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Tensors: a Brief Introduction
Pierre Comon?, Fellow, IEEE

Abstract—Tensor decompositions are at the core of many
Blind Source Separation (BSS) algorithms, either explicitly or
implicitly. In particular, the Canonical Polyadic (CP) tensor
decomposition plays a central role in identification of under-
determined mixtures. Despite some similarities, CP and Singular
Value Decomposition (SVD) are quite different. More generally,
tensors and matrices enjoy different properties, as pointed out
in this brief survey.

I. MOTIVATION

ORiginally, Blind Source Separation (BSS) exploited
mutual statistical independence between sources [20].

Among possible approaches based on the sole hypothesis
of source statistical independence, several use cumulants. In
fact, when random variables are independent, their cumulant
tensor is diagonal [57]. When the source mixture is linear, the
decomposition of the data cumulant tensor into a sum of outer
products yields the columns of the mixing matrix. This is the
first instance of tensor decomposition applied to BSS, even if
it is not always explicit. In that case, the tensor is actually
symmetric. In the presence of noise, the extraction of sources
themselves needs another procedure, based for instance on a
spatial matched filter (SMF) [20].

BSS has then been addressed later in different manners.
A quite interesting class of approaches consists of exploiting
an additional diversity [74]. More precisely, measurements are
usually made in two dimensions, generally space and time. But
if they are made as a function of three (or more) dimensions,
e.g. frequency, polarization, time repetition, etc, the data are
stored in a multi-way array. By treating this array as a matrix,
one looses information. Yet, in some real-world applications,
it is meaningful to assume a multi-linear model for this multi-
way array, which justifies to consider it as a tensor. The
decomposition of the latter into a sum of outer products yields
not only the columns of the mixture, but also an estimate of the
sources. So contrary to the first generation of BSS algorithms,
there is no need to resort to an extracting filter. In addition,
no statistics are to be estimated, so that the performance is
expected to be better for short samples or correlated sources.

Beside numerous books dedicated to applications in physics,
there already exist some surveys that can be used in Signal
Processing. To start with, some background is presented in
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[46], i.e. basic engineering tools and a good panel of applica-
tions; a more signal processing oriented tensor overview may
be found in [16]. A quite complete digest, more theoretical
and oriented towards algebraic geometry, can be found in [49].
The present survey aims at motivating the Signal Processing
readership in diving in the promising world of tensors.

II. THE WORLD OF TENSORS

Tensors have been introduced at the end of the nineteenth
century with the development of the differential calculus.
They have then been omnipresent in physics, to express
laws independently of coordinate systems. Yet, a tensor is
essentially a mapping from a linear space to another, whose
coordinates transform multilinearly under a change of bases,
as subsequently detailed. For an easier reading, we shall resort
to arrays of coordinates, when this indeed eases presentation;
interested readers may want to refer to [23], [49] for a more
advanced coordinate-free presentation.

E. Waring
(1736-1798)

J. J. Sylvester
(1814 - 1897)

A. Clebsch
(1833-1872)

A. Linearity
Linearity expresses the property of a map µ defined on a

vector space S onto another vector space S′ built on the same
field1 K that: µ(αx+βy) = αµ(x)+βµ(y), ∀x,y ∈ S, α, β ∈
K. If S and S′ are of finite dimension, then this map can be
represented by a matrix of coordinates, once the bases of S

and S′ have been fixed. We see that every linear map can
be associated with a matrix, say A, so that µ(x) = Ax. On
the other hand, every matrix does not uniquely define a map.
In fact, a matrix A could for instance define a bilinear form
from S × S′ onto K, i.e f(x1,x2) = xT

1Ax2. Hence, the
correspondence between maps and arrays of coordinates is
not one-to-one.

B. Bilinearity
Let’s start with a simple example.

1As far as we are concerned, K will be either the field of real numbers R
or complex numbers C.
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Example 1: Consider two multi-dimensional zero-
mean random variables z1 and z2, and denote the
cross-covariance matrix by G = E{z1 zT2 }. We see
that the covariance is linear with respect to z1 and
z2, which is referred to as bilinearity. Now suppose
that z1 and z2 represent two phenomena that are
measured in a given coordinate system. G gives
an indication of their correlation. If we change the
coordinate system, the covariance matrix changes.
More precisely, if z′2 = Az2 and z′2 = Bz2, then
G′ = E{z′1 z′2

T} can be written G′ = AGBT.
We see that G′ 6= G whereas the phenomena
remain the same. So we must distinguish between
the physical phenomena that are coordinate-free,
and the arrays of measurements we made. And
because of bilinearity, we know how to go from one
matrix representation to another. We may say that
the covariance object is a tensor of order 2, and can
be represented by a matrix in any given coordinate
system.

What we just saw in Example 1 can be put in more formal
terms. Now assume a linear change of coordinates is made in
spaces S and S′ defined by matrices {A,B} so that the new
coordinates express as x′1 = Ax1 and x′2 = Bx2. A tensor
G represented in the original basis with an array G will be
represented (as in Example 1) in the new basis by the new
array G′ whose coordinates are:

G′ij =
∑
p,q

AipBjqGpq

This can be compactly denoted by2: G′ = (A,B) · G. This
will now be extended to orders higher than 2.

C. Multilinearity
Now assume Sd are D vector spaces, 1 ≤ d ≤ D, and

suppose f is a map from S1 × · · · × SD onto K. Map f
is said to be multilinear if f(x1, . . . ,xD) is linear with
respect to every variable xd, 1 ≤ d ≤ D. In other words,
f(x1, . . . , αxd+βyd, . . . ,xD) = αf(x1, . . . ,xd, . . . ,xD) +
βf(x1, . . . ,yd, . . . ,xD), ∀d, ∀α, β ∈ K. This map is actually
a multilinear form. As in the previous section, map f can be
represented by an array of coordinates, once the bases of Sd
have been fixed, 1 ≤ d ≤ D, and this array needs D indices.

D. Tensors
For the sake of simplicity, let us focus on D = 3,

which is sufficient to give an idea. Because of mul-
tilinearity, special properties are satisfied. For instance
f(αx1,x2,x3) = f(x1,x2, αx3), so that the two triplets of
vectors (αx1,x2,x3) and (x1,x2, αx3) have the same image.
When dealing with multilinear forms, it is hence relevant

2Another notation, equally acceptable, is sometimes used: G′ = JG;A,BK.

to consider the equivalence classes defined by the relation
(x,y, z) ∼ (x′,y′, z′) if there exist α, β, γ ∈ K such that
(x′,y′, z′) = (αx, βy, γz), with αβγ = 1. Each class may
be regarded as a decomposable3 tensor. The space spanned
by these classes is denoted as S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3, where ⊗⊗⊗ is called
the tensor product. An element of this space is called a tensor
of order4 3. In more mathematical words, one would say that
S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3 is the quotient space S1 × S2 × S3/∼.

Example 2: Let x1 ∈ S1, x2 ∈ S2 and x3 ∈ S3.
Tensors 6x1 ⊗⊗⊗ x2 ⊗⊗⊗ x3 and x1 ⊗⊗⊗ 2x2 ⊗⊗⊗ 3x3 are the
same, but in S1 × S2 × S3, vectors (6x1, x2, x3)

and (x1, 2x2, 3x3) are different.

If a linear change of basis is made in space S1 (resp. S2 and
S3), as x′ = Ax (resp. y′ = By and z′ = Cz), then the array
T ′ defining multilinear form f in the new coordinate system
expresses as a function of T . For so-called contravariant
tensors, the relationship is

T ′ijk =
∑
pqr

AipBjqCkr Tpqr (1)

as in Example 1, or in compact form: T ′ = (A,B,C) ·T . On
the other hand, there also exist covariant tensors for which the
inverses of the above matrices are instead involved (cf. Exam-
ple 4), and even mixed tensors that are partly covariant and
partly contravariant [71], [23]. However, we shall concentrate
only on contravariant tensors in this paper, which follow (1)
under a multilinear transformation. Note that (1) holds true for
contravariant tensors even if the linear transforms (A,B,C)
are not invertible; they can even be rectangular matrices. This
property is crucial in BSS when mixtures are underdetermined
[20], [83].

Example 3: Consider three multi-dimensional ran-
dom variables x, y and z. Then the 3rd order
moment tensor M is represented by the 3rd order
array Mijk = E{xiyjzk}. As in the case of 2nd
order moments, it is a contravariant tensor. In fact,
if x′ = Ax, y′ = By and z′ = Cz, then
M′ = (A,B,C) ·M as in (1). It turns out that
cumulants may also be seen as tensors as pointed
out in [57]. Because cross-cumulants of independent
random variables are null at any order, they have
been extensively used in BSS. For instance, the
cumulant tensor of order 2 is nothing else but the
covariance matrix, and accounts for the correlation
at order 2 only; it is not sufficient to account for sta-
tistical independence unless variables are Gaussian.

Example 4: The derivatives of order D of a multi-
variate scalar function can be stored in a covariant

3Decomposable tensors are also called pure or simple.
4In physics, the word rank is also sometimes used, but we shall avoid it

because of the possible confusion with the more standard meaning related to
rank of a linear operator.
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tensor of order D. For instance at order 2, if Aij =

∂2f/∂xi∂xj , x′ = Mx and A′pq = ∂2f/∂x′p∂x
′
q ,

then A′ = NTAN, with N = M−1. From now on
and for the sake of simplicity, we shall only consider
contravariant tensors in this paper.

More generally, a tensor of order D is an element of
S1 ⊗⊗⊗ . . .⊗⊗⊗ SD, and can be represented by a D-way array T
once bases of spaces Sd have been fixed. Under multilinear
transforms, these arrays of coordinates change similarly to (1).

