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Abstract. We show that a hyperbolic system with a mathematical entropy can
be discretized with vectorial lattice Boltzmann schemes using the methodology of kinetic
representation of the dual entropy. We test this approach for the shallow water equations
in one and two spatial dimensions. We obtain interesting results for a shock tube, reflection
of a shock wave and non-stationary two-dimensional propagation. This contribution shows
the ability of vectorial lattice Boltzmann schemes to simulate strong nonlinear waves in
non-stationary situations.
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Introduction

The computation of discrete shock waves with lattice Boltzmann approaches began with
viscous Burgers approximations in the framework of lattice-gas automata (see Boghosian
and Levermore[2] and Elton et al.[10]). With the lattice Boltzmann methods described
e.g. by Lallemand and Luo[18], the first tentative results were proposed by d’'Humicres|14]
and Alexander et al.[1] among others. A D1Q2 entropic scheme for the one-dimensional
viscous Burgers equation has been developed by Boghosian et al.[3]. The extension to
gas-dynamic equations, and in particular to shock tube problems, is studied in the works
of Philippi et al.[20], Nie, Shan and Chen[19], Karlin and Asinari|[15]|, and Chikatamarla
and Karlin|[6].

In this contribution, we test the ability of lattice Boltzmann schemes to approach weak
entropy solutions of hyperbolic equations. It is well known that a first-order hyperbolic
equation exhibits shock waves. In order to enforce uniqueness, the notion of mathematical
entropy has been proposed by Godunov|13| and Friedrichs and Lax|[12]. A mathematical
entropy is a strictly convex function of the conserved variables satisfying ad hoc differential
constraints to ensure a complementary conservation law for regular solutions (see, e.g.,
our book with Després|8|). The gradient of the entropy defines the so-called “entropy
variables.” The Legendre-Fenchel-Moreau duality for convex functions allows us to define
the dual of the entropy, which is a convex function of the entropy variables.

We start from the mathematical framework developed by Bouchut|5|, making the link
between the finite-volume method and kinetic models in the framework of the BGK ap-
proximation. The key notion is the representation of the dual entropy with the help of
convex functions associated with the discrete velocities of the lattice. If we suppose that a
single distribution of particles is present, our previous contribution|9| shows that Burgers
equation can be simulated in this way. We have also shown that the approach can be
extended to the nonlinear wave equation but is not compatible with the system of shallow
water equations.

In Section 1, we develop vectorial lattice Boltzmann schemes with a kinetic representation
of the dual entropy. This framework is applied in Section 2 for the approximation of
one-dimensional shallow water equations, and in Section 3 for the two-dimensional case.
Stationary and non-stationary two-dimensional simulations are presented in Section 4.

1)  Dual entropy vectorial lattice Boltzmann schemes

In order to treat complex physics with particle-like methods, a classical idea is to multiply
the number of particle distributions, as proposed by Khobalatte and Perthame|17|, Shan
and Chen|21], Bouchut[4], Dellar|7], and Wang et al.[22]. We follow here the idea of a dual
entropy decomposition with vectorial particle distributions, as proposed by Bouchut|5].
We consider a hyperbolic system composed of N conservation laws with space described
by points in z € R The unknowns are the conserved variables W € RY (i.e. W* € R).
The nonlinear physical fluxes : F,(W) € RY (with 1 < o < d) are given regular
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functions. The system is of first-order:

d
(1) OW* +> 0. FEW) =0, 1<k<N.
a=1
We suppose that a mathematical entropy n(WW) is given, with associated entropy fluxes

Co(W) for 0 <a < d:
dCa (W) = dp(W) e dFo(W).
on(W

oWk

The entropy variables ¢ = are defined as the jacobian of the entropy:

N
dp(W) = > @ dW*.
k=1

*

The dual entropy n*(¢) and the so-called “dual entropy fluxes” (*(¢) satisfy

(2) 7(p) = @eW =n(W), () =peFa(W) = (W),
They can be differentiated without difficulty (see e.g.|8]):

dy*(e) = > dee Wk, dC(p) = ) dep FE(W).
k k

e  With Bouchut[5], we introduce N particle distributions f; (for 1 < k < N) and
q velocities (0 < j < ¢ —1). The conserved moments W* are simply the first discrete
integrals of these distributions:

qg—1
(3) WE=>"ff, 1<k<N.
=0

We suppose that the particle distributions ff are solutions of the Boltzmann equations
with discrete velocities:

Off +v50.f; =QF, 0<j<q—1, 1<k<N
We suppose Y i Qé‘? = 0 in order to enforce the conservation laws (1). The non-equilibrium

fluxes take the natural form &% = Y I f and we have a system of N conservation laws:

OWH 4+ 0,85 =0, 1<k<N.

