i converge on each compact set of R 5 to a function U * 0 > 0 solution of :

-∆U * 0 = V (0)U * 0 7/3 in R 5 , U * 0 (0) = 1 = max R 5 U * 0 .
For simplicity, we assume that 0 < V (0) = n(n -2) = 15. By a result of Caffarelli-Gidas-Spruck, see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we have:

U * 0 (y) = (1 + |y| 2 ) -3/2 . We set, v i (y) = v * i (y + e)
, where v * i is the blow-up function. Then, v i has a local maximum near -e.

U 0 (y) = U * 0 (y + e). We want to prove that:

min {0≤|y|≤r} v * i ≤ (1 + ǫ)U * 0 (r). for 0 ≤ r ≤ L i , with L i = 1 2i R i M 4/9 i .
We assume that it is not true, then, there is a sequence of number r i ∈ (0, L i ) and ǫ > 0, such that:

min {0≤|y|≤ri} v * i ≥ (1 + ǫ)U * 0 (r i ).
We have:

r i → +∞.
Thus , we have for r i ∈ (0, L i ) :

min {0≤|y|≤ri} v i ≥ (1 + ǫ)U 0 (r i ).
Also, we can find a sequence of number l i → +∞ such that:

||v * i -U 0 || C 2 (B l i (0)) → 0. Thus, min {0≤|y|≤li} v i ≥ (1 -ǫ/2)U 0 (l i ).
Step 2 : The Kelvin transform and the Moving-plane method

Step 2.1: a linear equation perturbed by a term, and, the auxiliary function

Step 2.1.1:

D i = |∇V i (x i )| → 0.
We have the same estimate as in the paper of Chen-Lin. We argue by contradiction. We consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M 4/9 i .
We use the assumption that the sup times inf is not bounded to prove w λ > h λ in Σ λ = {y, y 1 > λ}, and on the boundary.

The function v i has a local maximum near -e and converge to U 0 (y) = U * 0 (y + e) on each compact set of R 5 . U 0 has a maximum at -e.

We argue by contradiction and we suppose that:

D i = |∇V i (x i )| → 0.
Then, without loss of generality we can assume that:

∇V i (x i ) → e = (1, 0, ...0).
Where x i is :

x i = xi + M -2/3 i e,
with xi is the local maximum in the blow-up analysis.

As in the paper of Chen-Lin, we use the Kelvin transform twice and we set (we take the same notations):

I δ (y) = |y| |y| 2 -δe | |y| |y| 2 -δe| 2 , v δ i (y) = v i (I δ (y)) |y| n-2
|y -e/δ| n-2 , and,

V δ (y) = V i (x i + M -2/3 i I δ (y)). U δ (y) = U 0 (I δ (y)) |y| n-2 |y -e/δ| n-2 .
Then, U δ has a local maximum near e δ → -e when δ → 0. The function v δ i has a local maximum near -e.

We want to prove by the application of the maximum principle and the Hopf lemma that near e δ we have not a local maximum, which is a contradiction.

We set on Σ

′ λ = Σ λ -{y, |y -e δ | ≤ c0 ri } ≃ Σ λ -{y, |I δ (y)| ≥ r i }: h λ (y) = - Σ λ G λ (y, η)Q λ (η)dη.
with, 2) . And, by the same estimates, we have for η

Q λ (η) = (V δ (η) -V δ (η λ ))(v δ i (η λ )) (n+2)/(n-
∈ A 1 = {η, |η| ≤ R = ǫ 0 /δ}, V δ (η) -V δ (η λ ) ≥ M -2/3 i (η 1 -λ) + o(1)M -2/3 i |η λ |,

and, we have for

η ∈ A 2 = Σ λ -A 1 : |V δ (η) -V δ (η λ )| ≤ CM -2/3 i (|I δ (η)| + |I δ (η λ )|),
And, we have for some λ 0 ≤ -2 and C 0 > 0:

v δ i (y) -v δ i (y λ0 ) ≥ C 0 y 1 -λ 0 (1 + |y|) n , for y 1 > λ 0 .
By the same estimates, and by our hypothesis on v i , we have, for c 1 > 0: 0 < h λ (y) < 2ǫ < w λ (y). 

|∇V i (x i )|[u i (x i )] 2/3 ≤ C
Here, also, we argue by contradiction. We use the same computation as in Chen-Lin paper, we take α = 2 and we choose the same h λ , except the fact that here we use the computation with M -4/3 i in front the regular part of h λ .

