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Tensors: a Brief Introduction
Pierre Comon⋆, Fellow, IEEE

Abstract—Tensor decompositions are at the core of many
Blind Source Separation (BSS) algorithms, either explicitly or
implicitly. In particular, the Canonical Polyadic (CP) tensor
decomposition plays a central role in identification of under-
determined mixtures. Despite some similarities, CP and Singular
Value Decomposition (SVD) are quite different. More generally,
tensors and matrices enjoy different properties, as pointed out
in this brief introduction.

I. MOTIVATION

O
Riginally, Blind Source Separation (BSS) exploited

mutual statistical independence between sources [20].

Among possible approaches based on the sole hypothesis

of source statistical independence, several use cumulants. In

fact, when random variables are independent, their cumulant

tensor is diagonal [57]. When the source mixture is linear, the

decomposition of the data cumulant tensor into a sum of outer

products yields the columns of the mixing matrix. This is the

first instance of tensor decomposition applied to BSS, even if

it is not always explicit. In that case, the tensor is actually

symmetric. In the presence of noise, the extraction of sources

themselves needs another procedure, based for instance on a

spatial matched filter (SMF) [20].

BSS has then been addressed later in different manners.

A quite interesting class of approaches consists of exploiting

an additional diversity [74]. More precisely, measurements are

usually made in two dimensions, generally space and time. But

if they are made as a function of three (or more) dimensions,

e.g. frequency, polarization, time repetition, etc, the data are

stored in a multi-way array. By treating this array as a matrix,

information is lost. Yet, in some real-world applications, it

is meaningful to assume a multi-linear model for this multi-

way array, which justifies to consider it as a tensor. The

decomposition of the latter into a sum of outer products yields

not only the columns of the mixture, but also an estimate of the

sources. So contrary to the first generation of BSS algorithms,

there is no need to resort to an extracting filter. In addition,

no statistics are to be estimated, so that the performance is

expected to be better for short samples or correlated sources.

Beside numerous books dedicated to applications in physics,

there already exist some surveys that can be used in Signal

Processing. To start with, some background is presented in

[46], i.e. basic engineering tools and a good panel of applica-

tions; a more signal processing oriented tensor overview may

be found in [16]. A quite complete digest, more theoretical

and oriented towards algebraic geometry, can be found in [49].
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The present survey aims at motivating the Signal Processing

readership in diving in the promising world of tensors.

II. THE WORLD OF TENSORS

Tensors have been introduced at the end of the nineteenth

century with the development of the differential calculus.

They have then been omnipresent in physics, to express

laws independently of coordinate systems. Yet, a tensor is

essentially a mapping from a linear space to another, whose

coordinates transform multilinearly under a change of bases,

as subsequently detailed. For an easier reading, we shall resort

to arrays of coordinates, when this indeed eases presentation;

interested readers may want to refer to [23], [49] for a more

advanced coordinate-free presentation.

E. Waring

(1736-1798)

J. J. Sylvester

(1814 - 1897)

A. Clebsch

(1833-1872)

A. Linearity

Linearity expresses the property of a map µ defined on a

vector space S onto another vector space S
′ built on the same

field1
K that: µ(αx+βy) = αµ(x)+βµ(y), ∀x,y ∈ S, α, β ∈

K. If S and S
′ are of finite dimension, then this map can be

represented by a matrix of coordinates, once the bases of S

and S
′ have been fixed. We see that every linear map can

be associated with a matrix, say A, so that µ(x) = Ax. On

the other hand, every matrix does not uniquely define a map.

In fact, a matrix A could for instance define a bilinear form

from S × S
′ onto K, i.e f(x1,x2) = xT

1Ax2. Hence, the

correspondence between maps and arrays of coordinates is

not one-to-one.

B. Bilinearity

Let’s start with a simple example.

Example 1: Consider two multi-dimensional zero-

mean random variables z1 and z2, and denote the

cross-covariance matrix by G = E{z1 zT2 }. We see

that the covariance is linear with respect to z1 and

z2, which is referred to as bilinearity. Now suppose

that z1 and z2 represent two phenomena that are

1As far as we are concerned, K will be either the field of real numbers R

or complex numbers C.
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measured in a given coordinate system. G gives

an indication of their correlation. If we change the

coordinate system, the covariance matrix changes.

More precisely, if z′1 = Az1 and z′2 = Bz2, then

G′ = E{z′1 z′2T} can be written G′ = AGBT.

We see that G′ 6= G whereas the phenomena

remain the same. So we must distinguish between

the physical phenomena that are coordinate-free,

and the arrays of measurements we made. And

because of bilinearity, we know how to go from one

matrix representation to another. We may say that

the covariance object is a tensor of order 2, and can

be represented by a matrix in any given coordinate

system.

What we just saw in Example 1 can be put in more formal

terms. Now assume a linear change of coordinates is made in

spaces S and S
′ defined by matrices {A,B} so that the new

coordinates express as x′

1 = Ax1 and x′

2 = Bx2. A tensor

G represented in the original basis with an array G will be

represented (as in Example 1) in the new basis by the new

array G′ whose coordinates are:

G′

ij =
∑

p,q

AipBjqGpq

This can be compactly denoted by2: G′ = (A,B) · G. This

will now be extended to orders higher than 2.

C. Multilinearity

Now assume Sd are D vector spaces, 1 ≤ d ≤ D, and

suppose f is a map from S1 × · · · × SD onto K. Map f
is said to be multilinear if f(x1, . . . ,xD) is linear with

respect to every variable xd, 1 ≤ d ≤ D. In other words,

f(x1, . . . , αxd+βyd, . . . ,xD) = αf(x1, . . . ,xd, . . . ,xD)+
βf(x1, . . . ,yd, . . . ,xD), ∀d, ∀α, β ∈ K. This map is actually

a multilinear form. As in the previous section, map f can be

represented by an array of coordinates, once the bases of Sd

have been fixed, 1 ≤ d ≤ D, and this array needs D indices.

D. Tensors

For the sake of simplicity, let us focus on D = 3,

which is sufficient to give an idea. Because of mul-

tilinearity, special properties are satisfied. For instance

f(αx1,x2,x3) = f(x1,x2, αx3), so that the two triplets of

vectors (αx1,x2,x3) and (x1,x2, αx3) have the same image.

When dealing with multilinear forms, it is hence relevant

to consider the equivalence classes defined by the relation

(x,y, z) ∼ (x′,y′, z′) if there exist α, β, γ ∈ K such that

(x′,y′, z′) = (αx, βy, γz), with αβγ = 1. Each class may

be regarded as a decomposable3 tensor. The space spanned

by these classes is denoted as S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3, where ⊗⊗⊗ is called

the tensor product. An element of this space is called a tensor

of order4 3. In more mathematical words, one would say that

S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3 is the quotient space S1 × S2 × S3/∼.

2Another notation, equally acceptable, is sometimes used: G′ = JG;A,BK.
3Decomposable tensors are also called pure or simple.
4In physics, the word rank is also sometimes used, but we shall avoid it

because of the possible confusion with the more standard meaning related to
rank of a linear operator.

Example 2: Let x1 ∈ S1, x2 ∈ S2 and x3 ∈ S3.

Tensors 6x1 ⊗⊗⊗x2 ⊗⊗⊗x3 and x1 ⊗⊗⊗ 2x2 ⊗⊗⊗ 3x3 are the

same, but in S1 × S2 × S3, vectors (6x1, x2, x3)
and (x1, 2x2, 3x3) are different.

If a linear change of basis is made in space S1 (resp. S2 and

S3), as x′ = Ax (resp. y′ = By and z′ = Cz), then the array

T ′ defining multilinear form f in the new coordinate system

expresses as a function of T . For so-called contravariant

tensors, the relationship is

T ′

ijk =
∑

pqr

AipBjqCkr Tpqr (1)

as in Example 1, or in compact form: T ′ = (A,B,C) ·T . On

the other hand, there also exist covariant tensors for which the

inverses of the above matrices are instead involved (cf. Exam-

ple 4), and even mixed tensors that are partly covariant and

partly contravariant [71], [23]. However, we shall concentrate

only on contravariant tensors in this paper, which follow (1)

under a multilinear transformation. Note that (1) holds true for

contravariant tensors even if the linear transforms (A,B,C)
are not invertible; they can even be rectangular matrices. This

property is crucial in BSS when mixtures are underdetermined

[20], [83].

Example 3: Consider three multi-dimensional ran-

dom variables x, y and z. Then the 3rd order

moment tensor M is represented by the 3rd order

array Mijk = E{xiyjzk}. As in the case of 2nd

order moments, it is a contravariant tensor. In fact,

if x′ = Ax, y′ = By and z′ = Cz, then

M′ = (A,B,C) · M as in (1). It turns out that

cumulants may also be seen as tensors as pointed

out in [57]. Because cross-cumulants of independent

random variables are null at any order, they have

been extensively used in BSS. For instance, the

cumulant tensor of order 2 is nothing else but the

covariance matrix, and accounts for the correlation

at order 2 only; it is not sufficient to account for sta-

tistical independence unless variables are Gaussian.

Example 4: The derivatives of order D of a multi-

variate scalar function can be stored in a covariant

tensor of order D. For instance at order 2, if Aij =
∂2f/∂xi∂xj , x′ = Mx and A′

pq = ∂2f/∂x′

p∂x
′

q ,

then A′ = NTAN, with N = M−1. From now on

and for the sake of simplicity, we shall only consider

contravariant tensors in this paper.

More generally, a tensor of order D is an element of

S1 ⊗⊗⊗ . . .⊗⊗⊗ SD, and can be represented by a D-way array T

once bases of spaces Sd have been fixed. Under multilinear

transforms, these arrays of coordinates change similarly to (1).

Example 5: In physics, Hooke’s law relates the

deformation (strain) of a solid under the action of

forces (stress). It states that stress F is related to

strain X by the elasticity tensor as: F = C •X ,

where • is a contraction operator (see Section II-F

for a formal definition). Once bases are fixed in



3

the stress and strain spaces, this relationship can be

written in terms of arrays of coordinates:

Fij =
∑

p,q

Cijpq Xpq

The elasticity tensor C is of order 4. Strain and stress

are tensors of order 2, which are represented by

matrices.

As illustrated above, it should be kept in mind that an array

of coordinates alone does not suffice to define a tensor: spaces

and bases need to be defined. Since we are interested mainly

in manipulating arrays, and not so much in the map they

may represent, arrays will be subsequently associated with

multilinear forms, that is, maps from a product of spaces

to their construction field K. Even if most results can be

stated without introducing arrays of coordinates [49], bases

are required in engineering applications because calculations

are made with arrays of numbers.

E. Notation

In the literature, indices of D-way arrays are sometimes put

in superscripts or in subscripts, depending on the covariant or

contravariant character of corresponding subspaces; this nota-

tion also allows the use the Einstein summation convention.

Because we consider essentially fully contravariant tensors in

this paper, we do not need to make the distinction.

Throughout the paper, arrays of numbers will be printed

in boldface. More precisely, one-way and two-way arrays will

be denoted in bold lowercase and bold uppercase, respectively,

like for instance v and M. Arrays with more than two indices

will be denoted by bold calligraphic symbols, as A. Sets and

Spaces will be noted in script font, like S, whereas tensors

will be printed in calligraphic font, as A. Entries of arrays

v, M and A will be noted vi, Mij and Aij..k, without bold

font because they are scalar numbers. In practice, a tensor A
is often assimilated to its array representation A [46], [16],

[21], which is generally not so much confusing. Nevertheless,

we shall make the distinction in the sequel, to keep the

presentation as clear as possible.

F. Transformations

The tensor product A⊗⊗⊗B between two tensors A ∈ S1 ⊗⊗⊗ S2

and B ∈ S3 ⊗⊗⊗ S4 is a tensor of S1 ⊗⊗⊗ S2 ⊗⊗⊗ S3 ⊗⊗⊗ S4. The conse-

quence is that the orders add up under tensor product.

Example 6: Let A be represented by a 3-way array

A = [Aijk] and B by a four-way array B =
[Bℓmnp]; then tensor C = A⊗⊗⊗B is represented by the

7-way array of components Cijkℓmnp = AijkBℓmnp.

With some abuse of notation, the tensor product

is often applied to arrays of coordinates, so that

notation C = A⊗⊗⊗B may be encountered.

If the tensor product increases the order, the contraction

decreases it by 2. Contraction consists in a summation over a

pair of indices. This operation permits to define the mode-k
product between tensors, and can be denoted by •k, where k
indicates which index should be summed.

Example 7: If A and A′ are tensors of order D and

D′, the tensor B = A•k A′ is a tensor of order

D+D′−2 obtained by summing over the kth index.

For instance if (D,D′, k) = (3, 3, 2), this yields

Bijpq =
∑

ℓ AiℓjA
′

pℓq . For (D,D′, k) = (2, 2, 1),
we would have the matrix product A •1 A′ =
ATA′. However, when the product is between a

matrix and a tensor of higher order, it has been the

usual practice to always sum over the second matrix

index. For instance if M is a matrix, A•3 M means

that the sum is performed on the 3rd tensor index

and the 2nd matrix index.

It may be convenient to store D-way arrays in matrices.

This transformation is called matrix unfolding or flattening,

and can be performed in different manners, depending on the

arbitrarily chosen ordering [46], [27]. Here, the ordering of

[46] has been retained, but the choice of [27] would work

equally well. In fact, the exact definition is not so important,

provided the inverse map is defined consistently. We shall limit

ourselves to matrices whose number of rows equals one of the

tensor dimensions; this is sometimes referred to as mode-n
unfolding [46]. Example 8 illustrates how to relate a 3rd order

tensor to its 3 flattening matrices. But it is also possible to

associate a D-way array, D > 3, to a multilinear operator of

lower order, see e.g. [29], [64], [69], [9].

Example 8: Let a 2×2×2 array of coordinates Aijk.

Its mode-n unfoldings A(n) are:

A(1) =

[

A111 A121 A112 A122

A211 A221 A212 A222

]

A(2) =

[

A111 A211 A112 A212

A121 A221 A122 A222

]

A(3) =

[

A111 A211 A121 A221

A112 A212 A122 A222

]

Remark that the row number of matrix A(n) corre-

sponds to the nth index of tensor A.

The Kronecker product between two matrices A and B of

size I × J and K × L, respectively, is the matrix A ⊠B of

size IK × JL defined blockwise by

A⊠B =







A11B . . . A1JB
...

...

AI1B . . . AIJB






.

The Kronecker product is used to represent the tensor product

when bases are fixed, and when tensors are represented by

their array of coordinates unfolded into matrices. It should be

borne in mind that the Kronecker product usually applies to

matrices (although an extended definition has recently been

proposed in [63]), whereas the tensor product is more general

and coordinate-free. Hence they should not be confused.

G. Special tensors

A particularly important class of tensors is that of de-

composable tensors, which are tensor products of vectors.

As already said in Section II-D, they are of the form D =
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u⊗⊗⊗v⊗⊗⊗ . . .⊗⊗⊗w, and span the whole tensor space. The corre-

sponding array of coordinates is Dij..k = uivj ..wk. One can

view these tensors as a discretization of a multivariate function

whose variables separate.

Example 9: Take a function of two variables with

separated variables: f(x, y) = u(x)v(y). Then

its discretization takes the form f(xi, yj) =
u(xi)v(yj), and these numbers can be stored in a

rank-one matrix D = uvT.

A tensor is cubical5 if all its spaces of construction are

identical, with same basis. A cubical tensor A is symmetric if

its array of coordinates is invariant under permutation of its

indices: Aσ(ij..k) = Aij..k, ∀σ.

Example 10: The tensor of moments and the tensor

of derivatives, defined in Examples 1, 3 and 4, are

symmetric.

The simplest symmetric array is the diagonal one, defined by

∆ij..k = 0 if (i, j, .., k) 6= (i, i, .., i).

III. DECOMPOSITIONS AND RANKS

A. Tensor rank

Any tensor T can be decomposed (non uniquely) into a

linear combination (with coefficients in K ) of decomposable

tensors:

T =

R
∑

r=1

λr D(r), (2)

D(r) = ar ⊗⊗⊗br ⊗⊗⊗ . . .⊗⊗⊗ cr. If tensor spaces are endowed with

scalar products, one can impose decomposable tensors D(r)
to be built with unit norm vectors, which permits to impose

λr ∈ R
+ if desired. The smallest value R for which (2) holds

is called the tensor rank. The definition of tensor rank can

be traced back to the beginning of the 20th century [38], but

it has been re-introduced in other disciplines under various

names [12], [36], [39], [7], [82], [66].

Example 11: Let the arrays A and B of dimensions

2× 2× 2 be defined by their mode-1 unfoldings:

A(1) =

[

1 0 1 0
0 0 0 0

]

B(1) =

[

0 1 1 0
1 0 0 0

]

Tensor A = [1, 0]⊗⊗⊗[1, 0]⊗⊗⊗[1, 1] has rank 1. Tensor

B is symmetric and has rank 3, as will be seen with

T0 in Example 18.

Note that, by definition, a tensor is decomposable if and

only if it has rank one. If the order of a tensor T is ≥ 3, the

rank may depend on the field, in the sense that a real tensor of

rank R may have smaller rank if we allow the decomposition

(2) to be complex, as demonstrated in the example below.

Example 12: Take a real symmetric array Y of

dimensions 2×2×2, defined by its mode-1 unfolding

Y(1) =

[

2 0 0 −2
0 −2 −2 0

]

5the terminology of homogeneous is also used in physics.

Then, we need three decomposable tensors in R:

Y = 4

[

1
0

]⊗⊗⊗ 3

+

[

−1
−1

]⊗⊗⊗ 3

+

[

−1
1

]⊗⊗⊗ 3

but only two in C, setting  =
√
−1:

Y =

[

1


]⊗⊗⊗ 3

+

[

1
−

]⊗⊗⊗ 3

Hence its tensor rank in R is 3 whereas it is 2 in C.

Other examples may be found in [48], [18], [46]. Examples

11 and 12 incidentally show that, unlike matrix rank, tensor

rank may exceed all dimensions.

B. Tucker decomposition

At this stage, it is interesting to make a connection with the

matrix Singular Value decomposition (SVD). Two important

features characterize the SVD of a matrix M:

M = UΣVT (3)

namely (i) U and V have orthonormal columns, and (ii) Σ

is diagonal. Consider the decomposition below of a three-way

array, introduced by Tucker in the sixties [85]:

Tijk =
∑

p

∑

q

∑

r

Aip Bjq Ckr Gpqr (4)

which we shall compactly denote T = (A,B,C) · G. It is

clear that if the number of free parameters in the right-hand

side of (4) is smaller than the number of equations, then there

will generally be no solution. This happens to be the case

if A, B and C are orthonormal and G is diagonal. In the

quest for existence, we have to choose: either G is diagonal,

but we have to relax the orthogonality constraint on factor

matrices, which will be allowed to have more columns than

rows (this corresponds to decomposition (2)), or we keep the

orthonormality constraint, but allow G to have nonzero extra-

diagonal entries as elaborated in the next section.

C. HOSVD and multilinear ranks

If we impose matrices {A,B,C} to have orthogonal and

unit-norm columns in the Tucker decomposition (4), then we

can make several observations. First, denote by Rn the rank

of T(n), the nth unfolding matrix of T , 1 ≤ n ≤ D = 3.

Rank Rn is called mode-n rank of T , or n-rank in short.

Then the number of columns of A (resp. B, C) does not

need to exceed R1 (resp. R2, R3), and the dimension of the

core tensor may be imposed to be R1 ×R2 ×R3. In addition

Rn cannot exceed6 the tensor rank R defined in (2), nor the

nth dimension. The D-uple of n-ranks is the multilinear rank

of T . Another property is less immediate to capture: the core

array G can be imposed to be all-orthogonal, which means

that all tensor slices of order D − 1 are orthogonal to each

other in every mode; when D = 3 this means:
∑

j,k

GαjkGβjk =
∑

i,k

GiαkGiβk =
∑

i,j

GijαGijβ = 0

6This property is not a surprise, if we view decomposition (2) as a
decomposition of the nth unfolding matrix into a sum of rank-1 matrices
where rows are imposed to have a special structure.
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if α 6= β. See [27] and references therein for more details. It

is worth to notice the elementary fact that for tensors of order

2 (i.e matrices), R1 = R2 = R, and all equal the matrix rank.

Example 13: The multilinear rank of array B de-

fined in Example 11 is (2, 2, 2), whereas that of A

is (1, 1, 1).

D. CP decomposition

On the contrary, if we keep a diagonal form for G, we

end up with the polyadic decomposition [38], also sometimes

called Candecomp or Parafac because of its rediscovery in the

seventies:

Tijk =

R
∑

r=1

AirBjrCkr λr (5)

or in compact form T = (A,B,C) ·L, where L is diagonal.

If R is not loo large, this decomposition can be unique (cf.

Section V) and deserves to be called Canonical Polyadic (CP).

Following a practice now adopted in applied mathematics and

engineering [42], [5], we shall subsequently use the acronym

CP, which can also cleverly stand for Candecomp/Parafac.

After inspection, it may be seen that (5) is nothing else but

decomposition (2) in array coordinates. In other words, the CP

decomposition reveals the tensor rank.

E. Symmetric rank

As already pointed out in Section II-G, a tensor T is sym-

metric if its coordinate array T is invariant by permutations

of indices. If we impose tensors D(r) in (2) to be themselves

symmetric, then we might end up with a larger value of rank,

denoted Rs, which is referred to as the symmetric rank of T .

It is clear that Rs ≥ R for any symmetric tensor T , since

any constraint on decomposable tensors may increase rank;

we have already observed this fact with the real constraint in

Example 12. It has been conjectured in [19] that rank and

symmetric rank are always equal, but this has not yet been

proved in the general case.

F. Nonnegative rank

When an array is real nonnegative, one may want to

impose rank-1 terms in its CP decomposition to be themselves

nonnegative. The minimal number of terms is then called

the nonnegative rank and is generally strictly larger than the

rank in R. This is already the case for matrices (D = 2) as

shown in the example below, due to Herbert E. Robbins. The

same phenomenon is observed for tensors, although theoretical

results are still lacking.

Example 14: The following matrix has rank 3 since

vector [1,−1,−1, 1] belongs to its kernel. But it can

be proved that its nonnegative rank is 4.

M =









1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1









G. Structured ranks

More generally, when matrix factors are imposed to have a

special structure, such as banded, van der Monde, Toepltiz or

Hankel, the tensor rank may increase, just as in the nonnega-

tive case. Structure can also have an impact on computational

issues [49], [78].

H. Border rank

A tensor has border rank R if it is the limit of tensors of

rank R and not the limit of tensors of smaller rank. Rank and

border rank always coincide for matrices, but not for tensors

of order larger than 2, as shown in the next example.

Example 15: Let u and v be fixed real or com-

plex numbers, and ε a small positive number. Then
1
ε

[

(u+ εv)3 − u3
]

= 3u2v + O(ε). Now if mul-

tiplication is not commutative, we have 3 distinct

terms in the right hand side; this is what happens

for the tensor product, so that ∀ε > 0:

Tε =
1

ε

[

(u+ εv)⊗⊗⊗ 3 − u⊗⊗⊗ 3
]

= T0 +O(ε),

T0 = u⊗⊗⊗u⊗⊗⊗v + u⊗⊗⊗v⊗⊗⊗u+ v⊗⊗⊗u⊗⊗⊗u

hold for any vectors u and v. If the latter are not

collinear, it can be proved that T0 is of rank R = 3,

but is the limit of tensors Tε, which are all of rank

2. Hence the border rank of T0 is R = 2.

The border rank has been defined and utilized by many

authors, especially in arithmetic complexity [7], [72], [82],

[52]. This concept is crucial in tensor approximation problems,

as addressed in Section VI.

IV. RELATION WITH POLYNOMIALS

Homogeneous polynomials are bijectively related to ten-

sors, which allows to transpose existing results of algebraic

geometry; see e.g. [49], [15], [19], [80], [10], [23], [17] and

references therein. In fact, one can associate the following

polynomial with any array T :

p(x,y, . . . z) =
∑

i,j,..k

Tij..k xiyj . . . zk

Conversely, any homogeneous polynomial of degree D and

partial degree 1 in every variable can be associated with a

(non symmetric) tensor T .

Through this bijection, a decomposable tensor of order D
is translated into a product of D linear forms, and the CP

decomposition can be translated into a linear combination of

such terms:

p(x,y, . . . z) =
R
∑

r=1

λr (a
T

r x)(b
T

r y) . . . (c
T

r z) (6)

In the case of symmetric tensors, x = y = · · · = z. More

precisely, a symmetric tensor T of order D can be identified

with the homogeneous polynomial of degree D:

p(x) =
∑

i,j,..k

Tij..k xixj . . . xk
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in the indeterminates x1, . . . , xn. It can be easily checked

that symmetric tensors of rank one are associated with a

polynomial of the form: a(x)D, where a(x) = aTx is a

linear form. In other words, they are exactly the Dth powers

of a homogeneous linear form. The CP decomposition of T
reduces in this case to:

p(x) =

Rs
∑

i=1

ai(x)
D (7)

which has been classically called a Waring decomposition

[40]. The minimum number of summands Rs in a Waring

decomposition is the symmetric rank of T , which we have

defined earlier.

Example 16: The polynomials associated with ten-

sors A and B of Example 11 are respectively:

a(x1, x2, y1, y2, z1, z2) = x1y1(z1 + z2) and

b(x1, x2) = 3x2
1x2.

Example 17: Take the polynomial of degree D = 3:

2x3
1 − 6x1x

2
2 = (x1 + x2)

3 + (x1 − x2)
3

= 4(x1)
3 − (x1 + x2)

3 − (x1 − x2)
3

where  =
√
−1. It has complex symmetric rank

equal to 2 and real symmetric rank equal to 3.

This polynomial is actually associated with tensor

Y given in Example 12.

Example 18: Example 15 can be written in terms of

polynomials, and is even easier to understand this

way. Take u = [1, 0] and v = [0, 1]. Then u⊗⊗⊗ 3

and v⊗⊗⊗ 3 are associated with polynomials x3
1 and

x3
2 respectively, whereas (u + εv)⊗⊗⊗ 3 is associated

with (x1 + ε x2)
3, which can be expanded as x3

1 +
3ε x2

1x2+o(ε). This shows that Tε is associated with

3x2
1x2 + o(ε). Hence Tε tends to T0, because T0 is

associated with 3x2
1x2. Moreover, the rank of T0 is 3

because 3x2
1x2 cannot be written as a sum of fewer

than 3 cubes.

V. EXACT DECOMPOSITIONS

Now one can ask oneself the question whether the CP de-

composition defined in (2) and (5) is unique or not. First of all,

the D-way array associated with a Dth order decomposable

tensor D is not uniquely represented by an outer product of

vectors: there remain D − 1 scaling factors of unit modulus.

So we are rather interested in the uniqueness of coefficients

λr ∈ R
+ and tensors D(r), which is more meaningful; this

is sometimes called essential uniqueness. We shall see in this

section two ways of assessing uniqueness: almost surely or

deterministically.

A. Expected rank

A naive approach is to count the number of degrees of

freedom on both sides of (6), which is a rewriting of (2) in

terms of polynomials, and say that the number of equations

should be at least as large as the number of unknowns.

To fix the ideas, take a tensor of order D and dimensions

n1 × · · · × nD. It is clear that a necessary condition for

uniqueness of the CP decomposition is that

R

(

(

D
∑

i=1

ni)−D + 1

)

≤ N (8)

where N =
∏

i ni. We can proceed similarly for symmetric

tensors and count equations and unknowns in (7). This leads

to

Rs n ≤ Ns (9)

where Ns =
(

n+D−1
D

)

corresponds to the number of free

parameters in a symmetric tensor. Equations (8) and (9) induce

an upper bound on rank, which is called the expected rank,

and is defined as

R ≤ Ro =

⌈

N

1−D +
∑

i ni

⌉

(10)

Rs ≤ Ro
s =

⌈

Ns

n

⌉

(11)

When the fraction above is not an integer, there will

always be an infinity of solutions, because of too many free

parameters. When it is an integer, the number of unknowns is

equal to the number of equations, and we could expect that

there is a finite number of solutions. However, things are not

so simple, as early pointed out by Clebsch in the nineteenth

century. In fact, there are exceptions [3], [1], [23], [58].

Example 19: Consider 4th order symmetric tensors

of dimension 3. In that case, Ns/n =
(

6
4

)

/3 = 5 is

an integer. Our hope is disappointed, since 5 forms

are generally not sufficient in their decomposition.

This exception was first noticed by Clebsch from

the polynomial framework: the “generic rank” of

ternary quartics is in fact 6 [33]. This means that

most homogeneous polynomials of degree 4 in 3

variables in C can be written as a sum of 6 linear

forms raised to the 4th power, and not fewer with

probability 1.

B. Typical and generic ranks

Generic (resp. typical) ranks are the ranks that we encounter

with probability one (resp. nonzero probability), when their

entries are drawn independently according to a continuous

probability distribution, hence their importance. Contrary to

the matrix case, they are not maximal; tables of rank values

may be found in [24], as well as simple codes7 to compute

numerically the generic rank of a large panel of tensors.

A striking fact is that only one rank occurs with probability

one (the so-called generic rank) in C, whereas several typical

ranks may exist in R. The generic rank in C is always equal

to the smallest typical rank one would find in R. This problem

was first addressed by Sylvester in XIX century. The case of

real symmetric tensors of dimension 2 is now well understood

[67], [22], [13]. In fact, all the integers between ⌊D+2
2 ⌋ and D

have been shown to be typical ranks [8]. If the tensor rank is

7Codes can be downloaded from the home page of the author.
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smaller than a bound depending on the generic rank (typically

Ro−1 as defined in equations 10-11), there exist almost surely

finitely many CP decompositions. See [23] for a survey of

recent results on almost sure uniqueness.

C. Uniqueness results based on linear algebra

Instead of associating tensors with polynomials and making

use of results borrowed from algebraic geometry, uniqueness

conditions can be obtained by considering particular factor ma-

trices. However, these conditions are generally only sufficient

[41], and often much more restrictive. The most well known is

that published by Kruskal [47] and extended later in [73], [81];

alternate proofs have been derived in [68], [49]. It requires the

following definition: The Kruskal rank of a matrix is the largest

number κ such that any subset of κ columns is full rank. By

construction, Kruskal’s rank cannot exceed matrix rank.

Example 20: The matrix

A =





1 0 0 0
0 1 1 0
0 1 0 1





has rank 3, but its Kruskal rank is κ = 2.

The CP decomposition is unique if the sufficient condition

holds:

2R+D − 1 ≤
D
∑

d=1

κd (12)

where κd denotes the Kruskal rank of the dth factor matrix

in the CP decomposition. Further recent deterministic results

may be found in [25], [31], [32]. These results do not need

algebraic geometry but advanced linear algebra (i.e. compound

matrices formed of minors). They are sometimes much more

powerful than Kruskal’s bound.

D. Exact computation

Space is lacking to describe various existing algorithms.

However, we provide below some pointers to related litera-

ture, among many others. In [6], algorithms to compute the

symmetric rank of symmetric tensors of small border rank

are proposed. When the rank is small, the symmetric CP

decomposition can be computed with the help of Sylvester’s

algorithm [10]; when it is not unique, one CP decomposition

can still be delivered. In [60], approaches based on special

eigenvector computations are proposed. Direct computation is

proposed in [4] for 2× n× n arrays.

When one tensor dimension is large compared to its rank

and to other dimensions, it is possible to compute the CP

decomposition via a joint congruent diagonalization of its

matrix slices; this has been first proposed in [50] for two

matrix slices. In the presence of errors with more than two

slices, such a diagonalization becomes approximate [25] and

needs more care (cf. next section). In a similar spirit, for low-

rank tensors of order larger than 3, one can also decrease the

order by working jointly on tensor slices of lower orders [29],

or by rearranging the original tensor into another of lower

order but larger dimensions [64].

VI. APPROXIMATE DECOMPOSITIONS

In practice, measurements are always corrupted by some noise,

which almost always has a continuous probability distribution.

For this reason, the tensor rank is generic or typical, and

the CP decomposition is generally not unique. That’s why

a best rank-r approximation must be computed [44] [21].

General-purpose optimization algorithms will generally suffice

to solve the problem, e.g. [77], [65], [46], [21], [84]; they are

widely used but their convergence towards a minimum is not

guaranteed, because the objective function may have only an

infimum.

In fact, low-rank approximations are useful and even un-

avoidable, but unfortunately ill-posed in general [37], [75],

[75], except for special cases of tensors under constraints,

like non negativity [54]. Most algorithms presently utilized

by engineering communities ignore this fact, which may raise

serious practical problems in a small fraction of cases.

Ill-posedness comes from the fact that the set of tensors of

rank at most R is not closed, as pointed out in section III-H.

Some remedies have been proposed in the literature to face or

circumvent this difficulty. In practice, this means that another

problem is solved, often by imposing constraints in the CP

decomposition.

These include: (i) impose orthogonality between columns

of factor matrices [20] - in Blind Source Separation, this

takes the form of a spatial prewhitening; (ii) impose or-

thogonality between decomposable tensors [45]; (iii) prevent

divergence by bounding coefficients λr [61], [54]; (iv) if the

tensor is nonnegative, use a nonnegative CP [54]; (v) impose

a minimal angle between columns of factor matrices [55];

(vi) compute an exact CP of another tensor8, which has

undergone a multilinear compression via truncated HOSVD

[21], [11]; (vii) compute another decomposition where the

core tensor is block diagonal instead of diagonal [26] [79];

(viii) compute a Joint Approximate Diagonalization (JAD) of

matrix slices, which may be viewed as another decomposition

where the core tensor is not diagonal [62], [87], [89], [2],

[86], [51], [20], [30], [56], [69], [14], as depicted in Figure 1.

The drawbacks of this family of approaches, which become

more and more popular, are three-fold. First, rank must be

smaller than two dimensions; in [25], the latter constraint

is nevertheless relaxed. Second, replacing the core tensor by

its diagonal yields an approximate CP decomposition whose

optimality is not known. Third, a closed subclass of invertible

matrices needs to be (arbitrarily) chosen, and indeed varies

from one algorithm to another. (ix) When one dimension

is much larger than the others, the optimality of this kind

of approach can be significantly improved by imposing a

structure in the diagonalization process [25].

Some codes are freely available on the internet. See for

instance home pages of R. Bro, L. De Lathauwer, T. Kolda,

A.H. Phan and P. Comon [90], [91], [92], [93], [94]. A good

site to find applications and related references is the Three-

Mode Company’s maintained by P. Kroonenberg [95].

8It may happen that the problem remains ill-posed after this type of
compression, because reducing the mode-ranks does not necessarily reduce
tensor rank, even if it often does.
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Fig. 1. Because the optimization criteria are different in JAD and CP
decompositions, one does not attempt to zero the same entries. This figure
shows the location of the entries that are not minimized in the core tensor
(i) in the CP decomposition of a 3rd order 4 × 4 × 4 tensor (right), and
(ii) during the execution of a JAD algorithm (left). Note that JAD algorithms
deliver two factor matrices; the entries of third one remain in the core tensor.

VII. THE CASE OF RANK-ONE APPROXIMATE

The rank-one approximation problem is of interest for at

least two reasons: first it is always well-posed, and second it

shows up in the deflation approach of BSS [20]. In addition,

it is much easier to compute than a full CP decomposition

[43] [28]. This problem may be seen to be related to tensor

eigenvalues [17] [53] [59] [35] [88]. It has been proved

recently that the best rank-1 approximation of a symmetric

tensor is symmetric [34]; a shorter proof can be found in [35],

as well as uniqueness issues. So a question deserves to be

raised: can the exact or approximate CP decompositions be

computed by successive rank-1 approximations? It is already

known that this does not generally work.

In fact, attention should be paid to the fact that subtracting

the best rank-1 approximate does not decrease tensor rank in

general [80], contrary to the matrix case. Simple examples

may be found in [18]; similar examples also exist for non

symmetric or nonnegative tensors. The consequence is that the

rank-1 terms appearing in the best rank-k tensor approximation

are not the same for different values of k. Hence, it is

not possible to compute a full CP decomposition by solving

successive best rank-1 approximations, contrary to what has

been claimed by some authors9. However, whether deflation

works in special cases (such as structured CP decompositions)

is still an open question.

Example 21: The tensor defined by its mode-1 un-

folding
T =

[

1 0 0 1
0 2 1 0

]

is of rank 2. Its best rank-1 approximate is [80]:

Y =

[

0 0 0 0
0 2 0 0

]

And one checks out that the difference

T−Y =

[

1 0 0 1
0 0 1 0

]

is of rank 3. In this example, deflation does not

permit to decrease tensor rank.

9This procedure, called deflation, works in BSS for other reasons. In fact,
BSS does not only reduce to a low-rank tensor approximation, but also
includes a regression stage.

VIII. APPLICATIONS

Applications of tensor decompositions (essentially CP) include

arithmetic complexity, separation of variables, Blind Identifi-

cation of linear mixtures, Blind Source Separation, Data Min-

ing, Spectroscopy, Antenna Array Processing, Phylogenetics...

Tucker and HOSVD have other application fields, in which

uniqueness is not requested, like data compression. For reasons

of space, we shall now detail only one application of the

CP decomposition, namely fluorescence spectroscopy [76], for

which very few theoretical results can apply, unfortunately.

The reader is invited to consult e.g. [46], [16], [20] for pointers

to other applications.

An optical excitation applied to a solution produces several

effects, including Rayleigh and Raman diffusions, and Fluo-

rescence. If the latter effect can be isolated, it may allow to

accurately measure the relative concentrations of fluorescent

solutes. In fact, at low concentrations and in the presence of

R fluorescent solutes, the Beer-Lambert law can be linearized

and takes the form:

T (x, y, z) = To

R
∑

ℓ=1

γℓ(x)ǫℓ(y)cℓ(z)

where x, y and z denote the fluorescence emission wavelength,

the excitation wavelength, and the sample number, respec-

tively, T is the fluorescence intensity measured as a function

of the latter variables, γℓ(x) denotes fluorescence emission

spectrum of the ℓth solute, ǫℓ(y) its absorbance spectrum

(sometimes called excitation spectrum), and cℓ(z) its relative

concentration. In practice, only a finite number of samples

are available, and measurements are made on discrete values

within a limited spectral range, so that variables x, y and

z take a finite number of values. In other words, we deal

with a CP decomposition of a finite 3-way array, often of

rather large dimensions (several hundreds). The particularity

of this CP decomposition is that T is real nonnegative,

as well as all the terms involved in its CP decomposition.

Hence, R is the nonnegative rank of T . The good news are

that (i) the best low-rank approximate always exists [54],

and that (ii) there are simple efficient numerical algorithms

available for its computation [70]. The bad news are that

known uniqueness results, which we have reviewed in this

paper, are not appropriate for nonnegative CP decompositions.

For instance, if nonnegative rank is plugged in place of rank in

(12), the obtained sufficient condition is more restrictive, and

does not even guarantee that factor matrices are nonnegative.

This is the subject of ongoing research.
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