In the following, we use the term “Perthame-Bouchut hypothesis” to refer to the fact that
the dual mathematical entropy n*(¢) can be is decomposed into ¢ scalar potentials, h}.
The potentials 1} are supposed to be regular convex functions of the entropy variables
v, and satisfy the two identities

(4) D_hi(e) = (o), Do ki) = Q) e,

The equilibrium fluxes ( feq);? are easy to derive from the potentials 5 :

ah; — eqk_ k
o Do), =wh 1<k<N.

=0

(-
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e We introduce the Legendre dual of the convex potentials h}:

hi(fis s s 1 :sup( Zsokf ] = hi( )>7 0<j<qg-—1.

We observe that each function hj(e) is a convex function of N variables. The so-called
“microscopic entropy” H(f) can now be defined according to

q—1
H() =Y hi(ff 170 ).
j=0

This is a convex function in the domain where the h;’s are convex.

e We can establish a “H-theorem” for the continuous dynamics relative to time and
space in a way similar to the maximal entropy approach developed by Karlin and his
co-workers|16]. Under a BGK-type hypothesis

1
@=Ly )

Do (Suni ) <0

j
To establish this result, we derive the microscopic entropy relative to time:

we have

OH Oh; 3f k B k g—1
Then
OH ok
E—’—aa(;v h Zafk fjk) fq)j_ff]
Z 3 fk eq)f — fﬂ by convexity of the potentials h;.
This last expression is equal to % Z [( feq) — ff] due to Legendre duality:
Jk
My peay _
(9f§ (f ) = Pk -

In consequence,
eq) k k
S+ ol (2vih) = 2 e 2 1)~ 4] =0
k J
by construction of the Values £ in equilibrium. The H-theorem is thereby proven. [

2) “D1Q3Q2” lattice Boltzmann scheme for shallow water

We apply the previous ideas to the shallow-water equations in one spatial dimension
Op+0,q = 0, (9tq+(9( + B p”) =0,
PP

Velocity u, pressure p and sound velocity ¢ > 0 are given by the expressions:

u=d p=p 2218 B
P Po P Py
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The entropy 7 and the entropy flux ( can be determined explicitly without difficulty

(see e.¢.]9]): 1
_ 2 p _
n=Sput—, (=nutpu
2 v—1
Then the entropy variables ¢ = (6 = 9,1, 8 = J,n) can be related to the usual ones:
2 2
h=—"_ " s=u.
v—1 2

Thanks to (2), the dual entropy n* and the dual entropy flux ¢* can be worked out
explicitly: n* =p and (* = pu. We observe that

~

. A . 2\ . (=
n_K<6+2 =p, ¢ = KB(0+5 _pu,wmhf(_k<7k) .

e  We model this system with a kinetic approach and a D1Q3 stencil. We have to
find the particle components of the entropy variables, id est the (still unknown) convex
functions h} satisfing the Perthame-Bouchut hypothesis (4), that now can be written in

the form:

(5) W (0, B) + ho(0, B) +hZ(0, B) = p, Ahi(0, 8) = ARZ(0, B) = pu,

where \ = % is the numerical velocity of the mesh. We use a simple quadratic function
as in our previous contribution|9]. We suggest that when v = 2:

(6) hy = hi(6) = SK6,

with the introduction of a parameter a that has to be made precise for real numerical
computations. With this choice (6), the resolution of the system (5) with unknowns h%
is straightforward, resulting in

(7) o, p) = & <9+%2>2<1i§> —%92.

2
e From the previous potentials, (6) and (7), it is possible to derive the entire distribu-
tion at equilibrium. Observe first that with a vectorial lattice Boltzmann scheme, it is
necessary to use two families, f and g, of particle distributions, one for mass conservation

and the other for momentum conservation. We have in this case
00 J ap

With (6), the function hj is indepedent of 5. Then gg = %—‘g is unnecessary for the

computation. With a very basic D1Q3 stencil, we define a “D1Q3Q2” lattice Boltzmann

scheme. The equilibrium distribution is obtained by differentiation of the relations (6)

and (7):

( oh} u? a po u?
P oty (o) - o)
0 0 ¢ “92\° T 2 2\P T o2

oh}, u a u
eq + P Po
= S S I
* a0 2( >\> 4<p 2cg>
oh}, u ur P

eq  __ + _p p< >
= = —=x=(—4+—).
| 9* Bl 7 Ta\x T3
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From these equilibria, we implement the lattice Boltzmann method within the multiple-
relaxation-time (MRT) framework. The conserved moments follow the general paradigm

introduced in (3):
p=lotfH+l-, a=9++9-.

The non-conserved moments are chosen in the usual way:

Jo= MFe 1) o= X(fetf—2f0). Jp=Ags—9-).

The relaxation step of the scheme is particularly simple when all the relaxation parameters
are equal to a constant value 7 as proposed in the BGK hypothesis. When a general
MRT scheme is used, we follow the rule[18] of the moments m; after relaxation:

q

(8) m; = my + ¢ (mz — TI’Lg) )

e We have tested the previous ideas for a Riemann problem for a shock tube. We have
chosen the following numerical data and parameters:
e P P s d—a =0, 2 =8 a=015, s;=18.
Po Po Co
The numerical results are displayed in Fig. 1. The rarefaction wave (on the left) and the
shock wave (on the right) are correctly captured.

o N I I I density ]
velocity =
1.6 |
1.2 |
| ]
0.8 )
[ ]
| ]
—
0.4 y ]
»
0 F S
-0.5 -0.25 0 0.25 0.5
Figure 1. Riemann problem for shallow water equations. Density (blue, top) and

velocity (pink, bottom) fields were computed with the D1Q3Q2 lattice Boltzmann scheme
with 80 mesh points and compared to the exact solution.
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3) “D2Q5Q4Q4” vectorial lattice Boltzmann scheme

We study now the two-dimensional shallow-water equations
Op + 0y (pu)+8 (pv) =0
(9) (9t(pu)+8 (pu —i-];o 2)+8y(puv) =0

0(pv) + 0s(puv) + 9, (pv* + ];—%]pQ) =0.

We have three conservation laws in two spatial dimensions. We extend the previous
D1Q3Q2 vectorial lattice Boltzmann scheme into a D2Q5Q4Q4 scheme. The D2Q5 stencil
is associated with the following velocities:

(10) vo=1(0,0), vi=(\0), v2a=(0,A), v3=(=\0), vy,=1(0,=N\).

We now have three particle distributions: f € D2Q5, g, € D2Q4 and g, € D2Q4. The
natural question is to find an intrinsic method to determine the equilibrium values f]e 4
for 0 <j <4 and (gz(;, gz?) for 1 < j < 4. As in the one-dimensional case, a key point
is to be able to explicitly determine the dual entropy. In this two-dimensional case, the
entropy variables ¢ € R? can be written as
9 2 2 .2
o= (0,u,v), 0:_77: ¢ ut v
8p v—1 2
2

N0, u,v) =p= 5 e 2 <0+ (u2+v2)> .
In order to determine the equilibrium dlstrlbutlons, we search for convex functions
hi(0, u, v) for 0 < j <4, such that the first set of Perthame-Bouchut conditions (4) are
satisfied:

(11) > B30, u, v) =070, u, v).

J=0

Then Oh* oh* oh*

feq _ eq _ — 7 eq _ — J

J o v Yoy = v Gy =

We also have to take into account the dual entropy fluxes (, in order to correctly represent
the first-order terms of the model, (1) or (9) in our case. With the second set of Perthame-

Bouchut conditions (4) we have:

(12) th*@uv_nu th*@uv_nv

7=0
For the D2Q5 stencil, the conditions of (11) ( ) take the form

(13) ho+hi+hs+h5+h5=p, Ak —hy) =pu, X(hS—h}) =po.
We mimic for shallow water in two spatial dimensions what we have done for the one-
dimensional case (6), and we suggest here to set as previously

hi(6) = gm?.

Because this function hj does not depend explicitly on the variables « and v, we are not
defining a D1Q5Q5Q5 scheme, but rather simply a D1Q5Q4Q4 vectorial lattice Boltzmann
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scheme. The positive parameter a still has to be fixed. Nevertheless, we still have many
degrees of freedom. We suggest moreover to break into two parts the first relation of (13):

1 1
(14) hi+hs = S(p—hy), hi+hi=5(p—hi).

We have now a set of five independent equations (6), (13) and (14) with 5 unknowns A .
The end of the algebraic determination of the system (6), (13) and (14) is then completely
elementary.

e  When the potentials i} are known, the computation of the equilibrium values is
straightforward. With the 5 + 4 + 4 = 13 particle distributions, we can construct 13
moments for the D2Q5Q4Q4 lattice Boltzmann scheme. We suggest the following five
moments associated with the distribution f;:

{P:f0+f1+f2+f3+f4, Joo = A(fi=f3), Jyp =A(fa— fa),
gp =Nt ot fat+fa—4fo, XX,=fi—fot+[fs—fs.

For the eight moments relative to the distributions g¢,; and g,;, we have chosen

{ Gz = 9x1 + a2 + Gz3 + Gaa fa:z - )\(9931 _g$3)7

fzy = A (.ng - g:c4) ) XXu = gu1 — G2+ 923 — Gas
and
{ Gy = 91+ G2+ Gz + Gyas Jyo = AN (991 — 93) »
Foy = M gy2 — 9ya) XXy = Gy1 — Gy2 + Gy3 — Gya -

e The value at equilibrium of the previous moments can be determined, taking into
account that the three moments p, ¢, and ¢, are at equilibrium. We have:

Tolp = PU = o, (2 2) Jyly = PV = qy,
da S po (u”+wv
v = (1 - — -—— XX =0
8/3 ( 2)p+4 Cg ) P
We have also
{ 4= pul+p, = puv, XX =0
fyeg:puv7 fyy:)‘(gy2_gy4)7 XngZO

The MRT algorithm can be implemented without difficulty. It is just necessary to write
a relation of the type (8) for the 10 moments that are not at equilibrium. Our present
choice is the BGK variant of the scheme, with all parameters s, set equal. The boundary
conditions of wall constraint, supersonic inflow or supersonic outflow are treated with an
easy adaptation of the usual methods of bounce-back and “anti-bounce-back”.

4) First test cases

We propose two bi-dimensional test cases for the shallow-water equations: A station-
ary shock reflection and a classical non-stationary forward-facing step, first proposed by
Emery [11] for gas dynamics. The first test case is a the reflection of an incident shock
wave of angle —7/4 issued from a “left” state into a new shock of angle atan(4/3) due

8
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to the physical nature of the “top” state (in green on the left picture of Fig. 2) and
the “right” state (in indigo). The exact solution is determined through the use of the
Rankine-Hugoniot relations. We have chosen

pe =1, up = 1.59497132403753, v, = 0,
pr = 1.17150636388320, wu, = 1.47822089880855, v, = —0.116750425228984 ,
pr = 1.38196199044604 , w, = 1.33228286727232, v, = 0.

The stationary result of the vectorial lattice Boltzmann scheme for this first test case can
be compared with the pure finite-volume approach with the Godunov|[13] scheme, solving
a discontinuity at each interface at each time step. We have used three meshes of 35 x 20,
70 x 40 and 140 x 80 grid points. The contours of constant density are presented in Fig. 2.
The numerical results are similar.

A 4k 4

Figure 2.  Shock reflection, mesh 140 x 80. Exact solution (left), Lattice Boltzmann
scheme D2Q5Q4Q4 (middle) and Godunov scheme (right).

e The second test case (Emery[11]) is purely non-stationary. At time zero a small step
is created inside a flow at Froude number equal to 3. A strong shock wave separates from
the wall and various nonlinear waves are generated which mutually interact. Our present
experiment (Figs. 3 and 4) shows the ability of a vectorial lattice Boltzmann scheme to
approach such a flow. We have refined the mesh, using three families of meshes: 120 x 40,
240 x 80 and 480 x 120. We have used

A=280, a=005 s =18Yj

to achieve experimental stability. The time step is very small (due to the high value of
A= 4z A7), and in consequence the computation is relatively slow.

e  We present our results for the finer mesh, at a dimensionalized time equal to 1/2
(Fig. 3) and 4 (Fig. 4). The results show the ability of the vectorial scheme based on
the decomposition of the dual entropy to capture such flows. Nevertheless, the Godunov
scheme, well known to be only order one, gives better non-stationary results compared to
the new approach.
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Figure 3. Emery test case for the shallow-water equations, mesh 480 x 120,
t = 1/2, density profile, D2Q5Q4Q4 vectorial lattice Boltzmann scheme (top) and Go-
dunov scheme (bottom).

Figure 4. Emery test case for the shallow water equations, mesh 480 x 120,
t = 4, density profile, D2Q5Q4Q4 vectorial lattice Boltzmann scheme (top) and Godunov
scheme (bottom).

10
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Conclusion

We have extended the methodology of kinetic decomposition of the dual entropy previ-
ously studied for one-dimensional problems into a general framework of vectorial lattice
Boltzmann schemes for systems of conservation laws in several spatial dimensions, in the
spirit of Bouchut[5]. The key point is to decompose the dual entropy of the system into
convex potentials satisfying the Perthame-Bouchut hypothesis. Our first choices show
that the system of shallow-water equations can be solved numerically without major dif-
ficulty. Nevertheless, our first numerical experiments show that the resulting scheme
contains high numerical viscosity. Future work is necessary to reduce this effect.
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