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Abstract Service Oriented Computing (SOC) is a com-

mon way to build applications/services by composing

distributed bricks of logic. Recently, the SOC paradigm

has been considered for the design and implementation

of Internet of Things (IoT) applications by abstract-

ing objects as service providers or consumers. Based on

this trend, we proposed in a previous work D-LITe: a

lightweight RESTful virtual machine that allows ubiq-

uitous logic description and deployment for IoT appli-

cations using Finite State Transducers (FST). Though

D-LITe allows faster and more efficient application cre-

ation for heterogeneous objects, it turns out that FST

design can be fastidious for inexperienced users. With

that in mind, we propose in this paperBeC3 (Behaviour

Crowd Centric Composition) an innovative crowd cen-

tric architecture, grounded on D-LITe. It provides a

simpler way to compose interactions between IoT com-

ponents. The idea is to reverse the bottom-up approach

of SOC by a rather top-down vision in which the user

expresses the expected result of his application by com-

posing behaviours that are proposed by contributors.

These behaviours are deployed on each concerned com-

ponent, which then act exactly as needed to fulfil their

role in the composition. The crowd-Centric aspect of

this platform allows a community-based design, grant-

ing a wide panel of modular and incremental inter-

actions for a wide variety of components. Eventually,

BeC3 will give inexperienced users the ability to or-

ganise, interconnect and compose both state of the art
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web-services and IoT components to create interactive

2.0-like applications for the IoT.
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1 Introduction

The design of distributed applications on the Internet

is often based on Service Oriented Computing (SOC).

In such architecture, applications use logical function-

alities offered by software bricks accessible via dedi-

cated web-services. The application logic is then com-

posed from the results of these bricks through dedicated

and loosely coupled web APIs [13]. In a similar way

as SOC allows the collaboration of heterogeneous web-

services, our vision of the Internet of Things stands on

the necessity to create applications from variety of avail-

able sensing and actuating technologies, whether from

a hardware or a software point of view. Recent work

in embedded web-service composition has also focused

on SOC [14] to design IoT applications. By mimicking

the role of software architects, one can imagine to build

an IoT application using rich and complex composition

languages like BPEL [10] and WS-CDL [17] to describe

its inner interactions.

However, unlike in web APIs where web-services are

installed on servers, the logic of an IoT application takes

its roots from embedded WS that are deployed on var-

ious sensors and actuators. Considering that the same

device can be used for different purposes, one should be

able to deploy on-the-go (during the application execu-

tion) new bricks of logic on the device to change its uti-

lization. This is not possible using the aforementioned

business-adapted languages because they allow to com-

pose only pre-installed static web-services. For instance,
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both [14] and [20] are limited by the web services that

are embedded on the devices at their deployment. Af-

ter this point, any alterations of the running application

might require the utilization of another WS, which can

not be done without per-node reprogramming.

In this context, we defined in a previous work D-

LITe [8]: a universal logic framework based on FST

that allows a dynamic utilization of devices capabilities

to express the different bricks of logic that may com-

pose an IoT application. This framework introduces a

hardware abstraction layer that hides the differences

associated with various devices, protocols and systems.

Because D-LITe is technology agnostic, it entails a new

range of applications for pervasive computing allowing

service creation, control and choreography among het-

erogeneous legacy devices. More importantly, D-LITe

allows to remotely deploy versatile IoT applications by

pushing bricks of logic seamlessly on running devices

without per-node reprogramming.

Although D-LITe simplifies the creation process and

allows less experienced users to compose embedded web-

services, it still involves the design of FST and the def-

inition of exchanged messages, which is not trivial. We

believe this complexity in the application creation pro-

cess is one of the last obstacles that prevent the Inter-

net of Things from its awaited democratization. With

that in mind, this paper describes BeC3 (Behaviour

Crowd Centric Composition), an innovative framework

that brings the flexibility of D-LITe with the benefits

of crowd-centric architectures to allow users to easily

design IoT applications. Using BeC3 for an IoT ap-

plication creation is less complex. Our approach is to

reverse the composition process when the implementa-

tion is entrusted to an experimented software architect.

In fact, BeC3 dismisses this role of architect by provid-

ing for each device generic bricks of logic implemented

in a repository by a savvy developers community. The

input(s) and output(s) of these bricks are standardized

and typed to allow the user to be the real time ar-

chitect of its application. One can, thus, be certain to

create compatible and meaningful interactions between

various devices without any technical knowledge about

how bricks of logic are implemented or how messages

that drive the application are exchanged.

The idea of offering a large panel of ready-to-use

pre-written software components makes sense because

it implies an iterative growth of the available bricks of

logic for the final users. According to the 1%/9%/90%

Crowd Centric organization presented in [5], we pro-

pose that 1% of BeC3 users (system builders which re-

quires significant technical knowledge) implement the

D-LITe logical interpreter on existing devices. Then 9

% of BeC3 users (services programmers) develop soft-

ware components (bricks of logic) using D-LITe and

add them to the central repository. Finally, inexperi-

enced users (the remaining 90%) can compose available

compatible components, and create their own applica-

tions that retrieve contents autonomously in the phys-

ical world.

The rest of the paper is organized as follows: Sec-

tions II and III discuss the background and related work

of service oriented computing and the prior effort in

adapting it to WSANs and the IoT. Section IV de-

fines the context and the motivation that lead us to the

main concepts of BeC3 and details the model behind it

and its major features. In Sections V and VI, we illus-

trate the practical benefits of our solution through an

illustrative scenario that presents our implementation

of BeC3 and its potential benefits in real IoT applica-

tions. Finally, Section VII concludes the paper.

2 Related Work

Since the mid-nineties[18], researchers and industrials

have mainly dealt with primary issues inherent to the

constrained nature of sensing and actuating networks.

Their work often concerns hardware optimization, en-

ergy consumption, communication reliability and de-

ployment rationalization. But for almost a decade now,

the Internet community is providing interesting solu-

tions in bridging the gap between isolated WSAN and

the World Wide Web.

Building an Internet of Things (IoT) that links tech-

nologies such as WSAN, networked embedded devices

and Internet infrastructure is the goal of many projects.

The authors in [11] proposed Contiki, a pioneering oper-

ating system whose aim is to bring IPv6 connectivity di-

rectly to constrained devices [12], and allow their large

scale interconnection in a Wireless Embedded Internet.

This initiative gave birth to the IETF standard 6Low-

PAN [23] and hereafter to a series of innovative higher

layers protocols such as CoAP [24], Observe1 and Link

Format2. Thus, some other projects work on the inter-

action of all IoT devices. Linked to the Future Inter-

net programme, FI-Ware [1] is an European project to

“build a service infrastructure” for “developping Future

internet Applications in multiple sectors”. The IoT part

of this project is IoT6 [27]. IoT6 uses 6LowPAN but is

more global. It aims to offer services discovery in order

to realise a full integration of all technologies and de-

vices. Octopus [3] is another project that “integrate[s]

and coordinate[s] heterogeneous devices and systems”

while being “pervasive, [...] permitting the seamless in-

1 http://tools.ietf.org/html/draft-ietf-core-observe-03
2 http://tools.ietf.org/html/draft-ietf-core-link-format-14
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tegration” of all devices. We can also cite SENSEI [21]

that “plays a leading role [...] to create and underly-

ing architecture and services for the future Internet”

that will “connect the physical into the digital world”.

This project aims to “define an architecture that [...]

deal [s] with large number of globally distributed WSANs

and interoperability of heterogeneous devices and plat-

forms”.

In their extensive survey [2], Atzori et al. address

this new trend and present its most recent literature.

They illustrate how this new paradigm mixes the con-

cepts of Internet with WSAN usages for the creation of

new applications that dig their content from Web En-

abled objects. Using concepts from the SOC paradigm,

solutions have been proposed to compose applications

for the IoT just as one would compose state-of-the-

art web-services in software engineering. In [13] for in-

stance, a central point collects, uses, mixes and com-

putes data or send orders to distant nodes.

In constraint network such as WSAN, energy is an

important issue, so limiting the transmission is always

a good idea to increase device lifetime. Programmers

use solution to do the work in place, by using devices

processing capability. Abstract Region [26] is an exam-

ple of solution that tries to limit network usage. Ab-

stract regions are build depending on application needs

in order to locally compute data. Authors claim that “it

is generally desirable to perform local compression, ag-

gregation, or summarization within the sensor network

to reduce overall communication overheads”. However,

this solution is limited to WSAN with multiple units

of a restricted set of devices, while our vision of IoT

is based on a large set of unique devices offering very

different services.

In fact, both centralized and decentralized solutions

exist in the literature to initiate interactions between

distant objects over the Internet. Known respectively

as Service Orchestration and Choreography, such ap-

proaches offer access to data through embedded web-

services but in two different ways. In a previous work

[9], we demonstrated analytically and empirically that

choreography offers better performances, reliability and

energy efficiency on constrained networks. Furthermore,

recent studies on the subject tend to show the impact of

service choreography on the way web applications are

deployed and maintained. In their position paper, the

authors of [25] argue that “service design needs two or

more abstraction models” and insist on the importance

of choreography as a fundamental design principle. We

argue that this theory of web choreographies is a major

step forward in web applications. It emphasises the gap

between what is expected at the global level (the ap-

plication choreography) and what happens practically

(the code implementation). This, we believe, is partic-

ularly pertinent for automating web- enabled objects

in the Internet of Things. Indeed, if we abstract the

devices’ internal implementation, an IoT application is

nothing more than a set of various messages exchanged

between logical bricks (devices or software) that convey

its semantic to the system.

The idea of needs projection that is introduced in [6]

can thus be exploited to ensure more versatility dur-

ing the design process, allowing the deployment of new

bricks of logic during the execution. Authors of [22] in-

vestigate the utilization of web-service choreography as

a way to compose distributed applications. They pro-

pose a theoretical framework that studies its impact on

service interactions and establish a set of rules that for-

malize the exchanges between nodes and the implemen-

tation of local web services. However, in order to resolve

issues related to asynchronous services execution, the

authors define the notion of dominant/dominated ser-

vices, which eventually induces a form of orchestrated

organization that is inconsistent with our choreography

philosophy.

Macro programming is also an interesting idea be-

cause it offers a simple and high-level solution to quickly

create applications. The architecture of IoT is often

based on multiple devices that embed different level of

processing capabilities. Macro programming in WSAN

gives an abstract view of stakeholders and hides hard-

ware specificities. For example, Kairos [15] “presents an

abstraction of a sensor network as a collection of nodes

that can all be tasked together simultaneously within a

single program”. With Kairos, the programmer uses “a

shared-memory based parallel programming model” of

“loosely synchronizes” nodes in order to respect the

WSAN constraints. Kairos nodes can share a remote

data access across the network. But even if the synchro-

nization is lazy, we believe that our event-centric solu-

tion provides better results. BeC3 exchanges semantic

messages and not the data that are used to obtain these

semantic messages. Moreover, Kairos and [26] are for

large set of identical devices while we want to build IoT

applications that deals with a wide variety of nodes.

Another way to compose web-services is based on

the Roman Model introduced in [7]. The principle here

is to characterize services by “their conversational be-

haviours compactly represented as finite transition sys-

tems”. Because of its transitional view of the system,

the Roman model is commonly used to abstract ex-

changes between its interacting elements. [4] for in-

stance exploits this principle to design a new technique

that quantifies optimal composition possibilities that

could eventually allow a just-in-time deployment of ap-

plications. Our goal in this paper is to allow an even
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more intrusive approach by imposing on-the-go specific

bricks of logic (services) on nodes and not only deal with

their embedded static services. Based on an abstrac-

tion of the conversations among IoT components and

the FST representation of their respective “Behaviour”,

we propose to exploit the innovative concepts of the

Choreographies Theory and the transitional properties

of FST modelling to create IoT applications. In fact,

our vision is to consider its design as a top-down pro-

cess rather than a bottom-up approach in which an

Architect can only combine existing services that are

statically deployed on devices.

In their reference paper [14] about the Web Of Things

(WoT), the authors plead for a “user-friendly represen-

tation” of objects. They argue that the “Web-enablement

of smart things delivers more flexibility and customiza-

tion possibilities for end-users”. They investigate the

utilization of Resource Oriented Architecture (ROA)

for constrained devices, and present as a result a Web

Mashup (an application for building “opportunistic in-

tegration” of appliances) that illustrates how a WoT

composition can be performed using simple RESTFul

APIs. This illustrative example is interesting because

it provides a first attempt to create interactions be-

tween various objects and logical components using an

automated editor3 that allows “to visually create Web

mashups by connecting building blocks of resources”.

Nevertheless, [14] remains a relatively complex solu-

tion that requires a certain knowledge about the devices

and the logical components necessary to design an ap-

plication. More importantly, the static nature of the ser-

vices offered on each device restrict severely the versa-

tility of the applications. Indeed, each alteration of de-

vice individual functionalities requires a physical access,

and the development of a new program that will run on

it. And even when the object functionalities cover the

user’s needs, the creation of the application may still

be complex. For instance, designing a simple heating

control with ClickScript requires to understand that a

temperature sensor can send values, that the combina-

tion of them with a “>” object and a given value (e.g.

20) allows to send a boolean activation to the heating

system. Not only this can be conceptually out of reach

for the lambda end-user, but also resource-consuming

because the decision (if temperature> 20) is taken at a

central point, as the sensor is either constantly pushing

data or regularly requested by a centralized controller.

Our work goes further than existing RESTful ap-

proaches. BeC3 allows to increase the logic by running

a maximum of processing on the devices to limit trans-

fers and energy depletions. If we consider the previous

3 ClickScript - http://www.clickscript.ch/ a Mashup
javascript tool to interconnect virtual objects

Fig. 1 An example showing how a FST can represent a
”smart door”. A hardware message (HW ) triggers a state
change and sends a message to listening objects.

Fig. 2 The same motion sensor has a new semantic role just
by changing its FST.

example, a better solution would have been to make

the temperature sensor send only one specific message

directly to the heating system whenever the defined
threshold (> 20) is reached. In classic RESTful compo-

sition schemes, if this threshold message is not offered

natively by sensor hardware, it can only be done by a

specific program that has to be uploaded on the sensor

itself. Using BeC3, one could push this new feature di-

rectly on the desired node(s) seamlessly by behaviour

remote deployment. In addition, this paper describes

a design method in which services are composed in a

more semantic way (describing a goal) rather than typ-

ically functional (giving a value). This Event-Centric

vision (instead of Data-Centric) is central to our dis-

tributed approach. It shows that the more nodes are

autonomous, the better it is for constrained networks

and consequently for the whole reactivity.

3 Background

This section describes briefly D-LITe, the lightweight

RESTful virtual machine on which BeC3 is grounded.



BeC3 : Behaviour Crowd Centric Composition for IoT applications 5

This abstraction layer offers a universal access and rep-

resentation to the native functionalities of various de-

vices regardless of their technological characteristics.

D-LITe standardizes the description of a device func-

tionality using Transducers. Transducers are a deriva-

tive form of FST with an additional output alphabet.

In our proposition, one could understand a FST as the

piece of code that ties up the devices native hardware

functionalities with each one of its potential semantic

utilizations (behaviours). For instance, a motion sensor

(accelerometer) can have several FST depending on its

purpose: If this sensor is put on a door, a FST could

describe how it might detect when the door is opened or

closed (Fig 1). But if the same sensor is put with a set of

keys, another FST could describe how it can send notifi-

cations whenever they are dropped somewhere (Fig 2).

In [8], we detail how a simple REST messaging sys-

tem can interconnect a large scale of D-LITeful devices,

and allows to express and deploy the rules that will

build an Internetable choreography. After deployment

of these rules, every device functionality could be con-

sidered as a common web-service that takes part in the

execution of an IoT application.

The reason behind the utilization of such transi-

tional representation is, first, to cope with IoT com-

ponents heterogeneity (sensors, actuators, web servers,

etc.) and to relieve them from any language/operating

system dependencies. Furthermore, this choice allows

a dynamic on-the-go deployment of new applications

throughout very concise rules without physical inter-

vention on the concerned nodes. Thus, by invoking ded-

icated web-services offered on each node by D-LITe, one

can simply deploy simple bricks of logic to serve a larger

web choreography.

4 Crowd Centric Service Choreography

4.1 Motivation and Key Idea

In common web engineering, two profiles of specialists

are involved in the application creation process: First,

programmers whom use programming languages (eg. C,

Java, Python, etc.) to create and expose web-services,

then, web architects whom have recourse (only there-

after) to workflow languages such as BPEL or WS-

CDL to orchestrate these services (Fig 3) from a central

point. Such strong chronological/technical dependency

between both profiles implies necessarily the cohabita-

tion of distinct skill levels. This complicates the devel-

opment curve of web applications, a fortiori in the web

of things where this separation is less justified. Indeed,

the elements involved in the application belong mostly

to one end-user and not to distinct corporations. In fact,

Fig. 3 Usual SOC Design: A user expresses his needs to an
Architect. The Architect builds the corresponding application
using web-services offered by others programmers.

Fig. 4 In our solution BeC3, a User directly solves his needs
by composing Behaviours offered by a community of pro-
grammers. Each Behaviour is then installed on the corre-
sponding node.

services that are embedded on sensors or actuators and

the application that controls them are often destined

to their owner. The services composition should thus

be much more agile and dynamic to allow appliances to

be programmed by and for the user.

In this paper, we believe that the user needs to be

both the developer and the architect of its own IoT ap-

plications. Yet, it seems unreasonable to expect him to

master such complex and different skills as web devel-

opment and work-flow management. That is the main

reason behind our choice to crowd-source the applica-
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Fig. 5 A Behaviour in BeC3 is characterised by the way it
interacts with others. Interaction Patterns describe typical
interactions, and Behaviours inputs/output are restricted to
Interaction Patterns.

tion creation process in the IoT. Moreover, the user’s re-

quirements can change rapidly depending on its context

and daily needs. This may require its applications (and

thus services) to be frequently and promptly reconfig-

ured and re-organised. Our notion of crowd-sourced be-

haviours combined with the agility offered by D-LITe

would grant this flexibility in the application deploy-

ment and execution allowing the user to control con-

stantly and remotely its IoT devices and services.

As a matter of fact, we argue that the complexity

of existing service composition techniques can be tran-

scended using BeC3 because in opposition to common

enterprise processes, most logical elements of the IoT

are fairly straightforward. We noticed that interactions

between IoT components can be easily recognisable and

classified (activation / deactivation, enslavement, trans-

mission, etc.). It becomes thus possible to characterise

their logic and normalize their exchanges with one an-

other. This classification is the hallmark of BeC3. Our

system allows to feed the community with a set of basic

tools and a common language that will eventually help

them to create prefabricated bricks of logic that could

be easily assembled in one IoT distributed application.

4.2 Modelling assumptions

BeC3 reverses the methodology used in common service

composition. Instead of composing static web-services,

elaborated bricks of logic are pushed directly on nodes,

making the deployment of new IoT applications seam-

less because D-LITe nodes becomes remotely program-

mable. This flexibility allows to deploy different seman-

tic interpretations, that we call Behaviours, to the de-

vice native functionalities depending on its real life uti-

lization. Fig 4 shows how these behaviours, when in-

stalled on a device, can help final users to easily com-

pose their own IoT application. The careful reader will

notice that BeC3 focuses on the interactions between

objects and their direct interlocutors. The idea here is

to pair, for each device, its behaviour (brick of logic)

with a set of interaction patterns that it is able to pro-

cess.

To allow an incremental growth of available behaviours,

the BeC3 collaborative platform is based on a model

composed by three entities: nodes, the behaviours

repository, and users.

– First, nodes (whether devices or web-services) must

implement a virtual-machine-like framework (D-LITe

[8]) to support the deployment of distributed logic

and publish-subscribe capabilities over the Internet.

This allows to easily deploy a service choreography

interconnecting distant devices and services using

finite state transducers.

– Then, and as depicted in Fig 6, the repository

enlists the available Behaviours (FSTs) that even-

tually will run on D-LITeful nodes. At the recep-

tion of expected messages, each concerned node re-

acts depending on its behaviour, then triggers the

transmission of a set of messages to its interlocutors

(other behaviours). These messages comply with what

we define as “Interaction Patterns” (Fig 5). Wherein,

an interaction pattern is a formalization that stan-

dardizes the input(s) and output(s) of each device

to ensure its interoperability.

– Finally, different profiles of users play specific roles

in the application creation process. Indeed, BeC3

relies on the ’participation inequality ’ [19] that de-

scribes the 01/09/90% rule.

This Crowd-Centric approach has been used to solve

complex problems and is known for its efficiency in

heterogeneous systems [5]. A common way to use its

principle is to allow 90% of the system’s users to con-

sume the available resources, 9% to provide assistance,

and 1% to do the heavy work by designing and main-

taining the collaboration platform. In BeC3, the 90%

are users who want to create and deploy their own In-

ternet of Thing applications with no required program-

ming skills. The 9% create Behaviours that run on a

specific object category. They are in fact FSTs that

provide semantically “meaningful” usages for the 90%,

and comply with Interaction Patterns (Fig 6) to allow a

maximum device interoperability. The last 1% take care

of implementing D-LITe on legacy devices such as sen-

sors, phones and appliances. They may also punctually

define new Interaction pattern (Fig 6). Thanks to the

inherent modularity of FSTs and the availability in a

“public” repository of several devices usages, it becomes

easier to the community to create and assemble bricks
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Fig. 6 A user selects a BeC3 Behaviour for each of its own
objects. The logic is compatible because Input/Output im-
plements the same BeC3 Interaction Pattern (Boolean In-
teraction for example). These Behaviour are written by some
other BeC3 users.

of logic and IoT applications in a Web 2.0-like fashion.

The 9% share their behaviours by pushing them in the

repository while the 90% simply use them by a seamless

remote deployment.

4.3 Composition Model

Because BeC3 aims to simplify the service composition

of an IoT application for lambda users, its model is

based on two clear notions : Behaviours and Interac-

tion Patterns. The class diagram (Fig 7) describes the

organisation and the links between different elements

of BeC3. For each object or device, it exists a list of

available behaviours in the repository. Each behaviour

may have one or more interaction patterns for both its

inputs and outputs.

4.3.1 Interaction Patterns

Creating a distributed IoT application in BeC3 involves

the definition of actions/reactions for all its collaborat-

ing elements, as well as the exchanged messages be-

tween them. We propose in this work a first classifica-

tion of these exchanged messages using what we de-

fine as Interaction Patterns. An interaction pattern,

when affected to a certain behaviour (see below), en-

sures its compatibility with other elements by listing the

types of its output(s)/input(s). This allows to simply

verify if its composition with other behaviours makes

sense in terms of compatibility. A given cardinality ex-

presses constraints about the required number of re-

ceived/transmitted messages of a behaviour. We identi-

fied an initial list of interaction patterns that normalize

exchanges between behaviours:

1. Boolean Interaction: The most obvious pattern

which allows activation and deactivation. In this

case, two messages are exchanged, the first (on) ac-

tivates and the second (off ) deactivates.

2. Bounded Counter: This pattern helps to increas-

ing or decreasing a level or a value. It can be used to

design sliders and dimmers for example. 4 different

messages are needed to define gradual progressions:

up and down act relatively to the current value. Off

and Full indicates the absolute minimum and maxi-

mum values. This IP can be used to control lighting,

sound volume or a camera zoom.

3. Coordinates: Used to provide gliders/drivers, it

enables to position objects by exchanging north,

south, west and east messages. A joystik, or even a

mouse can offer this pattern as output for example,

while a motorised camera can require it as input.

4. Toggle: This interaction patterns acts as a flag (ei-

ther up or down). Each time the state of the flag

changes, a single message toggle is transmitted. This

interaction, though very simple and semantically

poorer than the Boolean Interaction, can be useful

to command simple alarm buttons for example.

5. Send: Needed to transmit content (given as a pa-

rameter in the message) to other behaviours. Such

interaction pattern is very useful for content-centric

interactions particularly with classic web-services.

Possible utilizations could allow to interconnect de-

vices with micro-blogging services or to transmit

multimedia content for instance. It issues one mes-

sage (send) that includes the desired content (text,

binaries, streams, etc.), e.g. send(Full capacity rea-

ched).

6. Notification: Used to notify other behaviours about

a specific change in the device’s state by transmit-

ting a single message (notify(msg)). This IP may
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Fig. 7 This Class Diagram shows how each Behaviour is
linked to a specific object, and offers or requires some Inter-
action Patterns.

seem similar to the Send pattern. However, when

receiving a notification in this case, a behaviour

will surely go in a particular state, while the main

purpose of Send is to transmit a content without

necessarily changing the state of the device. The

“state changing” notion is important here because

it changes the semantic utilization of such IP. The

Notification IP can be used to issue alarms or alerts

such as notify(Fire). When receiving such a mes-

sage, a device could move to a special inactive state,

while the transported message (Fire) can be ignored.

The first version of this standardized Interaction Pat-

tern list can already characterise a large choice of Be-

haviours, offering BeC3 users the ability to build a large

panel of IoT applications.

4.3.2 Behaviours

They are the logic units presented in the repository and

ready to be deployed by the 90% without physical ac-

cess to their devices. They are small pieces of program

that react to external stimuli (from other behaviours)

or internal ones (from their own hardware). Behaviours

are expressed as Transducers [8], where each state tran-

sition can cause the transmission of messages to their

own hardware (sensors, processor, actuators, etc.) or to

other behaviours (devices or web services). One impor-

tant contribution of this work lies in the formalization

and characterisation of exchanged messages between

behaviours using interaction patterns. An arbitrary be-

haviour is said to be compatible with one or more of its

peers if they all share a set of compliant input/output

interaction patterns (Fig 7). Note that each behaviour

has a set of input and output Interaction Patterns (IPs)

that are either required or optional. Thus, it can only

send and receive messages according to its set of IPs.

This restriction allows other peers to communicate

with it while ensuring that each transmitted message is

to be understood by its destined behaviour (triggers a

transition in it). Indeed, since BeC3 emphasises the in-

teraction and not the object which runs the behaviour,

it becomes possible to use any kind of objects as long as

they have the corresponding interaction patterns. The

behaviour description provided by the 9% is expressed

via a XML file (Fig 8) that describes the rules of the

transducer, the type of devices on which it runs and the

cardinality of each one of its input (understanding) and

output (talking) Interaction Patterns. This cardinality

is represented in our notation by the number of inputs

(respectively outputs) that are required for a described

behaviour, followed by an optional ’extend ’ attribute

that indicate if the value is a minimum.

For instance, an input (0 extend) indicates that the

Interaction Pattern is optional, and thus that the con-

cerned behaviour can understand it and act accordingly,

but it is not mandatory. A 0 extend cardinality can be

used to express that the IP Alarm can be understood

by the behaviour without being required. Thus, the re-

ception of an Alarm message will trigger an action of

the behaviour that will put it in a specific state (de-

fined by its designer). A cardinality of 1 implies that

the concerned IP is required. It is often used to estab-

lish a master/slave interaction between two devices. A

typical example is a lamp controlled by a button. Here,

the interaction pattern can be toggle in the input of the

lamp and the output of the button, and its cardinality

set to 1. A cardinality of N is used to describe an inter-

action with N different devices. Such case can be used

to describe a behaviour that needs a specific number

of inputs before launching an action. Finally, adding

the extend attribute adds the notion of “at least” to

the number of interacting devices. A 3 extend would,

for example, indicate that three or more behaviours are

needed to trigger an action. Hence, we obtain a cor-

relation between the cardinality of interaction patterns

and N (N >= 0): the number of interacting behaviours,

where a cardinality of:

1. N describes a behaviour that requires messages from

N and only N interaction pattern compliant device(s),

2. N extend describes a behaviour that could accept

messages from at least N devices.

Note that in the XML description (Fig 8) of a given

behaviour, the cardinalities are indicated for each one

of its interaction patterns, whether as an input (under-

standing) or an output (talking).
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Fig. 8 BeC3 XML description of a Behaviour

Fig. 9 Two Objects running BeC3 Behaviours. They inter-
act because the two Behaviours correctly match the required
Interaction Patterns. Object 2 runs a Behaviour that “under-
stands” IP1 (needs it as an input), and optionally IP3. Object
1 runs a Behaviour that “talks” IP1. So publish/subscribe
can be done.

Fig. 10 A BeC3 application where multiple objects interact.
If outputs match correctly needs and conversely, the Chore-
ography may be deployed and started.

4.3.3 Deployment

BeC3 is based on an a posteriori deployment of the

necessary behaviours to the service choreography. An

Internet of Things application may involve personal el-

ements (devices, smart objects, etc.) and common ser-

vices offered on the Internet (distant sensors, web-services,

etc.). Because he is the owner of different objects used

in its application, a user has the ability to automatically

configure them when and as needed. The first contribu-

tion of D-LITe [8] offers the possibility to extract the

diversity and the complexity of existing programming

tools to provide a universal platform for writing logic

elements constituting a distributed application.

BeC3 goes even further because it provides the pos-

sibility to choose among a set of pre-written compo-

nents and deploy them on different devices, while en-

suring their behavioural compatibility (Fig 9). Hence,

to achieve its Mash-up (the combination of the different

behaviours involved in the application), a user might

use BeC3 mashup tool which identifies the type of de-

vices on its private network during a discovery phase.

To this inventory, the user can add other web con-

nected components/services, either via state-of-the-art

web technologies (email, micro-blogging, web-services,

etc.) or other web-enabled devices (public sensors, ac-

tuators, etc.).

For this set of D-LITeful components, a list of com-

patible behaviours is generated from the BeC3 repos-

itory. The user can then select the desired behaviour

to be deployed on each one of its components accord-

ing to a brief description of the behaviour’s function-

ality. After selecting a behaviour for each component,

the user can use the mashup tool to link its devices

inputs and outputs to one another depending on its ap-

plication purpose. Finally, because the links between

objects are the constituent elements of the IoT appli-

cation (Fig 10), BeC3 verifies the interaction pattern

compatibility between all linked components using the

coherence checking mechanism described in the follow-

ing subsection.

4.4 BeC3 Coherence Model

The BeC3 formalization brings out the necessity to ver-

ify the coherence of an application composition. Indeed,

the existence of interaction patterns allows the utiliza-

tion of a formal scheme that verifies if the deployed

choreography does not include aberrations that could

prevent it from a flawless execution. For example, link-

ing a sensor that has an output Toggle IP with an actu-

ator that needs a different input IP may cause the fail-

ure of the whole choreography execution. This section

details a mechanism that could prevent such inconsis-

tencies using a simple model that verifies for a given

choreography if all the behaviours are compatible and

thus capable of executing a the distributed application.

Consider a choreography C as C = {O,B, P} where:

– O is the set of involved Objects,

– B the Behaviours set to be deployed on Objects,

– P their links (publish-subscribe relations).
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If we focus on an element Cx with 0 < x < n + 1 and

n = |O|, we have : Cx = {o, β,Ax}. With o ∈ O the

object running the behaviourβ ∈ B and Ax(Ax ⊆ O)

the set of objects listening to o.

With that in mind, we may also state that an object

o has a preceding list of objects O− and a following list

of objects O+. Preceding objects talk (send messages)

to o, while following ones listen (expect messages) to it.

Thereby, an object o is preceded by another object o′

iff o′ ∈ O− and is followed by an object o′′ iff o′′ ∈ O+,

thus we have O− −→ o −→ O+.

Moreover, for each behaviour β ∈ B we specify interac-

tion patterns I according to the following constraints:

– β has a number of required interaction patterns for

both its inputs Ireqin and outputs Ireqout . We formal-

ize these lists of interaction patterns using multi-

sets since a behaviour may require more than once

the same interaction pattern as input or output. In-

deed, multisets, in opposition to common sets, can

illustrate this interaction pattern redundancy,

– β has two sets of optional interaction patterns Ioptin

and Ioptout (denoted by the cardinality and the sign

+). We use here a simple set (no redundancy), be-

cause we focus only on the optionality of the inter-

action pattern (their number is not important)

Therefore a behaviour β handles 2 sets and 2 multisets

of interaction patterns as follows:

Ioptin = {ip0, ..., ipn}, Ireqin = {{ip0, ..., ipn′}}
Ioptout = {ip0, ..., ipn′′}, Ireqout = {{ip0, ..., ipn′′′}}

Considering that:

– in C, each tuple Cx means that an object o = Ox is

running a behaviour β = Bx,

– β uses referenced interaction patterns,

– an object o has preceding O− and following objects

O+ that respectively listen and talk to it,

we can build the whole list of Outgoing Interaction Pat-

terns OIP in the objects set O+ built out of two ele-

ments: OIP = {OIP opt, OIP req} with

– OIP opt = {ip0, ..., ipn} its set of optional IPs,

– OIP req = {{ip0, ..., ipn′}} the multiset of required

ones.

Building the Optional Outgoing Interaction Patterns

set OIP opt for an arbitrary object o follows this rule :

OIP opt = O0(Ioptin ) ∪O1(Ioptin ) ∪ . . . ∪On(Ioptin )

with O+ = {O0, O1, . . . , On} (Note that any multi-

occurrence of the same Interaction pattern is removed

by the union of On(Ioptin )).

Regarding the input and output multi-sets of required

interaction patterns of o, the exact number of IPs is-

sued for (or requested by) other objects must be ex-

pressed. We use multiset sums (not unions) as follow :

OIP req = O0(Ireqin )⊕O1(Ireqin )⊕ . . .⊕On(Ireqin ).

OIP enlists the expected IP by the set of following

objects O+. Using the same logic, building the list of

Incoming Interaction Patterns IIP = {IIP opt, IIP req}
is expressed by an equivalent formulation using the out-

put Interaction Patterns sets of all objects in O−.

Building IIP and OIP allows to perform consistency

checking of the application to be deployed on the de-

vices. Indeed, if the behaviours and the publish-subscribe

links selected by the user are not positively verified, it

means that the constraints imposed by the behaviours

are not met. Hence, for each object o running a be-

haviour β, we have:

IIP −→ o −→ OIP giving IIP −→ β −→ OIP

Replacing IIP and OIP by their respective content:

{IIP opt, IIP req} −→ β −→ {OIP opt, OIP req}

while behaviour β contains 2 sets and 2 multisets:

{IIP opt, IIP req} −→ {Ioptin , Ireqin }
{Ioptout, I

req
out} −→ {OIP opt, OIP req}

Considering this model, the BeC3 tool which is respon-

sible of enabling the composition and its deployment

can check the validity of the choreography using the

following rules:

1. IIP req ⊆ (IP opt
in ⊕ I

req
in ) : All required interaction

patterns in O− must be also in the list of IPs un-

derstood by the object itself.

2. Ireqin ⊆ (IIP opt ⊕ IIP req) : All required Interaction

Patterns of the object must be feed by O−.

3. The same reasoning is applied to the object outputs,

and must verify that OIP req ⊆ (Ioptout ⊕ Ireqout ) and

that Ireqout ⊆ (OIP req ⊕OIP opt).

If all the constraints expressed by behaviours are satis-

fied and verified, BeC3 proposes to deploy the selected

choice on all nodes. Otherwise, the application as com-

posed by the user is not valid, and can not be deployed

until the conditions are met. For D-LITeful nodes, the

deployment mechanism is described in [8]. The trans-

ducer representations of behaviours are described using

our language (SALT [8]), a simple HTTP messaging

allows to configure the services installed on each D-

LITeful node. This transducer code is available in the

XML file (Table 8).
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Fig. 11 In a Smart City, the manager deploys each chosen
Behaviours on corresponding object in order to build a park-
ing spots monitoring application.

5 Illustrative Application - Town Automation

5.1 Initial scenario

Smart Cities [16] are a good example of what IoT appli-

cations can provide. As part of a Smart City project, the

City’s information system Manager has access to a set

of objects (Fig 11), such as the city website (through a

BeC3 virtual object giving access to website’s content),

many display panels located in various parts of the city

and several sensors available on each parking spot (in

charge of detecting a car presence). All these objects are

D-LITeful, and can potentially communicate with each

other. The different behaviours and constraints for all

these components are presented in Table 1. The car de-

tection sensors send information to the display units to

Table 1 A Smart City Behaviours repository

Behaviour understands talks description
Parking Spot

PS1 : Std - Notif. send on or off if the
place is free or not

PS2 :
count-
ingFree

- Bounded
C. (1,n)

Increase or de-
crease the number
of free places

Display
D1 : std Bounded

C. (1,n)
- Count information

and display total
D2 : std
with alarm

Notif.(0,n)
Bounded
C. (1,n)

- As D1, but turns
to red if receiving
an Alarm

D3 : std,
alarm and
cascade

Notif.(0,n)
Bounded
C. (1,n)

Slider(1,n) As D2, but send
count information
in cascade to an-
other Slider

D4 :
Global
counter
and send

Bounded
C. (1,n)

Send(1,n) As D2, but send
Total obtained
to another(s)
Object(s)

Virtual Object
Web1 :
Push data
to Web

Send(1,n) - Update Free Park-
ing lot number on
the Town Website

indicate parking spots availability. To process the num-

ber of available spots, the behaviour PS2 (Table 1) must

be installed on each sensor. The behaviour D1 has to

be deployed on the display units to receive information

from sensors and display the results. To ensure com-

patibility, the PS2 behaviour has an output Bounded

Counter interaction pattern, while D1 has the Bounded

Counter as an input.

5.2 Evolution of the initial scenario

Thanks to the flexibility of our architecture, a richer

application can be easily deployed without physical ac-

cess to existing devices: The system manager can add

D-LITeFul smoke sensors in underground car parks,

and display units in a new area of the city. The new

display panels can still indicate the number of remain-

ing spots, but also display fire alerts in case of smoke

detection. In this scenario, the devices are organized

in cascade (Fig 11) i.e., sensors publish their messages

to each area display unit to process the sum of free

spots thanks to the Bounded Counter interaction pat-

tern. Every progress of this sum affects the evolution of

the main display unit which is also running a behaviour

implementing Bounded Counter. The main display unit

communicates every change to the website via the vir-

tual object in charge of web access. The behaviour of

each display panel implements the proper output for

this communication. Finally, by choosing this time the
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behaviour D3 on each display unit, we can create an

alarm system that will relay automatically alerts on all

the panels. To sum up, the manager needs to :

– deploy PS2 on each car detection sensor,

– deploy D3 on all display units and subscribe them

to all the car detection and smoke sensors,

– deploy D4 on the main display, and subscribe it

to each display panel in order to be aware of any

variation of available spots,

– deploy Web1 on a Virtual Object responsible for

linking the website to the other devices. It has all

the appropriate access for real-time modification of

the website content, providing dynamic display of

the number of remaining spots. This object is sub-

scribed to the main display unit.

Note that each algorithm implemented in a behaviour

can be enhanced with new processing capabilities and/or

exchange opportunities via different interaction pattern.

The BeC3 repository allows all contributors to submit

new behaviours or improve older ones.

5.3 Bec3 limitations

BeC3 handles a very small vocabulary for the messages

generation. This is a very strong constraint for the Be-

haviours designer. He is limited to these few words for

characterizing the inputs and outputs of the logic that

is being described. This limitation allows BeC3 to make

better compatibility checks of the Behaviours that are

used in an application. Moreover, we have chosen not to

include the sender identification in the exchanged mes-

sages because we think that this gives BeC3 an impor-

tant genericity and scalability. But theses approaches

may lead to difficulties in the FST writing. For exam-

ple, we can add two new sensors that detect if parking

doors are closed or opened. To get the information “how

many cars are left in a closed parking”, we can connect

the door sensor to the counter, and count “door is open-

ing” and “door is closing” messages. If we reach two

“door is closing” messages, then we can send an event

containing the number of cars left. But it is difficult

to know which one is closed (no sender identification).

Either, BeC3 doesnt provide any command to query a

node, or to resend an information. BeC3 is designed to

build an automatic chain reaction depending on events.

It does not provide dynamic requests facilities.

In fact, BeC3 is not adapted to data-centric ap-

proaches. It is all about messages and events.BeC3 con-

cerns are about semantic (something is full, hot, empty,

new, or a threshold is reached) and not about real val-

ues (17, 43...). However, BeC3 is not exclusive. Other

applications can run in parallel, for example DPWS,

REST or other solutions, even proprietary.

6 BeC3 implementation

In order to illustrate the innovative concepts of BeC3,

we designed the whole solution 4 that allows users to

create, use and execute IoT applications using simple

mashups and sharing tools. We also provide binaries

for some devices to make them part of the BeC3 ap-

plication. The communication network here is based

on XMPP, an experimental web implementation of D-

LITe called D-LITe Cloud (offering virtual devices) and

BeC3 real supported devices.. This section presents

how the software is used by the different kind of users.

6.1 BeC3 tools running on nodes

The abstraction needed to offer a universal platform

is provided by D-Lite. In our Crowd Centric organisa-

tion, this platform is made by experts, which represent

1% of the users (Fig 6). Each type of hardware runs its

own version of D-LITe. We give some example code in

Contiki-OS to help experts to create ports of D-LITe on

new devices. We also provide binaries on our site : one

version for TelosB5, based on Contiki6, and one for An-

droid. D-LITe for TelosB gives access to it LED, button

and temp sensor. It also provides optional computing

capabilities (this logical part of BeC3 managing vari-

ables depends on hardware processing capacities and is

not always feasible). D-LITe for Android (Fig 12) allows

the use of a widget corresponding to a button and no-

tifications (vibration, pseudo LED) and to computing

capacities. Eventually, we will include access to dialling,

messages, camera, gps, etc.. We also propose a virtual

node written in Java. It has all the features of a D-LITe

node, and can be use as a real node (for example mak-

ing a website reacts as an object, or accessing to social

networks, or simply to offering a control through his

computer). This program can easily be adapted and

extended to offer new features, for example to create

new widget or new services interacting with IoT appli-

cations build with BeC3.

4 BeC3 WebSite - http://bec3.univ-mlv.fr/
5 TelosB, a wireless sensor network device for experimen-

tation and research http://www.memsic.com/
6 an Open Source operating system for the Internet Of

Things http://www.contiki-os.org/
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Fig. 12 D-LITe for Android. After authentication screen (on
the left) that helps the identification of the device, the smart-
phone receives the logic it has to execute. In this example,
this node has been remotely configure to offer a button and
a pseudo-led that can be switched on or off by other nodes,
according to BeC3 uploaded logic (right screen).

6.2 Connecting nodes and composing application

Each node involved in an IoT application made with

BeC3 must be able to communicate with the others.

For that purpose, we have chosen XMPP7, a standard-

ized protocol for real time communication. This pro-

tocol has caught our attention because it offers instant

messaging and presence management. Thus, the discov-

ery of new nodes is dynamic and their integration in the

global structure is easy. To participate to an BeC3 ap-

plication, a node must be configured to connect to an

XMPP server, by giving the account of the owner, his

password, and the node’s name (to be recognized as this

specific node, i.e. galaxy in Fig 12). A user has access

to all its nodes. If he becomes “friend” with another

user, the friend’s nodes can then be involved in any

application. To create his application, we propose the

BeC3 mashup tool (Fig 13). When a user authenticates

on this tool, he can list all the devices that are avail-

able on his account. It is possible to check and import

others virtual nodes (such as proxy for accessing web

services, etc) or that belong to another user (by giving

credentials). Nodes available appear on the left side of

the Setting screen (Fig 13). To involve an node in an

application, BeC3 user drags icons from left side to the

central panel, and choose a Behaviour from a proposed

list of compatible ones (not accessible in the first ver-

sion of the program). Then, it is possible to link nodes

to others, just by drawing arrows between them. Once

it is finished, the user tries to send his choice to the

7 http://xmpp.org/

Fig. 13 The Design screen of BeC3 mashup tool, showing all
devices. The behaviour chosen for each of them is indicated
on the option list field. Publish-subscribe relations are shown
with arrows. One node (TelosB) is available (on the left).
Application is deployed with “Send devices configuration”.

nodes. After checking the consistency of the assembly

(not available yet), the BeC3 mashup tool send mes-

sages to each node in order to describe the logic it has

to follow (the Behaviour) and the observer’s list of that

node (arrows).

6.3 Putting all together

To test our implementation with some TelosB, some

Android Smartphone, and a computer, one should use

the following procedure:

– Download D-LITe binary for TelosB. Write user ac-

count, password, and name in the configuration file,

and flash the Node. Only one flash is needed, be-
cause the logic is transmitted Over The Air.

– Install D-LITe application on Android nodes. This

application asks for user credentials and node’s name.

– run BeC3 mashup tool) on the Computer. This tool

asks for credentials (but only account and password).

All nodes using this account appears in the setting

screen of the application.

– The user compose its application using the nodes,

choosing each Behaviour, and making links.

– When finished, his description is send to all nodes,

and the application starts

This platform has enabled us to quickly write small

applications involving TelosB, smartphones and virtual

nodes. Besides the variety of tools used in the same

application, BeC3 has completely reconfigure nodes to

dynamically build new applications in which the roles of

each element could be very different. Hardware abstrac-

tion allows to dynamically combine wide range of mate-

rials and wide variety of uses. Obviously, this platform
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is for demonstration use only. Further enhancements

will follow as the BeC3 community grows.

7 Conclusion

This paper presents BeC3, our proposition to simplify

the creation of Web of Things applications. In line with

our previous work on the normalization of IoT applica-

tion creation and deployment in smart networks in gen-

eral and WSAN in particular, BeC3 allows the identi-

fication and classification of many possible interactions

between different behaviours present on each devices (or

service). The abstraction of these exchanges offers the

possibility to interconnect pre-written pieces of the ap-

plication as long as they indicate the type of inputs and

outputs that they manage. Finally, the BeC3 sharing

platform of pre-written behaviours simplifies the ap-

plication creation process to an elementary and intu-

itive combination of compatible and semantically self-

expressive bricks for heterogeneous types of hardware

and software.

Hence, by reversing the well-known SOC paradigm

where architects design new applications by combining

existing web-services, we take advantage from the flexi-

bility of our framework to deploy retroactively the nec-

essary services needed for the application’s execution.

By providing a Crowd-Centric contributive system, we

offer a very wide range of modular, scalable and incre-

mental bricks of logic that could be endlessly combined

to produce applications that could eventually build an

open, collaborative and extensive Web of Things.
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