Example 5: In physics, Hooke’s law relates the
deformation (strain) of a solid under the action of
forces (stress). It states that stress F is related to
strain X by the elasticity tensor as: F = C •X ,
where • is a contraction operator (see Section II-F
for a formal definition). Once bases are fixed in
the stress and strain spaces, this relationship can be
written in terms of arrays of coordinates:

Fij =
∑
p,q

CijpqXpq

The elasticity tensor C is of order 4. Strain and stress
are tensors of order 2, which are represented by
matrices.

As illustrated above, it should be kept in mind that an array
of coordinates alone does not suffice to define a tensor: spaces
and bases need to be precised. Since we are interested mainly
in manipulating arrays, and not so much in the map they
may represent, arrays will be subsequently associated with
multilinear forms, that is, maps from a product of spaces
to their construction field K. Even if most results can be
stated without introducing arrays of coordinates [49], bases
are required in engineering applications because calculations
are made with arrays of numbers.

E. Notation
In the literature, indices of D-way arrays are sometimes put

in superscripts or in subscripts, depending on the covariant or
contravariant character of corresponding subspaces; this nota-
tion also allows the use the Einstein summation convention.
Because we consider essentially fully contravariant tensors in
this paper, we do not need to make the distinction.

Throughout the paper, arrays of numbers will be printed
in boldface. More precisely, one-way and two-way arrays will
be denoted in bold lowercase and bold uppercase, respectively,
like for instance v and M. Arrays with more than two indices
will be denoted by bold calligraphic symbols, as A. Sets and
Spaces will be noted in script font, like S, whereas tensors
will be printed in calligraphic font, as A. Entries of arrays
v, M and A will be noted vi, Mij and Aij..k, without bold
font because they are scalar numbers. In practice, a tensor A
is often assimilated to its array representation A [46], [16],
[21], which is generally not so much confusing. Nevertheless,
we shall make the distinction in the sequel, to keep the
presentation as clear as possible.

F. Transformations
The tensor product A⊗⊗⊗B between two tensors A ∈ S1 ⊗⊗⊗ S2

and B ∈ S3 ⊗⊗⊗ S4 is a tensor of S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3 ⊗⊗⊗ S4. The conse-
quence is that the orders add up under tensor product.

Example 6: Let A be represented by a 3-way array
A = [Aijk] and B by a four-way array B =

[B`mnp]; then tensor C = A⊗⊗⊗B is represented by the
7-way array of components Cijk`mnp = AijkB`mnp.
With some abuse of notation, the tensor product
is often applied to arrays of coordinates, so that
notation C = A⊗⊗⊗B may be encountered.

If the tensor product increases the order, the contraction
decreases it by 2. Contraction consists in a summation over a
pair of indices. This operation permits to define the mode-k
product between tensors, and can be denoted by •k, where k
indicates which index should be summed.

Example 7: If A and A′ are tensors of order D and
D′, the tensor B = A•kA′ is a tensor of order
D+D′−2 obtained by summing over the kth index.
For instance if (D,D′, k) = (3, 3, 2), this yields
Bijpq =

∑
`Ai`jA

′
p`q . For (D,D′, k) = (2, 2, 1),

we would have the matrix product A •1 A′ =

ATA′. However, when the product is between a
matrix and a tensor of higher order, it has been the
usual practice to always sum over the second matrix
index. For instance if M is a matrix, A•3 M means
that the sum is performed on the 3rd tensor index
and the 2nd matrix index.

It may be convenient to store D-way arrays in matrices.
This transformation is called matrix unfolding or flattening,
and can be performed in different manners, depending on the
arbitrarily chosen ordering [46], [27]. Here, the ordering of
[46] has been retained, but the choice of [27] would work
equally well. In fact, the exact definition is not so important,
provided the inverse map is defined consistently. We shall limit
ourselves to matrices whose number of rows equals one of the
tensor dimensions; this is sometimes referred to as mode-n
unfolding [46]. But it is also possible to associate a D-way
array, D > 3, to a multilinear operator of lower order, see e.g.
[29], [64], [69], [9].

Example 8: Let a 2×2×2 array of coordinates Aijk.
Its mode-n unfoldings A(n) are:

A(1) =

[
A111 A121 A112 A122

A211 A221 A212 A222

]

A(2) =

[
A111 A211 A112 A212

A121 A221 A122 A222

]

A(3) =

[
A111 A211 A121 A221

A112 A212 A122 A222

]
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Remark that the row number of matrix A(n) corre-
sponds to the nth index of tensor A.

The Kronecker product between two matrices A and B of
size I × J and K × L, respectively, is the matrix A ⊗B of
size IK × JL defined blockwise by

A⊗B =

 A11B . . . A1JB
...

...
AI1B . . . AIJB

 .
The Kronecker product is used to represent the tensor product
when bases are fixed, and when tensors are represented by
their array of coordinates unfolded into matrices. It should be
borne in mind that the Kronecker product usually applies to
matrices (although an extended definition has recently been
proposed in [63]), whereas the tensor product is more general
and coordinate-free. Hence they should not be confused.

G. Special tensors
A particularly important class of tensors is that of de-

composable tensors, which are tensor products of vectors.
As already said in Section II-D, they are of the form D =
u⊗⊗⊗ v ⊗⊗⊗ . . .⊗⊗⊗ w, and span the whole tensor space. The corre-
sponding array of coordinates is Dij..k = uivj ..wk. One can
view these tensors as a discretization of a multivariate function
whose variables separate.

Example 9: Take a function of two variables with
separated variables: f(x, y) = u(x)v(y). Then
its discretization takes the form f(xi, yj) =

u(xi)v(yj), and these numbers can be stored in a
rank-one matrix D = uvT.

A tensor is cubical5 if all its spaces of construction are
identical, with same basis. A cubical tensor A is symmetric if
its array of coordinates is invariant under permutation of its
indices: Aσ(ij..k) = Aij..k, ∀σ.

Example 10: The tensor of moments and the tensor
of derivatives, defined in Examples 1, 3 and 4, are
symmetric.

The simplest symmetric array is the diagonal one, defined by
∆ij..k = 0 if (i, j, .., k) 6= (i, i, .., i).

III. DECOMPOSITIONS AND RANKS

A. Tensor rank
Any tensor T can be decomposed (non uniquely) into a

linear combination (with coefficients in K ) of decomposable
tensors:

T =

R∑
r=1

λr D(r), (2)

D(r) = ar ⊗⊗⊗ br ⊗⊗⊗ . . .⊗⊗⊗ cr. If tensor spaces are endowed with
scalar products, one can impose decomposable tensors D(r)
to be built with unit norm vectors, which permits to impose

5the terminology of homogeneous is also used in physics.

λr ∈ R+ if desired. The smallest value R for which (2) holds
is called the tensor rank. The definition of tensor rank can
be traced back to the beginning of the 20th century [38], but
it has been re-introduced in other disciplines under various
names [12], [36], [39], [7], [82], [66].

Example 11: Let the arrays A and B of dimensions
2× 2× 2 be defined by their mode-1 unfoldings:

A(1) =

[
1 0 1 0

0 0 0 0

]

B(1) =

[
0 1 1 0

1 0 0 0

]
Tensor A = [1, 0] ⊗⊗⊗[1, 0] ⊗⊗⊗[1, 1] has rank 1. Tensor
B is symmetric and has rank 3, as will be seen with
T0 in Example 18.

Note that, by definition, a tensor is decomposable if and
only if it has rank one. If the order of a tensor T is ≥ 3, the
rank may depend on the field, in the sense that a real tensor of
rank R may have smaller rank if we allow the decomposition
(2) to be complex, as demonstrated in the example below.

Example 12: Take a real symmetric array Y of
dimensions 2×2×2, defined by its mode-1 unfolding

Y(1) =

[
2 0 0 −2

0 −2 −2 0

]
Then, we need three decomposable tensors in R:

Y = 4

[
1

0

]⊗⊗⊗ 3

+

[
−1

−1

]⊗⊗⊗ 3

+

[
−1

1

]⊗⊗⊗ 3

but only two in C, setting  =
√
−1:

Y =

[
1



]⊗⊗⊗ 3

+

[
1

−

]⊗⊗⊗ 3

Hence its tensor rank in R is 3 whereas it is 2 in C.

Other examples may be found in [48], [18], [46]. Examples
11 and 12 incidentally show that, unlike matrix rank, tensor
rank may exceed all dimensions.

B. Tucker decomposition
At this stage, it is interesting to make a connection with the

matrix Singular Value decomposition (SVD). Two important
features characterize the SVD of a matrix M:

M = UΣVT (3)

namely (i) U and V have orthonormal columns, and (ii) Σ
is diagonal. Consider the decomposition below of a three-way
array, introduced by Tucker in the sixties [85]:

Tijk =
∑
p

∑
q

∑
r

AipBjq Ckr Gpqr (4)

which we shall compactly denote T = (A,B,C) · G. It is
clear that if the number of free parameters in the right-hand
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side of (4) is smaller than the number of equations, then there
will generally be no solution. This happens to be the case
if A, B and C are orthonormal and G is diagonal. In the
quest for existence, we have to choose: either G is diagonal,
but we have to relax the orthogonality constraint on factor
matrices, which will be allowed to have more columns than
rows (this corresponds to decomposition (2)), or we keep the
orthonormality constraint, but allow G to have nonzero extra-
diagonal entries as elaborated in the next section.

C. HOSVD and multilinear ranks
If we impose matrices {A,B,C} to have orthogonal and

unit-norm columns in the Tucker decomposition (4), then we
can make several observations. First, denote by Rn the rank
of T(n), the nth unfolding matrix of T , 1 ≤ n ≤ D = 3.
Rank Rn is called mode-n rank of T , or n-rank in short.
Then the number of columns of A (resp. B, C) does not
need to exceed R1 (resp. R2, R3), and the dimension of the
core tensor may be imposed to be R1 ×R2 ×R3. In addition
Rn cannot exceed6 the tensor rank R defined in (2), nor the
nth dimension. The D-uple of n-ranks is the multilinear rank
of T . Another property is less immediate to capture: the core
array G can be imposed to be all-orthogonal, which means
that all tensor slices of order D − 1 are orthogonal to each
other in every mode; when D = 3 this means:∑

j,k

GαjkGβjk =
∑
i,k

GiαkGiβk =
∑
i,j

GijαGijβ = 0

if α 6= β. See [27] and references therein for more details. It
is worth to notice the elementary fact that for tensors of order
2 (i.e matrices), R1 = R2 = R, and all equal the matrix rank.

Example 13: The multilinear rank of array B de-
fined in Example 11 is (2, 2, 2), whereas that of A
is (1, 1, 1).

D. CP decomposition
On the contrary, if we keep a diagonal form for G, we

end up with the polyadic decomposition [38], also sometimes
called Candecomp or Parafac because of its rediscovery in the
seventies:

Tijk =

R∑
r=1

AirBjrCkr λr (5)

or in compact form T = (A,B,C) ·L, where L is diagonal.
If R is not loo large, this decomposition can be unique (cf.
Section V) and deserves to be called Canonical Polyadic (CP).
Following a practice now adopted in applied mathematics and
engineering [42], [5], we shall subsequently use the acronym
CP, which can also cleverly stand for Candecomp/Parafac.
After inspection, it may be seen that (5) is nothing else but
decomposition (2) in array coordinates. In other words, the CP
decomposition reveals the tensor rank.

6This property is not a surprise, if we view decomposition (2) as a
decomposition of the nth unfolding matrix into a sum of rank-1 matrices
where rows are imposed to have a special structure.

E. Symmetric rank
As already pointed out in Section II-G, a tensor T is sym-

metric if its coordinate array T is invariant by permutations
of indices. If we impose tensors D(r) in (2) to be themselves
symmetric, then we might end up with a larger value of rank
R, denoted Rs, which is referred to as the symmetric rank of
T . It is clear that Rs ≥ R for any symmetric tensor T , since
any constraint on decomposable tensors may increase rank;
we have already observed this fact with the real constraint in
Example 12. It has been conjectured in [19] that rank and
symmetric rank are always equal, but this has not yet been
proved in the general case.

F. Nonnegative rank
When an array is real nonnegative, one may want to

impose rank-1 terms in its CP decomposition to be themselves
nonnegative. The minimal number of terms is then called
the nonnegative rank and is generally strictly larger than the
rank in R. This is already the case for matrices (D = 2) as
shown in the example below, due to Herbert E. Robbins. The
same phenomenon is observed for tensors, although theoretical
results are still lacking.

Example 14: The following matrix has rank 3 since
vector [1,−1,−1, 1] belongs to its kernel. But it can
be proved that its nonnegative rank is 4.

M =


1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1


G. Structured ranks

More generally, when matrix factors are imposed to have a
special structure, such as banded, van der Monde, Toepltiz or
Hankel, the tensor rank may increase, just as in the nonnega-
tive case. Structure can also have an impact on computational
issues [49], [78].

H. Border rank
A tensor has border rank R if it is the limit of tensors of

rank R and not the limit of tensors of smaller rank. Rank and
border rank always coincide for matrices, but not for tensors
of order larger than 2, as shown in the next example.

Example 15: Let u and v be fixed real or com-
plex numbers, and ε a small positive number. Then
1
ε

[
(u+ εv)3 − u3

]
= 3u2v + O(ε). Now if mul-

tiplication is not commutative, we have 3 distinct
terms in the right hand side; this is what happens
for the tensor product, so that ∀ε > 0:

Tε =
1

ε

[
(u + εv)⊗⊗⊗ 3 − u⊗⊗⊗ 3

]
= T0 +O(ε),

T0 = u⊗⊗⊗ u⊗⊗⊗ v + u⊗⊗⊗ v ⊗⊗⊗ u + v ⊗⊗⊗ u⊗⊗⊗ u

hold for any vectors u and v. If the latter are not
collinear, it can be proved that T0 is of rank R = 3,
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but is the limit of tensors Tε, which are all of rank
2. Hence the border rank of T0 is R = 2.

The border rank has been defined and utilized by many
authors, especially in arithmetic complexity [7], [72], [82],
[52]. This concept is crucial in tensor approximation problems,
as addressed in Section VI.

IV. RELATION WITH POLYNOMIALS

Homogeneous polynomials are bijectively related to ten-
sors, which allows to transpose existing results of algebraic
geometry; see e.g. [49], [15], [19], [80], [10], [23], [17] and
references therein. In fact, one can associate the following
polynomial with any array T :

p(x,y, . . . z) =
∑
i,j,..k

Tij..k xiyj . . . zk

Conversely, any homogeneous polynomial of degree D and
partial degree 1 in every variable can be associated with a
(non symmetric) tensor T .

Through this bijection, a decomposable tensor of order D
is translated into a product of D linear forms, and the CP
decomposition can be translated into a linear combination of
such terms:

p(x,y, . . . z) =

R∑
r=1

λr (aT
r x)(bT

r y) . . . (cTr z) (6)

In the case of symmetric tensors, x = y = · · · = z. More
precisely, a symmetric tensor T of order D can be identified
with the homogeneous polynomial of degree D:

p(x) =
∑
i,j,..k

Tij..k xixj . . . xk

in the indeterminates x1, . . . , xn. It can be easily checked
that symmetric tensors of rank one are associated with a
polynomial of the form: a(x)D, where a(x) = aTx is a
linear form. In other words, they are exactly the Dth powers
of a homogeneous linear form. The CP decomposition of T
reduces in this case to:

p(x) =

Rs∑
i=1

ai(x)D (7)

which has been classically called a Waring decomposition
[40]. The minimum number of summands Rs in a Waring
decomposition is the symmetric rank of T , which we have
defined earlier.

Example 16: The polynomials associated with ten-
sors A and B of Example 11 are respectively:
a(x1, x2, y1, y2, z1, z2) = x1y1(z1 + z2) and
b(x1, x2) = 3x21x2.

Example 17: Take the polynomial of degree D = 3:

2x31 − 6x1x
2
2 = (x1 + x2)3 + (x1 − x2)3

= 4(x1)3 − (x1 + x2)3 − (x1 − x2)3

where  =
√
−1. It has complex symmetric rank

equal to 2 and real symmetric rank equal to 3.
This polynomial is actually associated with tensor
Y given in Example 12.

Example 18: Example 15 can be written in terms of
polynomials, and is even easier to understand this
way. Take u = [1, 0] and v = [0, 1]. Then u⊗⊗⊗ 3

and v⊗⊗⊗ 3 are associated with polynomials x31 and
x32 respectively, whereas (u + εv)⊗⊗⊗ 3 is associated
with (x1 + ε x2)3, which can be expanded as x31 +

3ε x21x2+o(ε). This shows that Tε is associated with
3x21x2 + o(ε). Hence Tε tends to T0, because T0 is
associated with 3x21x2. Moreover, the rank of T0 is 3
because 3x21x2 cannot be written as a sum of fewer
than 3 cubes.

V. EXACT DECOMPOSITIONS

Now one can ask oneself the question whether the CP de-
composition defined in (2) and (5) is unique or not. First of all,
the D-way array associated with a Dth order decomposable
tensor D is not uniquely represented by an outer product of
vectors: there remain D − 1 scaling factors of unit modulus.
So we are rather interested in the uniqueness of coefficients
λr ∈ R+ and tensors D(r), which is more meaningful; this
is sometimes called essential uniqueness. We shall see in this
section two ways of assessing uniqueness: almost surely or
deterministically.

A. Expected rank
A naive approach is to count the number of degrees of

freedom on both sides of (6), which is a rewriting of (2) in
terms of polynomials, and say that the number of equations
should be at least as large as the number of unknowns.
To fix the ideas, take a tensor of order D and dimensions
n1 × · · · × nD. It is clear that a necessary condition for
uniqueness of the CP decomposition is that

R

(
(

D∑
i=1

ni)−D + 1

)
≤ N (8)

where N =
∏
i ni. We can proceed similarly for symmetric

tensors and count equations and unknowns in (7). This leads
to

Rs n ≤ Ns (9)

where Ns =
(
n+D−1

D

)
corresponds to the number of free

parameters in a symmetric tensor. Equations (8) and (9) induce
an upper bound on rank, which is called the expected rank,
and is defined as

R ≤ Ro =

⌈
N

1−D +
∑
i ni

⌉
(10)

Rs ≤ Ros =

⌈
Ns
n

⌉
(11)
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When the fraction above is not an integer, there will
always be an infinity of solutions, because of too many free
parameters. When it is an integer, the number of unknowns is
equal to the number of equations, and we could expect that
there is a finite number of solutions. However, things are not
so simple, as early pointed out by Clebsch in the nineteenth
century. In fact, there are exceptions [3], [1], [23], [58].

Example 19: Consider 4th order symmetric tensors
of dimension 3. In that case, Ns/n =

(
6
4

)
/3 = 5 is

an integer. Our hope is disappointed, since 5 forms
are generally not sufficient in their decomposition.
This exception was first noticed by Clebsch from
the polynomial framework: the “generic rank” of
ternary quartics is in fact 6 [33]. This means that
most homogeneous polynomials of degree 4 in 3
variables in C can be written as a sum of 6 linear
forms raised to the 4th power, and not fewer with
probability 1.

B. Typical and generic ranks
Generic (resp. typical) ranks are the ranks that we encounter

with probability one (resp. nonzero probability), when their
entries are drawn independently according to a continuous
probability distribution, hence their importance. Contrary to
the matrix case, they are not maximal; tables of rank values
may be found in [24], as well as simple codes7 to compute
numerically the generic rank of a large panel of tensors.

A striking fact is that only one rank occurs with probability
one (the so-called generic rank) in C, whereas several typical
ranks may exist in R. The generic rank in C is always equal
to the smallest typical rank one would find in R. This problem
was first addressed by Sylvester in XIX century. The case of
real symmetric tensors of dimension 2 is now well understood
[67], [22], [13]. In fact, all the integers between bD+2

2 c and D
have been shown to be typical ranks [8]. If the tensor rank is
smaller than a bound depending on the generic rank (typically
Ro−1 as defined in equations 10-11), there exist almost surely
finitely many CP decompositions. See [23] for a survey of
recent results on almost sure uniqueness.

C. Uniqueness results based on linear algebra
Instead of associating tensors with polynomials and making

use of results borrowed from algebraic geometry, uniqueness
conditions can be obtained by considering particular factor ma-
trices. However, these conditions are generally only sufficient
[41], and often much more restrictive. The most well known is
that published by Kruskal [47] and extended later in [73], [81];
alternate proofs have been derived in [68], [49]. It requires the
following definition: The Kruskal rank of a matrix is the largest
number κ such that any subset of κ columns is full rank. By
construction, Kruskal’s rank cannot exceed matrix rank.

7These codes can be downloaded from the home page of the author.

Example 20: The matrix

A =

 1 0 0 0

0 1 1 0

0 1 0 1


has rank 3, but its Kruskal rank is κ = 2.

The CP decomposition is unique if the sufficient condition
holds:

2R+D − 1 ≤
D∑
d=1

κd (12)

where κd denotes the Kruskal rank of the dth factor matrix
in the CP decomposition. Further recent deterministic results
may be found in [25], [31], [32]. These results do not need
algebraic geometry but advanced linear algebra (i.e. compound
matrices formed of minors). They are sometimes much more
powerful than Kruskal’s bound.

D. Exact computation
Space is lacking to describe various existing algorithms.

However, we provide below some pointers to related litera-
ture, among many others. In [6], algorithms to compute the
symmetric rank of symmetric tensors of small border rank
are proposed. When the rank is small, the symmetric CP
decomposition can be computed with the help of Sylvester’s
algorithm [10]; when it is not unique, one CP decomposition
can still be delivered. In [60], approaches based on special
eigenvector computations are proposed. Direct computation is
proposed in [4] for 2× n× n arrays.

When one tensor dimension is large compared to its rank
and to other dimensions, it is possible to compute the CP
decomposition via a joint congruent diagonalization of its
matrix slices; this has been first proposed in [50] for two
matrix slices. In the presence of errors with more than two
slices, such a diagonalization becomes approximate [25] and
needs more care (cf. next section). In a similar spirit, for low-
rank tensors of order larger than 3, one can also decrease the
order by working jointly on tensor slices of lower orders [29],
or by rearranging the original tensor into another of lower
order but larger dimensions [64].

VI. APPROXIMATE DECOMPOSITIONS

In practice, measurements are always corrupted by some noise,
which almost always has a continuous probability distribution.
For this reason, the tensor rank is generic or typical, and
the CP decomposition is generally not unique. That’s why
a best rank-r approximation must be computed [44] [21].
General-purpose optimization algorithms will generally suffice
to solve the problem, e.g. [77], [65], [46], [21], [84]; they are
widely used but their convergence towards a minimum is not
guaranteed, because the objective function may have only an
infimum.

In fact, low-rank approximations are useful and even un-
avoidable, but unfortunately ill-posed in general [37], [75],
[75], except for special cases of tensors under constraints,
like non negativity [54]. Most algorithms presently utilized
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by engineering communities ignore this fact, which may raise
serious practical problems in a small fraction of cases.

Ill-posedness comes from the fact that the set of tensors of
rank at most R is not closed, as pointed out in section III-H.
Some remedies have been proposed in the literature to face or
circumvent this difficulty. In practice, this means that another
problem is solved, often by imposing constraints in the CP
decomposition.

These include: (i) impose orthogonality between columns
of factor matrices [20] - in Blind Source Separation, this
takes the form of a spatial prewhitening; (ii) impose or-
thogonality between decomposable tensors [45]; (iii) prevent
divergence by bounding coefficients λr [61], [54]; (iv) if the
tensor is nonnegative, use a nonnegative CP [54]; (v) impose
a minimal angle between columns of factor matrices [55];
(vi) compute an exact CP of another tensor8, which has
undergone a multilinear compression via truncated HOSVD
[21], [11]; (vii) compute another decomposition where the
core tensor is block diagonal instead of diagonal [26] [79];
(viii) compute a Joint Approximate Diagonalization (JAD) of
matrix slices, which may be viewed as another decomposition
where the core tensor is not diagonal [62], [87], [89], [2],
[86], [51], [20], [30], [56], [69], [14], as depicted in Figure 1.
The drawbacks of this family of approaches, which become
more and more popular, are three-fold. First, rank must be
smaller than two dimensions; in [25], the latter constraint
is nevertheless relaxed. Second, replacing the core tensor by
its diagonal yields an approximate CP decomposition whose
optimality is not known. Third, a closed subclass of invertible
matrices needs to be (arbitrarily) chosen, and indeed varies
from one algorithm to another. (ix) When one dimension
is much larger than the others, the optimality of this kind
of approach can be significantly improved by imposing a
structure in the diagonalization process [25].

Fig. 1. Because the optimization criteria are different in JAD and CP
decompositions, one does not attempt to zero the same entries. This figure
shows the location of the entries that are not minimized in the core tensor
(i) in the CP decomposition of a 3rd order 4 × 4 × 4 tensor (right), and
(ii) during the execution of a JAD algorithm (left). Note that JAD algorithms
deliver two factor matrices; the entries of third one remain in the core tensor.

Some codes are freely available on the internet. See for
instance home pages of R. Bro, L. De Lathauwer, T. Kolda,
A.H. Phan and P. Comon. A good site to find applications and
related references is the Three-Mode Company’s maintained
by P. Kroonenberg.

8It may happen that the problem remains ill-posed after this type of
compression, because reducing the mode-ranks does not necessarily reduce
tensor rank, even if it often does.

VII. THE CASE OF RANK-ONE APPROXIMATE

The rank-one approximation problem is of interest for at
least two reasons: first it is always well-posed, and second it
shows up in the deflation approach of BSS [20]. In addition,
it is much easier to compute than a full CP decomposition
[43] [28]. This problem may be seen to be related to tensor
eigenvalues [17] [53] [59] [35] [88]. It has been proved
recently that the best rank-1 approximation of a symmetric
tensor is symmetric [34]; a shorter proof can be found in [35],
as well as uniqueness issues. So a question deserves to be
raised: can the exact or approximate CP decompositions be
computed by successive rank-1 approximations? It is already
known that this does not generally work.

In fact, attention should be paid to the fact that subtracting
the best rank-1 approximate does not decrease tensor rank in
general [80], contrary to the matrix case. Simple examples
may be found in [18]; similar examples also exist for non
symmetric or nonnegative tensors. The consequence is that the
rank-1 terms appearing in the best rank-k tensor approximation
are not the same for different values of k. Hence, it is
not possible to compute a full CP decomposition by solving
successive best rank-1 approximations, contrary to what has
been claimed by some authors9. However, whether deflation
works in special cases (such as structured CP decompositions)
is still an open question.

Example 21: The tensor defined by its mode-1 un-
folding

T =

[
1 0 0 1

0 2 1 0

]
is of rank 2. Its best rank-1 approximate is [80]:

Y =

[
0 0 0 0

0 2 0 0

]
And one checks out that the difference

T−Y =

[
1 0 0 1

0 0 1 0

]
is of rank 3. In this example, deflation does not
permit to decrease tensor rank.

VIII. APPLICATIONS

Applications of tensor decompositions (essentially CP) include
arithmetic complexity, separation of variables, Blind Identifi-
cation of linear mixtures, Blind Source Separation, Data Min-
ing, Spectroscopy, Antenna Array Processing, Phylogenetics...
Tucker and HOSVD have other application fields, in which
uniqueness is not requested, like data compression. For reasons
of space, we shall now detail only one application of the
CP decomposition, namely fluorescence spectroscopy [76], for
which very few theoretical results can apply, unfortunately.
The reader is invited to consult e.g. [46], [16], [20] for pointers
to other applications.

9This procedure, called deflation, works in BSS for other reasons. In fact,
BSS does not only reduce to a low-rank tensor approximation, but also
includes a regression stage.
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An optical excitation applied to a solution produces several
effects, including Rayleigh and Raman diffusions, and Fluo-
rescence. If the latter effect can be isolated, it may allow to
accurately measure the relative concentrations of fluorescent
solutes. In fact, at low concentrations and in the presence of
R fluorescent solutes, the Beer-Lambert law can be linearized
and takes the form:

T (x, y, z) = To

R∑
`=1

γ`(x)ε`(y)c`(z)

where x, y and z denote the fluorescence emission wavelength,
the excitation wavelength, and the sample number, respec-
tively, T is the fluorescence intensity measured as a function
of the latter variables, γ`(x) denotes fluorescence emission
spectrum of the `th solute, ε`(y) its absorbance spectrum
(sometimes called excitation spectrum), and c`(z) its relative
concentration. In practice, only a finite number of samples
are available, and measurements are made on discrete values
within a limited spectral range, so that variables x, y and
z take a finite number of values. In other words, we deal
with a CP decomposition of a finite 3-way array, often of
rather large dimensions (several hundreds). The particularity
of this CP decomposition is that T is real nonnegative,
as well as all the terms involved in its CP decomposition.
Hence, R is the nonnegative rank of T . The good news are
that (i) the best low-rank approximate always exists [54],
and that (ii) there are simple efficient numerical algorithms
available for its computation [70]. The bad news are that
known uniqueness results, which we have reviewed in this
paper, are not appropriate for nonnegative CP decompositions.
For instance, if nonnegative rank is plugged in place of rank in
(12), the obtained sufficient condition is more restrictive, and
does not even guarantee that factor matrices are nonnegative.
This is the subject of ongoing research.
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