Here also, we consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M 4/9 i .
We argue by contradiction and we suppose that:

M 2/3 i D i → +∞.
Then, without loss of generality we can assume that:

∇V i (x i ) |∇V i (x i )| → e = (1, 0, ...0).
We use the Kelvin transform twice and around this point and around 0.

h λ (y) = ǫr -3 i G λ (y, e δ ) - Σ λ G λ (y, η)Q λ (η)dη.
with, 2) . And, by the same estimates, we have for η

Q λ (η) = (V δ (η) -V δ (η λ ))(v δ i (η λ )) (n+2)/(n-
∈ A 1 V δ (η) -V δ (η λ ) ≥ M -2/3 i D i (η -λ) + o(1)M -2/3 i |η λ |,

and, we have for

η ∈ A 2 , |I δ (η)| ≤ c 2 M 2/3 i D i , |V δ (η) -V δ (η λ )| ≤ CM -2/3 i D i (|I δ (η)| + |I δ (η λ )|), and for M 2/3 i D i ≤ |I δ (η)| ≤ r i , |V δ (η) -V δ (η λ )| ≤ M -2/3 i D i |I δ (η)| + M -4/3 i |I δ (η)| 2 ,
By the same estimates, we have for |I δ (η)| ≤ r i or |y -e/δ| ≥ c 3 r -1 i :

h λ (y) ≃ ǫr -3 i G λ (y, e δ )+c 4 M -2/3 i D i (y 1 -λ) |y| n +o(1)M -2/3 i D i (y 1 -λ) |y| n +o(1)M -4/3 i G λ (y, e δ ).
with c 4 > 0.

And, we have for some λ 0 ≤ -2 and C 0 > 0:

v δ i (y) -v δ i (y λ0 ) ≥ C 0 y 1 -λ 0 (1 + |y|) n , for y 1 > λ 0 .
By the same estimates as in Chen-Lin paper (we apply the lemma 2.1 of the second section), and by our hypothesis on v i , we have: 0 < h λ (y) < 2ǫ < w λ (y). also, we have the same etimate on the boundary, |I δ (η)| = r i or |y -e/δ| = c 5 r -1 i :

Step 2.2 conclusion : a linear equation perturbed by a term, and, the auxiliary function

Here also, we use the computations of Chen-Lin, and, we take the same auxiliary function h λ (which correspond to this step), except the fact that here in front the regular part of this function we have M -4/3 i .

Here also, we consider r i ∈ (0, L i ) where L i is the number of the blow-up analysis.

L i = 1 2i R i M 4/9 i .
We set, v i (z) = v * i (z + e), where v * i is the blow-up function. Then, v i has a local maximum near -e.

U 0 (z) = U * 0 (z + e).

We have, for |y| ≥ L -1 i ,

L i = 1 2 R i M 2/3 i , vi (y) = 1 |y| n-2 v i y |y| 2 . |V i (x i + M -2/3 i y |y| 2 ) -V i (x i ≤ M -4/3 i (1 + |y| -2 ). x i = xi + M -2/3 i e,
Then, for simplicity, we can assume that, vi has a local maximum near e * = (-1/2, 0, ...0). Also, we have:

|V i (x i + M -2/3 i y |y| 2 ) -V i (x i + M -2/3 i y λ |y λ | 2 )| ≤ M -4/3 i (1 + |y| -2 ).
h λ (y) ≃ ǫr -3 i G λ (y, 0) -

Σ ′ λ G λ (y, η)Q λ (η)dη.
where, Σ ′ λ = Σ λ -{η, |η| ≤ r -1 i }, and,

Q λ (η) = V i (x i + M -2/3 i y |y| 2 ) -V i (x i + M -2/3 i y λ |y λ | 2 ) (v i (y λ )) n+2 n-2 .
we have by the same computations that:

Σ ′ λ G λ (y, η)Q λ (η)dη ≤ CM -4/3 i
G λ (y, 0) << ǫr -3 i G λ (y, 0).

By the same estimates as in Chen-Lin paper (we apply the lemma 2.1 of the second section), and by our hypothesis on v i , we have: 0 < h λ (y) < 2ǫ < w λ (y). also, we have the same estimate on the boundary, |η| = 1 r i .

  also, we have the same etimate on the boundary, |I δ (η)| = r i or |y -e/δ| = c 5 r -1 i

1 i

 1 also, we have the same etimate on the boundary, |I δ (η)| = r i or |y -e/δ| = c 2 r -Step 2.1.1: