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Continuity of optimal transport maps and convexity of injectivity domains on small deformations of S 2

Given a compact Riemannian manifold, we study the regularity of the optimal transport map between two probability measures with cost given by the squared Riemannian distance. Our strategy is to define a new form of the so-called Ma-Trudinger-Wang condition and to show that this condition, together with the strict convexity on the nonfocal domains, implies the continuity of the optimal transport map. Moreover our new condition, again combined with the strict convexity of the nonfocal domains, allows to prove that all injectivity domains are strictly convex too. These results apply for instance on any small C 4 -deformation of the two-sphere.

Introduction

Let µ, ν be two probability measures on a smooth compact connected Riemannian manifold (M, g) equipped with its geodesic distance d. Given a cost function c : M × M → R, the Monge-Kantorovich problem consists in finding a transport map T : M → M which sends µ onto ν (i.e. T # µ = ν) and which minimizes the functional min S # µ=ν M c(x, S(x)) dx.

In [START_REF] Mccann | Polar factorization of maps in Riemannian manifolds[END_REF] McCann (generalizing [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] from the Euclidean case) proved that, if µ gives zero mass to countably (n -1)-rectifiable sets, then there is a unique transport map T solving the Monge-Kantorovich problem with initial measure µ, final measure ν, and cost function c = d 2 /2. The purpose of this paper is to study the regularity of T . This problem has been extensively investigated in the Euclidean space [START_REF] Caffarelli | The regularity of mappings with a convex potential[END_REF][START_REF] Caffarelli | Boundary regularity of maps with convex potentials[END_REF][START_REF] Caffarelli | Boundary regularity of maps with convex potentials[END_REF][START_REF] Delanoë | Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator[END_REF][START_REF] Urbas | Regularity of generalized solutions of Monge-Ampére equations[END_REF][START_REF] Urbas | On the second boundary value problem for equations of Monge-Ampére type[END_REF], in the case of the flat torus or nearly flat metrics [START_REF] Cordero-Erausquin | Sur le transport de mesures périodiques[END_REF][START_REF] Delanoë | Gradient rearrangement for diffeomorphisms of a compact manifold[END_REF], on the standard sphere and its perturbations [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF][START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF][START_REF] Loeper | Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna[END_REF], and on manifolds with nonfocal cut locus [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] (see [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Chapter 12] for an introduction to the problem of the regularity of the optimal tranport map for a general cost function). Definition 1.1. Let (M, g) be a smooth compact connected Riemannian manifold. We say that (M, g) satisfies the transport continuity property (abbreviated T CP) if, whenever µ and ν satisfy (i) lim r→0 µ(Br(x))
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Note that the above definition makes sense: by a standard covering argument one can prove that assumption (i) implies that µ gives zero mass to countably (n -1)-rectifiable sets. Thus, by McCann's Theorem, the optimal transport map T from µ to ν exists and is unique.

If (M, g) is a given Riemannian manifold, we call C 4 -deformation of (M, g) any Riemannian manifold of the form (M, g ε ) with g ε close to g in C 4 -topology. Loeper [START_REF] Loeper | Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna[END_REF] proved that the round sphere (S n , g can ) satisfies T CP. Then, Loeper and Villani [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] showed that any C 4deformation of quotients of the sphere (like RP n ) satisfies T CP. Furthermore, Delanoe and Ge [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF] proved a regularity result under restriction on the measures on C 4 -deformation of the round spheres (see also [START_REF] Villani | Stability of a 4th-order curvature condition arising in optimal transport theory[END_REF]). The main aim of this paper is to prove the following result: Theorem 1.2. Any C 4 -deformation of the round sphere (S 2 , g can ) satisfies T CP.

We notice that the above theorem is the first regularity result for optimal transport maps allowing for perturbations of the standard metric on the sphere without any additional assumption on the measures. In particular this shows that, if we sligthly perturbs the sphere into an ellipsoid, then T CP holds true.

Furthermore, quite surprisingly the method of our proof allows to easily deduce as a byproduct the strict convexity of all injectivity domains on perturbations of the two sphere. This geometric result is to our knowledge completely new (see [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] where the authors deal with nonfocal manifolds):

Theorem 1.3. On a C 4 -deformation of the round sphere (S 2 , g can ), all injectivity domains are strictly convex.

It is known [START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF][START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF] that a necessary condition to prove the continuity of optimal transport maps is the so-called Ma-Trudinger-Wang condition (in short MTW condition). This condition is expressed in terms of the fourth derivatives of the cost function, and so makes sense on the domain on smoothness of the distance function, that is outside the cut locus. Another important condition to prove regularity results is the so-called c-convexity of the target domain (see [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF][START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF]), which in the case of the squared Riemannian distance corresponds to the convexity of all injectivity domains (see (2.4)). So, to obtain regularity results on small deformations of the sphere, on the one hand one has to prove the stability of the MTW condition, and on the other hand one needs to show that the convexity of the injectivity domain is stable under small perturbations. Up to now it was not known whether the convexity of the injectivity domains is stable under small perturbations of the metric, except in the nonfocal case (see [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF][START_REF] Itoh | The Lipschitz continuity of the distance function to the cut locus[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]). Indeed the boundaries of the injectivity domains depend on the global geometry of the manifold, and this makes the convexity issue very difficult. Theorem 1.3 above is the first general result in this direction.

Our strategy to deal with these problems is to introduce a variant of the MTW condition, which coincides with the usual one up to the cut locus, but that can be extended up to the first conjugate point (see Paragraph 2.2). In this way, since our extended MTW condition is defined up to the first conjugate time, all we really need is the convexity of the nonfocal domains (see (2.1)), which can be shown to be stable under small C 4 -perturbation of the metric (see Paragraph 5.2). Thus, in Theorems 3.2 and 3.6 we prove that the strict convexity of nonfocal domains, together with our extended MTW condition, allows to adapt the argument in [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] (changing in a careful way the function to which one has to apply the MTW condition) to conclude the validity of T CP. Moreover, as shown in Theorem 3.4 and Remark 3.5, the strategy of our proof of Theorem 3.2 allows to easily deduce the (strict) convexity of the injectivity domains. Since the assumptions of Theorem 3.2 are satisfied by C 4 -deformation of (S 2 , g can ), Theorems 1.2 and 1.3 follow.

The paper is organized as follows: in Section 2 we recall some basic facts in symplectic geometry, and we introduce what we call the extended Ma-Trudinger-Wang condition MT W(K, C). In Section 3 we show how MT W(K, C), together with the strict convexity of the cotangent nonfocal domains, allows to prove the strict convexity of the injectivity domains and T CP on a general Riemannian manifold. In Section 4 we prove the stability of MT W(K, C) under C 4 -deformation of (S 2 , g can ). Then, in Section 5 we collect several remarks showing other cases when our results apply, and explaining why our continuity result cannot be easily improved to higher regularity. Finally, in the appendix we show that the standard sphere (S n , g can ) satisfies MT W(K 0 , K 0 ) for some K 0 > 0.
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The extended MTW condition 2.1

In the sequel, (M, g) always denotes a smooth compact connected Riemannian manifold of dimension n, and we denote by d its Riemannian distance. We denote by T M the tangent bundle and by π :

T M → M the canonical projection. A point in T M is denoted by (x, v), with x ∈ M and v ∈ T x M = π -1 (x). For v ∈ T x M , the norm v x is g x (v, v) 1/2 . For every x ∈ M , exp x : T x M → M
stands for the exponential mapping from x, and cut(x) for the cut locus from x (i.e. the closure of the set of points y = x where the distance function from x d(x, •) is not differentiable). We denote by T * M the cotangent bundle and by π * : T * M → M the canonical projection. A point in T * M will be denoted by (x, p), with x ∈ M and p ∈ T * M a linear form on the vector space T x M . For every p ∈ T *

x M and v ∈ T x M , we denote by p, v the action of p on v. The dual metric and norm on T * M are respectively denoted by g x (•, •) and • x . The cotangent bundle is endowed with its standard symplectic structure ω.

A local chart ϕ : U ⊂ M → ϕ(U ) ⊂ R n
for M induces on T * M a natural chart

T * ϕ : T * U → T * (ϕ(U )) = ϕ(U ) × (R n ) * .
This gives coordinates (x 1 , . . . , x n ) on U , and so coordinates (x 1 , . . . , x n , p 1 , • • • , p n ) on T * U such that the symplectic form is given by ω = dx ∧ dp on T * U . Such a set of local coordinates on T * M is called symplectic. Fix θ = (x, p) ∈ T * M . We recall that a subspace E ⊂ T θ (T * M ) is called Lagrangian if it is a n-dimensional vector subspace where the symplectic bilinear form

ω θ : T θ (T * M ) × T θ (T * M ) → R vanishes.
The tangent space T θ (T * M ) splits as a direct sum of two Lagrangian subspaces: the vertical subspace V θ = ker(d θ π * ) and the horizontal subspace H θ given by the kernel of the connection map

C θ : T θ (T * M ) → T * x M defined as C θ (χ) := D t Γ(0) ∀χ ∈ T θ (T * M ), where t ∈ (-ε, ε) → (γ(t), Γ(t)) ∈ T * M is a smooth curve satisfying (γ(0), Γ(0)) = (x, p
) and ( γ(0), Γ(0)) = χ, and where D t Γ denotes the covariant derivative of Γ along the curve γ. Using the isomorphism

K θ : T θ (T * M ) -→ T x M × T * x M χ -→ (d θ π * (χ), C θ (χ)) ,
we can identify any tangent vector χ ∈ T θ (T * M ) with its coordinates (χ h , χ v ) := K θ (χ) in the splitting (H θ , V θ ). Therefore we have

H θ T x M × {0} R n × {0} and V θ {0} × T * x M {0} × R n , so that T θ (T * M ) H θ ⊕ V θ R n ⊕ R n . If a given n-dimensional vector subspace E ⊂ T θ (T * M ) is transversal to V θ (i.e. E ∩ V θ = {0}),
then E is the graph of some linear map S : H θ → V θ . It can be checked that E is Lagrangian if and only if S is symmetric in a symplectic set of local coordinates. The Hamiltonian vector field X H of a smooth function H : T * M → R is the vector field on T * M uniquely defined by ω θ X H (θ), • = -d θ H for any θ ∈ T * M . In a symplectic set of local coordinates, the Hamiltonian equations (i.e. the equations satisfied by any solution of ( ẋ, ṗ) = X H (x, p) ) are given by ẋ = ∂H ∂p , ṗ = -∂H ∂x . Finally, we recall that the Hamiltonian flow φ H t of X H preserves the symplectic form ω. We refer the reader to [START_REF] Abraham | Foundations of Mechanics[END_REF][START_REF] Da | Lectures on symplectic geometry[END_REF] for more details about the notions of symplectic geometry introduced above.

2.2

Let H : T * M → R be the Hamiltonian canonically associated with the metric g, i.e.

H(x, p) = 1 2 p 2 x ∀ (x, p) ∈ T * M.
We denote by φ H t the Hamiltonian flow on T * M , that is the flow of the vector field written in a symplectic set of local coordinates as

ẋ = ∂H ∂p (x, p), ṗ = -∂H ∂x (x, p).
For every (x, p) ∈ T * M , we define the Lagrangian subspace J (x,p) ⊂ T (x,p) (T * M ) T x M ×T * x M as the pullback of the vertical distribution at φ H 1 ((x, p)) by φ H 1 , that is

J (x,p) := φ H 1 * V φ H 1 ((x,p)) = φ H -1 * V φ H 1 ((x,p)) ∀ (x, p) ∈ T * M.
Let x ∈ M be fixed. We call cotangent nonfocal domain of x the open subset of

T * x M defined as N F * (x) := p ∈ T * x M | J (x,tp) ∩ V (x,tp) = {0} ∀ t ∈ (0, 1] . (2.1)
It is the set of covectors p ∈ T * x M \ {0} such that the corresponding geodesic γ : [0, 1] → M defined as γ(t) := π * • φ H t (x, p) has no conjugate points on the interval (0, 1]. By construction, for every p ∈ N F * (x), the Lagrangian subspace J (x,p) is transversal to the vertical subspace V (x,p) in T (x,p) (T * M ). Hence, there is a linear operator K(x, p) :

T x M → T * x M such that J (x,p) = h, K(x, p)h ∈ T x M × T * x M | h ∈ T x M .
We are now ready to define our extended Ma-Trudinger-Wang tensor.

Definition 2.1. We call extended Ma-Trudinger-Wang tensor (abbreviated MT W tensor), the mixed tensor field given by

S(x, p) • (ξ, η) := 3 2 d 2 ds 2 K(x, p + sη)ξ, ξ |s=0 ∀ ξ ∈ T x M, ∀ η ∈ T * x M,
for every (x, p) ∈ N F * (x).

The above definition extends the definition of the Ma-Trudinger-Wang tensor, which was first introduced in [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF] and extensively studied in [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF][START_REF] Figalli | Hölder continuity of optimal maps for nonnegatively cross-curved costs[END_REF][START_REF] Figalli | C 1 regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two[END_REF][START_REF] Kim | Continuity, curvature, and the general covariance of optimal transportation[END_REF][START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF][START_REF] Loeper | Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF][START_REF] Trudinger | On the second boundary value problem for Monge-Ampère type equations and optimal transportation[END_REF][START_REF] Trudinger | On strict convexity and continuous differentiability of potential functions in optimal transportation[END_REF][START_REF] Villani | Stability of a 4th-order curvature condition arising in optimal transport theory[END_REF]. Indeed, let x = y ∈ M be such that y / ∈ cut(x), and take ξ ∈ T x M, η ∈ T * x M . There is a unique p ∈ T *

x M \ {0} such that the curve γ : [0, 1] → M defined by

γ(t) := π * • φ H t (x, p) ∀ t ∈ [0, 1]
is a minimizing geodesic between x and y. Since such a curve contains no conjugate points, the covector p necessarily belongs to N F * (x). Let v ∈ T x M (resp. η ∈ T x M ) be the unique vector such that p, w = g x (v, w) (resp. η, w = g x (η, w)) for any w ∈ T x M . By the definition of K(•, •), if we define c(x, y) = d 2 (x, y)/2, then for s small one has 1

K(x, p + sη)ξ, ξ = - d 2 dt 2 c exp x (tξ), exp x (v + sη) |t=0 . (2.2)
Thus, differentiating both sides yields

S(x, p) • (ξ, η) = - 3 2 d 2 ds 2 d 2 dt 2 c exp x (tξ), exp x (v + sη) |s=t=0 = S(x, y) • (ξ, η), (2.3) 
where S denotes the classical Ma-Trudinger-Wang tensor (see for instance [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Chapter 12]).

Observe that, although the MT W tensor is not defined at (x, 0), the above formula shows that S(x, 0) is well-defined by continuity, and it is a smooth function near (x, 0). Denote by I * (x) the cotangent injectivity domain of x defined as

I * (x) := p ∈ T * x M | π * • φ H t (x, p) / ∈ cut(x) ∀ t ∈ [0, 1] , (2.4) 
and observe that I * (x) ⊂ N F * (x) ∪ {0}. The discussion above shows that, up to identify p, η ∈ T * x M with v, η ∈ T x M using the Riemannian metric g x , the MT W tensor S and the classical MTW tensor S coincide on the injectivity domains. For this reason, our tensor can be seen as an extension of the MTW tensor beyond the injectivity domain until the boundary of the nonfocal domain.

It is worth mentioning that in Definition 2.1 it is not necessary to work with the horizontal spaces which are given by the Riemannian connection associated with the metric g. Let ϕ : U ⊂ M → ϕ(U ) ⊂ R n be a local chart in M and (x 1 , . . . , x n , p 1 , • • • , p n ) be a symplectic set of local coordinates on T * U . As we already said before, for every θ = (x, p) ∈ T * U = R n × (R n ) * , the horizontal space H θ canonically associated with g is defined as the set of pairs χ = (h, v) ∈ R n × (R n ) * such that v = Γ(0), where t ∈ (-, ) → (γ(t), Γ(t)) is the smooth curve satisfying (γ(0), Γ(0)) = (x, p), γ(0) = h, and Γ(t) is obtained by parallel transport of the covector Γ(0) = p along the curve γ. Writing the ordinary differential equations of parallel transport in local coordinates yields that there exists a bilinear mapping

L x : R n × (R n ) * -→ (R n ) * 1
The equality is a simple consequence of the following fact: for each xt := exp x (tξ), denote by pt, qt the covectors in T *

x t M and T * y M satisfying φ H -1 (y, qt) = (xt, pt) (with y := exp x (v + sη)), p 0 = p + sη, and pt 2

x t = qt such that the horizontal space H θ in local coordinates is given by

H θ = h, L x (h, p) | h ∈ R n .
Denote by Hθ the horizontal space given by the base space in the symplectic set of local coordinates, that is Hθ := R n × {0}.

Since Hθ is a Lagrangian subspace of T θ (T * M ) = R n × (R n ) * , there is a linear operator K(x, p) : R n → (R n ) * such that

J (x,p) = h, K(x, p)h ∈ R n × (R n ) * | h ∈ R n .
Then, for every h ∈ R n we have

K(x, p)h = L x (h, p) + K(x, p)h.
Since L x is linear in the p variable, this shows that for every (x, p) ∈ N F * (x)

S(x, p) • (ξ, η) = 3 2 d 2 ds 2 K(x, p + sη)ξ, ξ |s=0 ∀ ξ ∈ R n , ∀ η ∈ (R n ) *
(this argument is the symplectic analogous of [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Remark 12.31]).

It has also to be noticed that the MT W tensor may be (locally) associated with an extended cost function through formulas like (2.2)-(2.3). More precisely, fix θ = (x, p) ∈ T * M with p ∈ N F * (x). Since the point y := π * • φ H 1 (x, p) is not conjugated with x, thanks to the Inverse Function Theorem there exist an open neighborhood V of (x, p) in T * M , and an open neighborhood W of (x, y) in M × M , such that the function

Ψ θ : V ⊂ T * M -→ W ⊂ M × M (x , p ) -→ x , π * • φ H 1 (x , p
) , is a smooth diffeomorphism from V to W. The extended cost function ĉθ : W → R which can be (locally) associated with the MT W tensor at θ = (x, p) is (uniquely) defined by ĉθ (x , y

) := 1 2 Ψ -1 θ (x , y ) 2 x ∀(x , y ) ∈ W. (2.5)
For the same reasons as before, we have for any ξ ∈ T x M and η ∈ T * x M ,

K(x, p + sη)ξ, ξ = - d 2 dt 2 ĉθ exp x (tξ), π * • φ H 1 (x, p + sη) |t=0 (2.6) which yields S(x, p) • (ξ, η) = - 3 2 d 2 ds 2 d 2 dt 2 ĉθ exp x (tξ), π * • φ H 1 (x, p + sη) |s=t=0 . (2.7) 
Moreover, if instead we work in a symplectic set of local coordinates (x 1 , . . . ,

x n , p 1 , • • • , p n ) on T * U , then for any θ = (x, p) ∈ T * U with p ∈ N F * (x), and any ξ ∈ R n , η ∈ (R n ) * , there holds 2 K(x, p + sη)ξ, ξ = - ∂ 2 ∂x 2 ξ ĉθ x, π * • φ H 1 (x, p + sη) (2.8)
2 Set, for t small, xt := x + tξ, and denote by pt, qt the covectors in

T * x t M = (R n ) * and T * y M satisfying φ H -1 (y, qt) = (xt, pt) (with y := φ H 1 (x, p + sη)), p 0 = p + sη, and pt 2 x t = qt 2 y = 2ĉ θ (xt, y). Then d dτ ĉθ (x t+τ , y) |τ =0 = dxĉ θ (xt, y), ẋt = -pt, ẋt = -pt, ξ ,
so that differentiating again at t = 0 we obtain

∂ 2 ∂x 2 ξ ĉθ `x, φ H 1 (x, p + sη) ´= d 2 dt 2 ĉθ (xt, y) |t=0 = -ṗ0 , ξ ,
where ṗ0 denotes the classical derivative of pt in the direction η (in local coordinates). Since φ H 1 (xt, pt) = (y, qt), by the definition of K(x, p + sη) we obtain ṗ0 = K(x, p + sη)ξ. and

S(x, p) • (ξ, η) = - 3 2 ∂ 2 ∂p 2 η ∂ 2 ∂x 2 ξ ĉθ x, π * • φ H 1 (x, p) , (2.9) 
where

∂ 2 ∂x 2 ξ (resp. ∂ 2 ∂p 2 η
) denotes the classical second derivative (in coordinates) in the x variable in the direction ξ (resp. in the p variable in the direction η).

The following definition extends the definition of MTW(K, C) introduced in [20]:

Definition 2.2. Let K, C ≥ 0. We say that (M, g) satisfies MT W(K, C) if, for any (x, p) ∈ T * M with p ∈ N F * (x), S(x, p) • (ξ, η) ≥ K ξ 2 x η 2 x -C η, ξ ξ x η x ∀ ξ ∈ T x M, ∀ η ∈ T * x M.
In [START_REF] Loeper | On the regularity of solutions of optimal transportation problems[END_REF] it was observed that, if ξ and η are orthogonal unit vectors in T x M and η :=

g x (η, •) ∈ T * x M , then S(x, 0) • (ξ, η) = S(x, x) • (ξ, η
) coincides with the sectional curvature at x along the plane generated by ξ and η. More precisely one can prove that, for all

ξ ∈ T x M , η ∈ T * x M , S(x, 0) • (ξ, η) = σ x (P ) ξ 2 x η 2 x -| η, ξ | 2 ,
where σ x (P ) denotes the sectional curvature at x along the plane generated by ξ and η. In particular, if (M, g) satisfies MT W(K, C), then its sectional curvature is bounded from below by K. Therefore, if (M, g) satisfies MT W(K, C) with K > 0, by Bonnet-Myers Theorem its diameter is bounded, so that M is compact, and in addition the set ∪ x∈M x, N F * (x) ⊂ T * M is compact. Furthermore, by the above formula we also see that S(x, 0)

• (ξ, η) = 0 whenever g x (ξ, •) is parallel to η (since in this case | η, ξ | = ξ x η x ). Therefore, if (M, g) satisfies MT W(K, C), then C ≥ K.
The round sphere (S n , g can ) and its quotients satisfy MT W(K 0 , K 0 ) for some K 0 > 0 (see Appendix). Moreover, since the MT W tensor depends only on the Hamiltonian geodesic flow, if a given Riemannian manifold (M, g) satisfies MT W(K, C), then its quotients as well as its coverings satisfy MT W(K, C). The aim of this paper is to show that the MT W(K, C) condition, together with the strict convexity of the cotangent nonfocal domains, allows to prove the strict convexity of all cotangent injectivity domains and T CP. As a corollary, we will obtain Theorems 1.2 and 1.3.

3 Extended regularity, convexity of injectivity domains, and T CP

3.1

Our strategy is to show that an extended version of the uniform regularity property introduced by Loeper and Villani in [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] is sufficient to obtain T CP. Our definition of extended regularity is in some sense stronger than the one given by Loeper and Villani, as it takes into account what happens until the boundary of the cotangent nonfocal domain, and besides requires its convexity. On the other hand we do not require the uniform convexity of the injectivity domains, which is an assumption much more complicated to check than the convexity of the nonfocal domains (see [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF]). Moreover our definition has the advantage that it allows to deduce the convexity of all injectivity domains as an immediate corollary (see Theorem 3.4). We notice that, since our definition of extended regularity involves the geodesic Hamiltonian flow (as we want to be able to cross the cut locus), it cannot be expressed only in term of the cost function c = d 2 /2. For this reason we will say what means for a Riemannian manifold (M, g) to be (stricly) regular, while in [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] the authors defined what means d 2 /2 being uniformly regular.

Definition 3.1 (Extended regularity). We say that (M, g) is regular (resp. strictly regular) if there are ρ, κ > 0, and a function f

∈ C ∞ c ([0, 1]) with f ≥ 0 and {f > 0} = (1/4, 3/4), such that (a) for every x ∈ M , N F * (x) is convex (resp. strictly convex), (b) for every x ∈ M , let (p t ) 0≤t≤1 be a C 2 curve drawn in N F * (x)∪{0} with p 0 = p 1 ∈ I * (x),
and let

y t := π * • φ H 1 (x, p t ).
Then there exists λ > 0 such that the following holds: let

x ∈ M . If pt x ≤ ρ d(x, x) ẏt 2 yt ∀ t ∈ (0, 1), (3.1) 
then, for any t ∈ [0, 1],

d(x, y t ) 2 -p t 2 x ≥ min d(x, y 0 ) 2 -d(x, y 0 ) 2 , d(x, y 1 ) 2 -d(x, y 1 ) 2 + λf (t) d(x, x) 2 . (3.2)
Moreover, given a family of curves (p t ) 0≤t≤1 as above such that (p t ) 0≤t≤1 vary inside a compact subset of N F * (x) ∪ {0} and p 1 -p 0 x is uniformly bounded away from 0, the constant λ > 0 can be chosen to be the same for all curves.

One of the motivations of the above definition is that, roughly speaking, the extended regularity is an "integral" manifestation of the extended MT W condition:

Theorem 3.2. Assume that there exist K, C > 0 such that (i) for every x ∈ M , N F * (x) is convex, (ii) (M, g) satisfies MT W(K, C).
Then (M, g) is regular.

The above theorem is indeed a simple consequence of the following lemma, combined with an approximation argument: Lemma 3.3. Let (M, g) be a Riemannian manifold satisfying MT W(K, C) for some K, C > 0, and assume that N F * (x) is convex for all x ∈ M . Let x ∈ M , and let (p t ) 0≤t≤1 be a

C 2 curve drawn in N F * (x) ∪ {0} ⊂ T *
x M , with p 0 = p 1 ∈ I * (x). For any t ∈ (0, 1), set y t := π * • φ H 1 (x, p t ), and suppose that

pt x ≤ K 6 d(x, x) ẏt 2 yt ∀ t ∈ (0, 1). (3.3)
Assume further that x ∈ cut(y t ) only for a finite set of times

0 < t 1 < . . . < t N -1 < 1. Finally, let f ∈ C ∞ c ([0, 1]) be as in Definition 3.1. Then, for any t ∈ [0, 1], d(x, y t ) 2 -p t 2 x ≥ min d(x, y 0 ) 2 -d(x, y 0 ) 2 , d(x, y 1 ) 2 -d(x, y 1 ) 2 + λf (t)d(x, x) 2 , (3.4)
where

λ := min K 2C diam(M ) ḟ ∞ inf 1/4≤t≤3/4 ẏt yt , K 12 f ∞ inf 1/4≤t≤3/4 ẏt 2 yt
.

Note that, since M has sectional curvature bounded from below by K > 0 (thanks to MT W(K, C)), then diam(M ) is finite.

Proof of Theorem 3.2. Let x, x, (p t ) 0≤t≤1 and (y t ) 0≤t≤1 be as in Definition 3.1. Up to slightly reduce ρ, by density and the approximation lemma proved in [14, Section 2] we may assume that y 0 , y 1 / ∈ cut(x) and that y t meets cut(x) only at finitely many times t 1 , . . . , t N -1 , all the other conditions in Definition 3.1 being unchanged.

Since

p t ∈ N F * (x) ∪ {0} for all t ∈ [0, 1], we have dist p t , ∂ N F * (x) ∪ {0} > 0 ∀ t ∈ [0, 1]. (3.5)
Moreover, as ẏt yt ≤ C 0 ṗt x for some constant C 0 > 0 depending only on M3 , thanks to (3.3) we deduce that ṗt = 0 for all t ∈ (0, 1). Indeed, if not, by (3.1) we would get

d dt ṗt x ≤ ρ d(x, x)C 2 0 ṗt 2 x,
and Gronwall Lemma would imply ṗt ≡ 0, which contradicts p 0 = p 1 . Hence, combining (3.5) with the fact that ṗt = 0 for t ∈ (0, 1), we obtain

ẏt yt > 0 ∀ t ∈ (0, 1), (3.6) 
which by continuity implies inf 1/4≤t≤3/4 ẏt yt > 0. Moreover, if we take a family of curves (p t ) 0≤t≤1 inside a compact subset of N F * (x) ∪ {0}, with p 1 -p 0 x is uniformly bounded away from 0, it is easy to see by compactness that there exists a constant δ 0 > 0 such that inf 1/4≤t≤3/4 ẏt yt ≥ δ 0 for all curves (p t ) 0≤t≤1 . Then the theorem follows easily from Lemma 3.3.

The proof of Lemma 3.3 is strongly inspired by the proof of [20, Theorem 3.1], which uses a variant of the tecniques introduced in [17, Section 4]. However the main difference with respect to the preceding proofs is in the fact that, since our curve t → p t can exit from I * (x), we have to change carefully the function to which one applies the MT W(K, C) condition. The advantage of our choice of such a function is that it allows to deduce a stronger result, where we bound from below d(x, y t ) 2 -p t 2 x instead of d(x, y t ) 2 -d(x, y t ) 2 . This fact is crucial to deduce the (strict) convexity of all cotangent injectivity domains.

Proof of Lemma 3.3. First of all, without loss of generality we can assume that x = x. Indeed, if x = x we simply write (3.4) for a sequence (x k ) k∈N , with x k = x, and then let x k → x. Thus, we suppose d(x, x) > 0.

Since p t ∈ N F * (x) ∪ {0} for all t ∈ [0, 1], as in the proof of Theorem 3.2 we have

dist p t , ∂ N F * (x) ∪ {0} > 0 and ẏt yt > 0 ∀ t ∈ [0, 1]. Set t 0 = 0, t N = 1, and define h : [0, 1] → R by h(t) := -c(x, y t ) + p t 2 x 2 + δf (t) ∀t ∈ [0, 1],
where c(x, y) = d 2 (x, y)/2 and δ := λd(x, x) 2 . Let us first show that h cannot have a maximum point on an interval of the form (t j , t j+1 ). For every t ∈ (t j , t j+1 ), since y t / ∈ cut(x), h is a smooth function of t. We fix t ∈ (t j , t j+1 ), and we compute ḣ(t) and ḧ(t).

As in Paragraph 2.2, define the extended cost function ĉ :

= ĉ(x,pt) in an open set W of M × M containing (x, y t ) as ĉ(z, y) := 1 2 exp -1 z (y) 2 z = 1 2 exp -1 y (z) 2 y ∀(z, y) ∈ W,
where exp -1 z (resp. exp -1 y ) denotes a local inverse for exp z (resp. exp y ) near x (resp. y t ). Hence, for s close to t, we can write h(s) = -c(x, y s ) + ĉ(x, y s ) + δf (s).

Moreover the identity p s = -d x ĉ(x, y s ) holds. Take a local chart in an open set U ⊂ M contiaining y t and consider the associated symplectic set of local coordinates (y everything being evaluated at (x, y t ) and at time t. Here we used the notation ĉxiyj for the inverse of ĉxiyj = (d xy ĉ) ij , which denotes the second partial derivatives of ĉ in the x i and y j variables. Let us define q t := -d y c(x, y t ), qt := -d y ĉ(x, y t ). Then we easily get

1 , • • • , y n , q 1 , • • • , q n ) in T * U . Then,
ḣ(t) = qt , ẏt + δ ḟ (t), ḧ(t) = -c yiyj (x, y t ) -ĉyiyj (x, y t ) + ĉx k yiyj (x, y t )ĉ x y k (x, y t ) qt ẏi ẏj -ĉxiyj (x, y t ) qt i pt j + δ f (t),
where qt := q t -qt . Now, using (2.8), we obtain

ḧ(t) = K(y t , q t ) ẏt , ẏt -K(y t , qt ) ẏt , ẏt - d ds K(y t , qt + sq t ) ẏt , ẏt |s=0 + v t , pt + δ f (t), (3.7) 
where v t := -d xy ĉ(x, y t ) -1 qt . Recalling (2.9), that is

d 2 ds 2 K(y t , qt + sq t ) ẏt , ẏt = d 2 ds 2 K(y t , qt + sq t ) ẏt , ẏt , (3.7 
) can be written as

ḧ(t) = 1 0 (1 -s) d 2 ds 2 K(y t , qt + sq t ) ẏt , ẏt ds + v t , pt + δ f (t) = 2 3 1 0 (1 -s) S(y t , qt + sq t ) • ẏt , qt ds + v t , pt + δ f (t).
By MT W(K, C) and

1 0 (1 -s)ds = 1/2, we get ḧ(t) ≥ 1 3 K qt yt ẏt yt -C| qt , ẏt | qt yt ẏt yt + v t , pt + δ f (t).
We now claim that the function h cannot have any maximum on (t j , t j+1 ). Indeed, if ḣ(t) = 0 for some t ∈ (t j , t j+1 ), we have

0 = ḣ(t) = qt , ẏt + δ ḟ (t), which implies | qt , ẏt | ≤ δ| ḟ (t)|. Thus ḧ(t) ≥ 1 3 K qt yt ẏt yt -Cδ| ḟ (t)| qt yt ẏt yt -| v t , pt | -δ| f (t)|,
and so by (3.3)

ḧ(t) ≥ 1 3 K qt yt ẏt yt -Cδ| ḟ (t)| qt yt ẏt yt - K 6 v t xd(x, x) ẏt 2 yt -δ| f (t)|.
Since MT W(K, C) implies that the sectional curvature of M is bounded below by K > 0 (see the discussion after Definition 2.2), the exponential mapping exp yt is 1-Lipschitz, which implies that the norm of the operator d xy ĉ(x, y t ) -1 : T * yt M → T xM is bounded by 1. Hence, we have

v t x ≤ qt yt , d(x, x) ≤ qt yt , (3.8) 
which give

ḧ(t) ≥ 1 3 K qt yt ẏt yt -Cδ| ḟ (t)| qt yt ẏt yt - K 6 qt 2 yt ẏt 2 yt -δ| f (t)| ≥ K 6 qt yt ẏt yt - C 3 δ| ḟ (t)| qt yt ẏt yt -δ| f (t)|. If t / ∈ [1/4, 3/4] then ḟ (t) = f (t) = 0, which combined with (3.8) implies ḧ(t) ≥ K 6 qt 2 yt ẏt 2 yt ≥ K 6 d(x, x) 2 ẏt 2 yt .
On the other hand, if t ∈ [1/4, 3/4], recalling that δ = λd(x, x) 2 and the definition of λ we obtain

C 3 δ| ḟ (t)| = C 3 λd(x, x) 2 | ḟ (t)| ≤ K 12 d(x, x) ẏt yt ≤ K 12 qt yt ẏt yt ,
which using again (3.8) and the definition of λ yields

ḧ(t) ≥ K 12 qt 2 yt ẏt 2 yt -δ| f (t)| ≥ K 12 d(x, x) 2 ẏt 2 yt -δ| f (t)| ≥ K 24 d(x, x) 2 ẏt 2 yt . (3.9) 
In any case, thanks to (3.6), we have ḧ(t) > 0, which shows that h cannot have a maximum on any interval (t j , t j+1 ). Thus, as h is continuous on [0, 1], it has to achieve its maximum at one of the times t j (0 ≤ j ≤ N ). The goal is to show that necessarily j = 0 or j = N . Indeed, let j ∈ {1, . . . , N -1}. We first note that, since t → c(x, y t ) = d 2 (x, y t )/2 is semiconcave and

t → p t 2 
x is smooth, h(t) is semiconvex. If ḣ is continuous at t j and ḣ(t j ) = 0, clearly t j cannot be a maximum of h. The same is true if ḣ is discontinuous at t j , because by semiconvexity necessarily ḣ(t + j ) > ḣ(t - j ). Finally, if ḣ is continuous at t j and ḣ(t j ) = 0, the same computations as before show that ḧ(t) is strictly positive when t is close to (but different from) t j , which implies that h cannot have a maximum at t j . The only possibility left out for h is to achieve its maximum at t 0 = 0 or t N = 1, and we obtain (3.2).

3.2

One main feature of our definition of regularity is that it immediately implies the convexity of all injectivity domains: Theorem 3.4. Let (M, g) be a regular Riemannian manifold. Then I * (x) is convex for all x ∈ M .

Proof. It is sufficient to show that I * (x) is convex for all x ∈ M . We fix x ∈ M , and choose x = x in the definition of regularity. Then, considering p

t := tp 1 + (1 -t)p 0 with p 0 = p 1 ∈ I * (x) ⊂ N F * (x), we get d(x, y t ) ≥ p t x ∀ t ∈ [0, 1].
This gives p t ∈ I * (x), that is I * (x) is convex.

Remark 3.5. One can actually prove that, if (M, g) is strictly regular, then strict convexity of all injectivity domains holds. Indeed, let us assume by contradiction that there are p 0 = p 1 ∈ N F * (x) ∩ I * (x) such that that tp 1 + (1 -t)p 0 ∈ I * (x) for all t ∈ (0, 1). Consider x = x in the proof of Lemma 3.3, and using the same notation we perturb the segment into a curve (p t ) 0≤t≤1 such that p t ∈ N F * (x) \ I * (x) for all t ∈ (1/4, 3/4), and pt yt ≤ K 6 q t -qt yt ẏt 2 yt , where q t := -d y c(x, y t ) = qt for t ∈ (1/4, 3/4) (this can always be done as the segment tp 1 + (1 -t)p 0 lies at positive distance from ∂ N F * (x) for t ∈ (1/4, 3/4)). The function h(t) = -c(x, y t ) + p t 2 x/2 is identically zero on [0, 1/4] ∪ [3/4, 1], and it is smooth on (1/4, 3/4). Since now δ = 0, by the first inequality in (3.9) we get

ḧ(t) ≥ K 12 q t -qt 2 yt ẏt 2 yt > 0 ∀ t ∈ (1/4, 3/4)
whenever ḣ(t) = 0. This fact implies that h cannot attain a maximum on (1/4, 3/4). Hence, for any t ∈ (1/4, 3/4),

0 = d(x, y t ) 2 -d(x, y t ) 2 < p t 2 x -d(x, y t ) 2 ≤ 2 max s∈[0,1]
h(s) = 0, a contradiction.

3.3

Here is another main motivation for our definition of extended regularity:

Theorem 3.6. Any Riemannian manifold (M, g) which is stricly regular satisfies T CP.

The proof of this theorem closely follows the proof of [20, Theorem 5.1].

Proof. Condition (i) in the definition of T CP insures that µ gives no mass to set with σ-finite (n -1)-dimensional Hausdorff measure. Thanks to McCann's Theorem read in the Hamiltonian formalism, there exists a unique optimal transport map between µ and ν, which is given by

T (x) = π * • φ H 1 (x, d x ψ)
, where ψ is a semiconvex function. Moreover d x ψ ∈ I * (x) ⊂ N F * (x) at all point of differentiability of ψ. Since N F * (x) is convex for all x, the subdifferential of ψ satisfies ∂ψ(x) ⊂ N F * (x) for all x ∈ M . To prove that ψ is C 1 , we need to show that ∂ψ(x) is everywhere a singleton. The proof is by contradiction.

Assume that there is x ∈ M such that p 0 = p 1 ∈ ∂ψ(x). Let y 0 = exp x p 0 , y 1 = exp x p 1 . Thus y i ∈ ∂ c ψ(x), i.e.

ψ(x) + 1 2 d 2 (x, y i ) = min x∈M ψ(x) + 1 2 d 2 (x, y i ) , i = 0, 1.
In particular

1 2 d 2 (x, y i ) - 1 2 d 2 (x, y i ) ≥ ψ(x) -ψ(x), ∀x ∈ M, ∀i = 0, 1. (3.10) 
Fix η 0 > 0 small (the smallness to be chosen later). For ε ∈ (0, 1), we define D ε ⊂ N F * (x) as follows: D ε consists of the set of points p ∈ T * x M such that there exists a path (p t ) 0≤t≤1 ⊂ N F * (x) from p 0 to p 1 such that, if we set y t := π * • φ H 1 (x, p t ), we have pt = 0 for t ∈ [1/4, 3/4], pt yt ≤ εη 0 ẏt 2 yt for t ∈ [1/4, 3/4], and p = p t for some t ∈ [1/4, 3/4]. By the strict convexity of N F * (x), if η 0 is sufficiently small then D ε lies a positive distance σ away from ∂ N F * (x) for all ε ∈ (0, 1). Thus all paths (p t ) 0≤t≤1 used in the definition of

D ε satisfy ẏt yt ≥ c p 0 -p 1 x ∀ t ∈ [1/4, 3/4],
with c independent of ε ∈ (0, 1). Moreover condition (3.1) is satisfied if η 0 ≤ ρ and d(x, x) ≥ ε. By simple geometric consideration, we see that D ε contains a parallelepiped E ε centered at (p 0 + p 1 )/2 with one side of length ∼ p 0 -p 1 x, and the other sides of length ∼ ε p 0 -p 1 2

x, such that all points y in such parallelepiped can be written as y t for some t ∈ [1/3, 2/3], with y t as in the definition of D ε . Therefore

L n (E ε ) ≥ cε n-1 ,
with L n denoting the Lebesgue measure on T xM . Since E ε lies a positive distance from

∂ N F * (x) , we obtain vol (Y ε ) ∼ L n (E ε ) ≥ cε n-1 , Y ε := π * • φ H 1 (x, E ε ).
We then apply Theorem 3.2 to the paths (p t ) 0≤t≤1 used in the definition of D ε to obtain that, for any y ∈ Y ε and

x ∈ M \ B ε (x), d(x, y) 2 -d(x, y) 2 ≥ min d(x, y 0 ) 2 -d(x, y 0 ) 2 , d(x, y 1 ) 2 -d(x, y 1 ) 2 + λ inf t∈[1/3,2/3] f (t) d(x, x) 2 , with inf t∈[1/3,2/3] f (t) > 0.
Combining this inequality with (3.10), we conclude that

for any y ∈ Y ε , y ∈ ∂ c ψ(x) ∀ x ∈ M \ B ε (x).
This implies that all the mass brought into Y ε by the optimal map comes from B ε (x), and so

µ(B ε (x)) ≥ ν(Y ε ).
We now remark that by condition (ii) in the definition of T CP and a standard covering argument, there exists a constant c 1 > 0 such that ν(A) ≥ c 1 vol (A) for all Borel sets A ⊂ M . Thus, as

µ(B ε (x)) ≤ o(1)ε n-1 and ν(Y ε ) ≥ c 1 vol (Y ε ) ≥ cε n-1
, we obtain a contradiction as ε → 0.

Stability of MT W near the sphere

In this section, we show that any C 4 -deformation of the standard 2-sphere satisfies MT W(K, C) for some K, C > 0. Let (M, g) be a smooth, compact and positively curved surface. It is easy to show that, for every x ∈ M , the set N F * (x) ⊂ T * x M is a compact set with smooth boundary (see [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF]). In fact it can even be shown that, if M = S 2 and g is C 4 -close to the round metric g can , then all the N F * (x) are uniformly convex. Thus Theorems 1.2 and 1.3 are a consequence of Theorems 3.2, 3.6, 3.4 and Remark 3.5, together with the following result: Theorem 4.1. There exist K, C > 0 such that any C 4 -deformation of (S 2 , g can ) satisfies MT W(K, C).

Proof. For ε ≥ 0, let g ε be a smooth metric on S 2 such that g ε -g can C 4 ≤ ε (so that g 0 = g can ). We see S 2 as the sphere centered at the origin with radius one in R 3 , so that we can identify covectors with vectors. Let x ∈ S 2 ; we observe that for g 0 the set N F * (x) ∪ {0} corresponds to the open ball centered at x with radius π intersected with the hyperplan tangent to S 2 at x, while for g ε the nonfocal domain N F * ε (x) ∪ {0} is a C 2 -perturbation of the ball. Our aim is to show that there exist K, C > 0 such that, if ε > 0 is sufficiently small, then for every x ∈ S 2 and every p ∈ N F * ε (x) one has

S(x, p) • (ξ, η) ≥ Kg ε x (ξ, ξ)g ε x (η, η) -C ξ, η g ε x (ξ, ξ) 1/2 g ε x (η, η) 1/2
for all ξ ∈ T x S n , η ∈ T * x S n . Since the property holds true on (S 2 , g can ) with K = C = K 0 for some K 0 > 0 (see Appendix), the above inequality holds by continuity on (S 2 , g ε ) with K = K 0 /2 and C = 2K 0 when p is uniformly away from the boundary of N F * ε (x) ∪ {0}, and ε is sufficiently small. Thus all we have to prove is that the above inequality remains true when p is close to ∂ N F * ε (x) ∪ {0} . Moreover, by the homogeneity of (S 2 , g can ), it will suffice to prove the estimate only for a fixed point x ∈ S 2 and along a fixed geodesic t → π * • φ H t (x, p).

Consider the stereographic projection of the sphere S 2 ⊂ R 3 from the north pole N = (0, 0, 1) onto the space R 2 R 2 × {0} ⊂ R 3 . The projection of some point x = (x 1 , x 2 , x 3 ) ∈ S 2 is given by

σ(x) = x 1 1 -x 3 , x 2 1 -x 3 .
The function σ is a smooth diffeomorphism from S 2 \ {N } onto R 2 , whose inverse is

σ -1 (y) = 2y 1 1 + |y| 2 , 2y 2 1 + |y| 2 , |y| 2 -1 1 + |y| 2 ∀ y = (y 1 , y 2 ) ∈ R 2 ,
where | • | denotes the Euclidean norm on R 2 . The pushforward of the metric g ε under σ induces a metric on R 2 , that we still denote by g ε , and which for ε = 0 is given by

g 0 y (v, v) = 4 (1 + |y| 2 ) 2 |v| 2 ∀ y, v ∈ R 2 .
Note that since we work in R 2 , we can identify covectors with vectors. We denote by H ε (y, p) the Hamiltonian canonically associated to g ε , which for ε = 0 is given by

H 0 (y, p) = (1 + |y| 2 ) 2 8 |p| 2 ∀ y, p ∈ R 2 .
We observe that H ε -H 0

C 4 ε. The Hamiltonian system associated to H ε is ẏε = ∂H ε ∂p (y ε , p ε ) ṗε = -∂H ε ∂y (y ε , p ε ),
and the linearized Hamiltonian system along a given solution (y ε (t),

p ε (t)) is ḣε = ∂ 2 H ε ∂p 2 (y ε , p ε )q ε + ∂ 2 H ε ∂y∂p (y ε , p ε )h ε qε = -∂ 2 H ε ∂y∂p (y ε , p ε )q ε -∂ 2 H ε ∂y 2 (y ε , p ε )h ε
We note that h ε is a Jacobi vector field along the geodesic t → y ε (t).

Set Y = (-1, 0) ∈ R 2 , and consider the geodesic θ ε α starting from Y with velocity of norm 1 and making angle α (computed with respect to g ε ) with the line {x 2 = 0}. For ε = 0 this geodesic is given by

θ 0 α (t) = cos(t -π) 1 -cos(α) sin(t -π) , sin(α) sin(t -π) 1 -cos(α) sin(t -π) , 0 ,
and it is a minimizing geodesic between Y and (1, 0). Since the first conjugate time for θ α is t = π for all α, and we are perturbing the metric in the C 4 topology, there exists a smooth function α → t ε c (α) such that t ε c (α) is the first conjugate time of θ ε α , and

t ε c (α) -π C 2 ε. Fix tε (α) ∈ (0, t ε c (α))
, and set V ε α := tε (α) θε α (0). As we notice in Paragraph 2.2, in order to compute the MT W tensor at (Y, V ε α ), we can use the horizontal space given by any choice of a symplectic set of local coordinates. Therefore, we can work with the standard splitting R 4 = R 2 ⊕ R 2 and take as horizontal vertical spaces

H (Y,V ε α ) = R 2 × {0} ⊂ R 4 and V (Y,V ε α ) = {0} × R 2 ⊂ R 4 .
In the sequel, we shall denote by K ε (Y, V ε α ) (which corresponds to the operator Kε (Y, V ε α ) of Paragraph 2.2) the 2 × 2 matrix such that

J (Y,V ε α ) = (h, K ε (Y, V ε α )h) ∈ R 2 × R 2 | h ∈ R 2 .
By an easy rescaling, it is not difficult to see that K ε (Y, V ε α ) is given by

K ε (Y, V ε α ) = tε (α)S ε α ( tε (α))
where S ε α ( tε (α)) is the 2 × 2 symmetric matrix such that any solution of the linearized Hamiltonian system along θ ε α starting from (h, S ε α ( t)h) satisfies h ε ( tε (α)) = 0. Let us compute S ε α ( tε (α)).

Let E ε 1 (t, α) := θε α (t) and E ε 2 (t, α) be a basis of parallel vector fields along θ ε α such that

g ε E ε 1 (0, α), E ε 2 (0, α) = 0.
For ε = 0 they are given by

E 0 1 (t, α) := θα (t) = cos(α) -sin(t -π) (1 -cos(α) sin(t -π)) 2 , sin(α) cos(t -π) (1 -cos(α) sin(t -π)) 2 , 0 , E 0 2 (t, α) := -sin(α) cos(t -π) (1 -cos(α) sin(t -π)) 2 , cos(α) -sin(t -π) (1 -cos(α) sin(t -π)) 2 , 0 , Let (h ε α , q ε α
) be a solution of the linearized Hamiltonian system along θ ε α such that h ε α ( tε (α)) = 0 for some tε (α) ∈ (0, t ε c (α)). Since E ε 1 (t, α), E ε 2 (t, α) form a basis of parallel vector fields along θ α , there are two smooth functions

u ε α,1 (t), u ε α,2 (t) such that h ε α (t) = u ε α,1 (t)E ε 1 (t, α) + u ε α,2 (t)E ε 2 (t, α).
If we denote by u ε α (t) ∈ R 2 the vector (u ε α,1 (t), u ε α,2 (t)), and by A ε α (t) the 2 × 2 matrix having E ε 1 (t, α) and E ε 2 (t, α) as column vectors, we can write

h ε α (t) = A ε α (t)u ε α (t).
As h ε α (t) is a Jacobi vector field along θ ε α we have

ḧε α + R ε h ε α , θε α θε α = 0,
where R ε denotes the Riemann tensor, and using the symmetries of R ε we get

R ε h ε α , θε α θε α = R ε h ε α , E ε 1 E ε 1 = R ε u ε α,1 E ε 1 + u ε α,2 E ε 2 , E ε 1 E ε 1 = R ε u ε α,2 E ε 2 , E ε 1 E ε 1 = u ε α,2 R ε (E ε 2 , E ε 1 )E ε 1 , E ε 1 E ε 1 + u ε α,2 R ε (E ε 2 , E ε 1 )E ε 1 , E ε 2 E ε 2 = u ε α,2 R ε (E ε 2 , E ε 1 )E ε 1 , E ε 2 E ε 2 .

This gives üε

α,1 (t, α) = 0 üε α,2 (t, α) = -g ε R ε (E ε 2 , E ε 1 )E ε 1 , E ε 2 u ε α,2 (t, α), so that u ε α,1 (t, α) = λ 1 + λ 2 t üε α,2 (t, α) = -g ε R ε (E ε 2 , E ε 1 )E ε 1 , E ε 2 u ε α,2 (t, α) = -a ε (t, α)u ε α,2 (t, α),
where (t, α) → a ε (t, α) is close to 1 in C 2 -topology. Hence we can write

u ε α (t) = U ε 1 (t, α)u ε α (0) + U ε 2 (t, α) uε α (0), with U ε 1 (t, α) = 1 0 0 f ε 1 (t, α) , U ε 2 (t, α) = t 0 0 f ε 2 (t, α)
, with f ε 1 (t, α) and f ε 2 (t, α) are close to cos(t) and sin(t) in the C 2 -norm, respectively. Recalling that h ε α ( tε (α)) = 0, we have

0 = U ε 1 (t ε α , α)u ε α (0) + U ε 2 (t ε α , α) uε α (0) =⇒ uε α (0) = -U ε 2 (t ε α , α) -1 U ε 1 (t ε α , α)u ε α (0).
and as

u ε α (0) = A ε α (0) -1 h ε α (0) we get ḣε α (0) = Ȧε α (0)u ε α (0) + A ε α (0) uε α (0) = Ȧε α (0) -A ε α (0) U ε 2 (t ε α , α) -1 U ε 1 (t ε α , α) u ε α (0) = Ȧε α (0) -A ε α (0) U ε 2 (t ε α , α) -1 U ε 1 (t ε α , α) A ε α (0) -1 h ε α (0).
Hence from the linearized Hamiltonian system we finally obtain

q ε α (0) = ∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 ḣε α (0) - ∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 ∂ 2 H ε ∂y∂p (Y, θε α (0))h ε α (0) = S ε α (t)h ε α (0), with S ε α (t) = C ε α - ∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 A ε α (0) U ε 2 (t ε α , α) -1 U ε 1 (t ε α , α) A ε α (0) -1 ,
where

C ε α = ∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 Ȧε α (0) A ε α (0) -1 - ∂ 2 H ε ∂y∂p (Y, θε α (0)) . Defining N ε α (t) := tf ε 2 (t, α) U ε 2 (t, α) -1 U ε 1 (t, α) = f ε 2 (t, α) 0 0 tf ε 1 (t, α) we can write S ε α (t) = C ε α - 1 tf ε 2 (t, α) ∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 A ε α (0)N ε α (t) A ε α (0) -1 .
We observe that N ε α (t) is smooth up to t = t ε c (α). As a matter of fact we remark that, for ε = 0,

C 0 α = I -R 2α R -α -2 -cos(α) 0 sin(α) 0 = 2 cos(α) -sin(α) -sin(α) -cos(α) ,
and A 0 α (0) = R α , where we used the notation

R α = cos(α) sin(α) -sin(α) cos(α)
.

Let us now focus on the matrix

∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 A ε α (0)N ε α (t) A ε α (0) -1 .
Denoting by G ε the matrix associated to the metric g ε at the point Y , we have

∂ 2 H ε ∂p 2 (Y, θε α (0)) -1 = G ε . Moreover G ε A ε α (0)N ε α (t) A ε α (0) -1 = (G ε ) 1/2 (G ε ) 1/2 A ε α (0) N ε α (t) A ε α (0) -1 = (G ε ) 1/2 (G ε ) 1/2 A ε α (0) N ε α (t) (G ε ) 1/2 A ε α (0) -1 (G ε ) 1/2 . Recalling that A ε α (0) = E ε 1 (0, α), E ε 2 (0, α) , we have (G ε ) 1/2 A ε α (0) = (G ε ) 1/2 E ε 1 (0, α), (G ε ) 1/2 E ε 2 (0, α) ,
and since

1 = g ε E ε 1 (0, α), E ε 1 (0, α) = g ε E ε 2 (0, α), E ε 2 (0, α) , 0 = g ε E ε 1 (0, α), E ε 2 (0, α) ,
we immediately get that (G ε ) 1/2 A ε α (0) is an orthogonal matrix for all α. Thus, there exists ᾱε and α ε such that

(G ε ) 1/2 A ε α (0) = (G ε ) 1/2 A ε 0 (0) cos(α ε ) sin(α ε ) -sin(α ε ) cos(α ε ). =: R ᾱε R α ε
(that is, ᾱε is the angle between (1, 0) = θε 0 and (G ε ) 1/2 (1, 0) = (G ε ) 1/2 θε 0 ), and we obtain

1 tf ε 2 (t, α) G ε A ε α (0)N ε α (t) A ε α (0) -1 = (G ε ) 1/2 1 tf ε 2 (t, α) (G ε ) 1/2 A ε α (0)N ε α (t) (G ε ) 1/2 A ε α (0) -1 (G ε ) 1/2 = (G ε ) 1/2 R ᾱε 1 tf ε 2 (t, α) R α ε N ε α (t)R -α ε R -ᾱε (G ε ) 1/2 . A simple computations gives that R α ε N ε (t, α ε )R -α ε is equal to the matrix cos 2 (α ε )f ε 2 (t, α ε ) + t sin 2 (α ε )f ε 1 (t, α ε ) -cos(α ε ) sin(α ε ) f ε 2 (t, α ε ) -tf ε 1 (t, α ε ) -cos(α ε ) sin(α ε ) f ε 2 (t, α ε ) -tf ε 1 (t, α ε ) sin 2 (α ε )f ε 2 (t, α ε ) + t cos 2 (α ε )f ε 1 (t, α ε ) , so that 1 tf ε 2 (t, α ε ) R α ε N ε (t, α ε )R -α ε = 1 t cos 2 (α ε ) -cos(α ε ) sin(α ε ) -cos(α ε ) sin(α ε ) sin 2 (α ε ) + 1 f ε 2 (t, α ε ) sin 2 (α ε )f ε 1 (t, α ε ) cos(α ε ) sin(α ε )f ε 1 (t, α ε ) cos(α ε ) sin(α ε )f ε 1 (t, α ε ) cos 2 (α ε )f ε 1 (t, α ε )
.

We now define T ε (s) as the g ε -norm at Y of the vector (v, 0) + sη, and α ε (s) is the angle (computed with respect to g ε ) between (v, 0) and (v, 0) + sη. In the sequel we denote by

f ε 1 (resp. f ε 2 ) the function s → f ε 1 (T ε (s), α ε (s)) (resp. s → f ε 2 (T ε (s), α ε (s))), and by ḟ ε 1 , f ε 1 (resp. ḟ ε 2 , f ε 2
) its first and second derivative. We want to compute the second derivative of K ε (s) := K (Y, (v, 0) + sη) for T ε (0) close to t ε c (α) ∼ π, so that 1/ f ε 2 (0) ∼ 1/ sin(t ε c (α)) will be dominant with respect to all other terms. Thanks to the computations made above, we have

d 2 ds 2 {K ε (s)} |s=0 = d 2 ds 2 T ε (s)C ε α ε (s) |s=0 + (G ε ) 1/2 R ᾱε M ε 0 + 1 f ε 2 (0) M ε 1 + 1 f ε 2 (0) 2 M ε 2 + 1 f ε 2 (0) 3 M ε 3 R -ᾱε (G ε ) 1/2
with

M ε i = M ε i (1) M ε i (2) M ε i (2) M ε i (3) 
∀ i = 0, 1 , 2, 3, and M 
ε 0 (1) = 2 ( αε (0)) 2 , M ε 0 (2) = αε (0), M ε 0 (3) = -2 ( αε (0)) 2 ,
and

M ε 1 (1) = -2T ε (0) f ε 1 (0) ( αε (0)) 2 , M ε 1 (2) = -2 f ε 1 (0) Ṫ ε (0) αε (0) -2T ε (0) ḟ ε 1 (0) αε (0) -T ε (0) f ε 1 (0) αε (0), M ε 1 (3) = -f ε 1 (0) T ε (0) -2 ḟ ε 1 (0) Ṫ ε (0) -T ε (0) f ε 1 (0) + 2T ε (0) f ε 1 (0) ( αε (0)) 2 ,
and

M ε 2 (1) = 0, M ε 2 (2) = 2T ε (0) f ε 1 (0) ḟ ε 2 (0) αε (0), M ε 2 (3) = 2T ε (0) ḟ ε 1 (0) ḟ ε 2 (0) + 2 f ε 1 (0) ḟ ε 2 (0) Ṫ ε (0) + T ε (0) f ε 1 (0) f ε 2 (0), and M ε 3 (1) = M ε 3 (2) = 0, M ε 3 (3) = -2T ε (0) f ε 1 (0) ḟ ε 2 (0) 2 . 
We now observe that α ε (s) is given by the angle between the two vectors

(G ε ) 1/2 v 0 and (G ε ) 1/2 v 0 + sη .
Therefore, if we define

v ε 0 = R -ᾱε (G ε ) 1/2 v 0 and η ε = R -ᾱε (G ε ) 1/2 η, we get α ε (s) = -arctan sη ε 2 v ε + sη ε 1 which implies α ε (0) = 0, αε (0) = - η ε 2 v ε , αε (0) = 2η ε 1 η ε 2 (v ε ) 2 .
Regarding T ε (s), we have

T ε (s) = (G ε ) 1/2 v + sη 1 sη 2 = R -ᾱε (G ε ) 1/2 v + sη 1 sη 2 = v ε + sη ε 1 sη ε 2 = (v ε + sη ε 1 ) 2 + s 2 (η ε 2 ) 2 , hence T ε (0) = v ε , Ṫ ε (0) = η ε 1 , T ε (0) = (η ε 2 ) 2 v ε . Moreover |v ε -v| ε|v|, |η ε -η| ε|η|.
Thus we finally obtain

M ε 0 = 2 (v ε ) 2 (η ε 2 ) 2 η ε 1 η ε 2 η ε 1 η ε 2 -(η ε 2 ) 2 , M ε 1 = - 2 f ε 1 (0) v ε (η ε 2 ) 2 2 ḟ ε 1 (0)η ε 2 2 ḟ ε 1 (0)η ε 2 f ε 1 (0) v ε (η ε 2 ) 2 -2 ḟ ε 1 (0)η ε 1 -v ε f ε 1 (0) , M ε 2 = 0 -2 f ε 1 (0) ḟ ε 2 (0)η ε 2 -2 f ε 1 (0) ḟ ε 2 (0)η ε 2 2v ε ḟ ε 1 (0) ḟ ε 2 (0) + 2 f ε 1 (0) ḟ ε 2 (0)η ε 1 + v ε f ε 1 (0) f ε 2 (0) , M ε 3 = 0 0 0 -2v ε f ε 1 (0) ḟ ε 2 (0) 2 . 
We note that for ε = 0

d 2 ds 2 T 0 (s)C 0 α 0 (s) |s=0 = T 0 (0) -T 0 (0) α0 (0) 2 -2 Ṫ 0 (0) α0 (0) -T 0 (0) α0 (0) -2 Ṫ 0 (0) α0 (0) -T 0 (0)α 0 (0) -T 0 (0) + T 0 (0) α0 (0) which implies d 2 ds 2 T ε (s)C ε α ε (s) |s=0 ε|η| 2 .
Therefore, defining

ξ ε = R -ᾱε (G ε ) 1/2 ξ, we end up with ξ, d 2 ds 2 {K ε (s)} |s=0 ξ = ξ ε , M ε 0 ξ ε + 1 f ε 2 (0) ξ ε , M ε 1 ξ ε + 1 f ε 2 (0) 2 ξ ε , M ε 2 ξ ε + 1 f ε 2 (0) 3 ξ ε , M ε 3 ξ ε + O(ε)|η| 2 |ξ| 2 .
We now observe that, as f ε 1 (0) ∼ cos(v ε ), we have f ε 1 (0) ≤ 0 for v ε ≥ 2π/3, and so in this case

1 f ε 2 (0) 3 M ε 3 (3)(ξ ε 2 ) 2 + 2 1 f ε 2 (0) 2 M ε 2 (2)ξ ε 1 ξ ε 2 + 1 f ε 2 (0) M ε 1 (1)(ξ ε 1 ) 2 = - 2 f ε 1 (0) f ε 2 (0) √ v ε ḟ ε 2 (0) f ε 2 (0) ξ ε 2 + 1 √ v ε η ε 2 ξ ε 1 2 ≥ 0 Therefore for v ε ≥ 2π/3 ξ, d 2 ds 2 {K ε (s)} |s=0 ξ ≥ ξ ε , M ε 0 ξ ε + 1 f ε 2 (0) 2M ε 1 (2)ξ ε 1 ξ ε 2 + M ε 1 (3)(ξ ε 2 ) 2 + 1 f ε 2 (0) 2 M ε 2 (3)(ξ ε 2 ) 2 + O(ε)|η| 2 |ξ| 2 .
Now, easy computations give for i = 1, 2

ḟ ε i (0) = ∂f ε i ∂t (v ε , 0)η ε 1 - 1 v ε ∂f ε i ∂α (v ε , 0)η ε 2 , f ε i (0) = ∂ 2 f ε i ∂t 2 (v ε , 0) (η ε 1 ) 2 + 1 (v ε ) 2 ∂ 2 f ε i ∂α 2 (v ε , 0) + 1 v ε ∂f ε i ∂t (v ε , 0) (η ε 2 ) 2 + 2 (v ε ) 2 ∂f ε i ∂α (v ε , 0) - 2 v ε ∂ 2 f ε i ∂α∂t (v ε , 0) η ε 1 η ε 2 .
Let us now observe the following: since (as functions of v ε ) f ε 1 (0) and f ε 2 (0) are close to cos(v ε ) and sin(v ε ) in the C 2 -norm respectively, if we define ε := t ε c (0) -v ε we easily get

| f ε 1 (0) + 1| ε + ε , 0 ≤ f ε 2 (0) ε + ε , | ḟ ε 1 (0)| (ε + ε )|η ε |, | ḟ ε 2 (0) + η 1 | (ε + ε )|η ε |, | f ε 1 (0) -η 2 1 | (ε + ε )|η ε | 2 , | f ε 2 (0) + 1 v ε (η ε 2 ) 2 | (ε + ε )|η ε | 2 .
From these estimates it is easy to see that

|M ε 2 (3) -2(η ε 1 ) 2 -(η ε 2 ) 2 | (ε + ε )|η ε | 2 =⇒ M ε 2 (3) ≥ 1 -C(ε + ε ) 2(η ε 1 ) 2 + (η ε 2 ) 2 ,
and

|M ε 1 (2)| (ε + ε )|η ε |η ε 2 . Since 1 f ε 2 (0) → +∞ as ε → 0 (i.e. v ε → t ε c (α)), we obtain M ε 0 (3) + 1 f ε 2 (0) M ε 1 (3) + 1 f ε 2 (0) 2 M ε 2 (3) ≥ 1 -C(ε + ε ) f ε 2 (0) 2 |η ε | 2 , M ε 0 (2) + 1 f ε 2 (0) M ε 1 (2) ≤ C(ε + ε ) f ε 2 (0) |η ε ||η ε 2 |,
(from now on, C is a positive constant, independent of ε for ε > 0 sufficiently small, which may change from line to line). Hence, combining all together,

ξ, d 2 ds 2 {K ε (s)} |s=0 ξ ≥ 2 (v ε ) 2 (η ε 2 ) 2 (ξ ε 1 ) 2 - C(ε + ε ) f ε 2 (0) |η ε 2 ||η ε ||ξ ε 1 ||ξ ε 2 | + 1 -C(ε + ε ) f ε 2 (0) 2 2(η ε 1 ) 2 + (η ε 2 ) 2 (ξ ε 2 ) 2 + O(ε)|η| 2 |ξ| 2 ≥ 2 (v ε ) 2 (η ε 2 ) 2 (ξ ε 1 ) 2 - C(ε + ε ) f ε 2 (0) |η ε 2 ||η ε ||ξ ε 1 ||ξ ε 2 | + 1 -C(ε + ε ) f ε 2 (0) 2 |η ε | 2 (ξ ε 2 ) 2 + O(ε)|η| 2 |ξ| 2 ≥ 2 -C(ε + ε ) π 2 (η ε 2 ) 2 (ξ ε 1 ) 2 + 1 -C(ε + ε ) f ε 2 (0) 2 |η ε | 2 (ξ ε 2 ) 2 + O(ε)|η| 2 |ξ| 2 ≥ 2 -C(ε + ε ) π 2 (η ε 2 ) 2 (ξ ε 1 ) 2 + |η ε | 2 (ξ ε 2 ) 2 + O(ε)|η| 2 |ξ| 2 .
From this formula, since |η ε -η| ≤ Cε|η| and |ξ ε -ξ| ≤ Cε|ξ|, we finally get

3 2 ξ, d 2 ds 2 {K ε (s)} |s=0 ξ ≥ 3 2 -C(ε + ε ) 2π 2 η 2 2 ξ 2 1 + |η| 2 ξ 2 2 + O(ε)|η| 2 |ξ| 2 ≥ 3 2 -C(ε + ε ) 2π 2 η 2 2 ξ 2 1 + η 2 1 ξ 2 2 + O(ε)|η| 2 |ξ| 2 ≥ 3 1 -C(ε + ε ) 2π 2 |η| 2 |ξ| 2 -η, ξ 2 + O(ε)|η| 2 |ξ| 2 ≥ 3 1 -C(ε + ε ) 2π 2 |η| 2 |ξ| 2 - 3 1 + C(ε + ε ) 2π 2 η, ξ 2 .
Fix δ > 0. From the above estimate we deduce that, if ε ≤ δπ 2 /(3C) and ε ≤ δπ 2 /(3C), then MT W(3/(2π 2 ) -δ, 3/(2π 2 ) + δ) holds for all v ∈ N F * ε (x) ∪ {0} such that dist v, ∂ N F * ε (x) ∪ {0} ≤ δ/C. Since as we already said MT W(K, C) trivially holds if v is uniformly away from ∂ N F * ε (x) ∪ {0} for ε > 0 small enough, the result follows.

5 Final comments

5.1

Our approach applies to more general situations than the one we chose to present. In particular, we do not necessarily need the strict convexity of the cotangent nonfocal domains: let (M, g) be a compact Riemannian manifold, and define M * > 0 and m * ∈ (0, +∞] by

M * := max p x | p ∈ I * (x), x ∈ M and m * := min p x | p / ∈ N F * (x), x ∈ M .
Assume that the two following conditions are satisfied:

(i) M * < m * , (ii) there is K > 0 such that for every x ∈ M ,

∀ ξ ∈ T x M, ∀ η ∈ T * x M, η, ξ = 0 =⇒ S(x, p) • (ξ, η) ≥ K ξ 2 x η 2 x for any p ∈ T * x M satisfying p x ∈ (0, M * ].
Following the proof of [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]Lemma 2.3], it is not difficult to show that under these assumptions there exists C > 0 such that, for every x ∈ M and every p ∈ T * x M satisfying p x ∈ (0, M * ],

S(x, p) • (ξ, η) ≥ K ξ 2 x η 2 x -C η, ξ ξ x η x ∀ ξ ∈ T x M, ∀ η ∈ T * x M.
Then, one can easily check that both the proof of Lemma 3.3 and the proof of Theorem 3.6 still work, and so (M, g) satisfies T CP, and all its injectivity domains are strictly convex. In particular, this allows to recover in a simple way the result (proved independently in [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF]) that any C 4 -deformation of a quotient of the standard sphere S n (say for instance RP n ) satisfies T CP. Indeed (ii) follows from the fact that our extended MTW condition is stable far from the boundary of N F * (x) ∪ {0} (while the classical MTW condition is a priori stable only far from the boundary of I * (x)).

5.2

It can be shown [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF] that the cotangent injectivity domains of any smooth complete Riemannian manifold have locally semiconcave boundaries. In fact, if g is a smooth Riemannian metric which is C 4 -close to the round metric on the sphere S n , then for all x ∈ S n the sets N F * (x) are uniformly convex [START_REF] Castelpietra | Regularity properties of the distance function to conjugate and cut loci for viscosity solutions of Hamilton-Jacobi equations and applications in Riemannian geometry[END_REF] (while it is not known whether the sets I * (x) are convex or not). As a consequence, if (S n , g) is a C 4 -deformation of the standard sphere which satisfies MT W(K, C) for some K, C > 0, then it satisfies T CP, and all its injectivity domains are strictly convex.

5.3

In [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF][START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] the authors can improve T CP to higher regularity thanks to the stay-away property of the optimal transport map T . More precisely, in [START_REF] Loeper | Regularity of optimal transport in curved geometry: the nonfocal case[END_REF] the authors assume that the cut locus is nonfocal (which is for example that case if one considers C 4 -deformation of a quotient of the standard sphere S n ), and combining this hypothesis with T CP one gets the existence of a constant σ > 0 such that d(T (x), cut(x)) ≥ σ for all x ∈ M . On the other hand, in [START_REF] Delanoë | Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds[END_REF] the authors show that if (M, g) is C 4 -deformation of (S n , g can ), and one imposes some boundedness constraint on the measures µ and ν (the constraint depending on the size of the perturbation), then the stay-away property of the optimal map holds. Once the stay-away property is established, T CP allows to localize the problem and to apply the a priori estimates of Ma, Trudinger and Wang [START_REF] Ma | Regularity of potential functions of the optimal transportation problem[END_REF], obtaining C ∞ regularity on T (under C ∞ assumptions on the measures). In our case it is not clear whether the stay-away property is true or not, and this is why our result cannot be easily improved to higher regularity.

5.4

As we already said, if a Riemannian manifold (M, g) satisfies MT W(K, C) for some K, C > 0, then its sectional curvature is bounded below by K. As it was shown by Kim [START_REF] Kim | Counterexamples to continuity of optimal transport maps on positively curved Riemannian manifolds[END_REF], the converse result is false. Describing the positively curved and simply connected Riemannian manifolds which satisfy MT W(K, C) for some K, C > 0 is a formidable challenge.

A Appendix : The round sphere

The purpose of the appendix is to provide a proof of the following result.

Theorem A.1. There exists K 0 > 0 such that, for every n ≥ 2, the round sphere (S, g can ) satisfies MT W(K 0 , K 0 ).

Proof. Let us see the round sphere S n as a submanifold of R n+1 equipped with the Riemannian metric induced by the Euclidean metric. More precisely, we see S n as the sphere centered at the origin with radius one in R n+1 . Since we work in R n+1 , we can identify covectors with vectors.

For every x ∈ S n , the set N F * (x) ∪ {0} corresponds to the open ball centered at x with radius π intersected with the hyperplan tangent to S n at x. Our aim is to show that there exists a constant K 0 > 0 such that, for every x ∈ S n ⊂ R n+1 and p ∈ N F * (x), one has

S(x, p) • (ξ, η) = 3 2 d 2 ds 2 K(x, p + sη)ξ, ξ |s=0 ≥ K 0 ξ 2 x η 2 x -K 0 ξ, η ξ η ,
for all ξ ∈ T x S n , η ∈ T * x S n . This is equivalent to show that, for every x ∈ S n and every

v ∈ T x S n , - 3 2 
d 2 ds 2 d 2 dt 2 c exp x (tξ), exp x (v + sη) |t=s=0 ≥ K 0 ξ 2 x η 2 x -K 0 ξ, η ξ η ∀ ξ, η ∈ T x S n ,
where c := d 2 /2. Since the function (t, s) → c exp x (tξ), exp x (v + sη) depends only on the behavior of the Riemannian distance in the affine space containing x and spanned by the three vectors v, ξ, η, we just have to prove Theorem A.1 for n = 3. Moreover, by the homogeneity of (S, g can ), it suffices to prove the estimate only for a fixed point x ∈ S n and along a fixed geodesic t → exp x (tv).

Consider the stereographic projection of the sphere S 3 ⊂ R 4 centered at the origin and of radius 1 from the north pole N = (0, 0, 0, 1) onto the space R 3 R 3 ×{0} ⊂ R 4 . The projection of some point x = (x 1 , x 2 , x 3 , x 4 ) ∈ S 3 is given by σ

(x) = x 1 1 -x 4 , x 2 1 -x 4 , x 3 1 -x 4 .
The function σ is a smooth diffeomorphism from S 3 \ {N } onto R 3 , whose inverse is

σ -1 (y) = 2y 1 1 + |y| 2 , 2y 2 1 + |y| 2 , 2y 3 1 + |y| 2 , |y| 2 -1 1 + |y| 2 ∀ y = (y 1 , y 2 , y 3 ) ∈ R 3 ,
where | • | denotes the Euclidean norm on R 3 . The pushforward of the round metric on S 3 is given by

g y (v, v) = 4 (1 + |y| 2 ) 2 |v| 2 ∀ y, v ∈ R 3 ,
and the Hamiltonian canonically associated to g is

H(y, p) = (1 + |y| 2 ) 2 8 |p| 2 ∀ y, p ∈ R 3 . The Hamiltonian system associated to H is ẏ = ∂H ∂p (y, p) = (1+|y| 2 ) 2 4 p ṗ = -∂H ∂y (y, p) = -(1+|y| 2 )|p| 2 2 y,
and the linearized Hamiltonian system along a given solution (y(t), p(t))

is ḣ = (1 + |y| 2 ) y, h p + (1+|y| 2 ) 2 4 q q = -(1+|y| 2 ) 2 |p| 2 2 h -|p| 2 y, h y -(1 + |y| 2 )(p • q)y
We note that h is a Jacobi vector field along the geodesic t → y(t).

Set x 1 = (-1, 0, 0, 0) and x 2 = (1, 0, 0, 0), and for |α| small, let γ α be the minimizing geodesic on S 3 joining x 1 to x 2 defined by γ α (t) := (cos(t -π), sin(α) sin(t -π), 0, cos(α) sin(t -π))

∀ t ∈ [0, π].
Its image by the stereographic projection is given by

θ α (t) := σ(γ α (t)) = cos(t -π) 1 -cos(α) sin(t -π) , sin(α) sin(t -π) 1 -cos(α) sin(t -π) , 0 .
It is a minimizing geodesic between Y := σ(x 1 ) = (-1, 0, 0) and σ(x 2 ) = (1, 0, 0). Fix t ∈ (0, π), and set V := t θα (0). We need to compute the matrix K(Y, V ). By an easy rescaling argument, we have

K(Y, V ) = tS α ( t),
where S α ( t) is the 3 × 3 symmetric matrix such that any solution of the linearized Hamiltonian system along θ α starting from (h, S α ( t)h), satisfies h( t) = 0. Let us compute S α ( t).

Define three vector fields E 1 , E 2 , E 3 along θ α by E 1 (t) := θα (t) = cos(α) -sin(t -π) (1 -cos(α) sin(t -π)) 2 , sin(α) cos(t -π) (1 -cos(α) sin(t -π)) 2 , 0 , E 2 (t) := -sin(α) cos(t -π) (1 -cos(α) sin(t -π)) 2 , cos(α) -sin(t -π) (1 -cos(α) sin(t -π)) 2 , 0 , E 3 (t) := (0, 0, 1).

The vectors E 1 (t), E 2 (t), E 3 (t) form a basis of parallel vector fields along θ α . Let (h, q) be a solution of the linearized Hamiltonian system along θ α such that h(t) = 0 for some t > 0. Since E 1 (t), E 2 (t), E 3 (t) form a basis of parallel vector fields along θ α , there are three smooth functions u 1 , u 2 , u 3 such that h(t) = u 1 (t)E 1 (t) + u 2 (t)E 2 (t) + u 3 (t)E 3 (t) ∀ t.

Hence, as h is a Jacobi vector field along θ α , its second covariant derivative along θ α is given by D We deduce that there are six constants λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 such that    u 1 (t) = λ 1 + λ 2 t u 2 (t) = λ 3 cos(t) + λ 4 sin(t) u 3 (t) = λ 5 cos(t) + λ 6 sin(t).

Since E 1 (0) = (cos(α), -sin(α), 0), E 2 (0) = (sin(α), cos(α), 0), E 3 (0) = (0, 0, 1).

the equality h(0) = u 1 (0)E 1 (0) + u 2 (0)E 2 (0) + u 3 (0)E 3 (0) yields    h 1 (0) = u 1 (0) cos(α) + u 2 (0) sin(α) h 2 (0) = -u 1 (0) sin(α) + u 2 (0) cos(α) h 3 (0) = u 3 (0), which gives λ 1 = cos(α)h 1 (0) -sin(α)h 2 (0), λ 3 = sin(α)h 1 (0) + cos(α)h 2 (0), λ 5 = h 3 (0).

Furthermore, Ė1 (0) = (-cos(2α), sin(2α)) , Ė2 (0) = (-sin(2α), -cos(2α)) , Ė3 (0) = 0.

Differentiating h(t) = u 1 (t)E 1 (t) + u 2 (t)E 2 (t) + u 3 (t)E 3 (t) at t = 0, we obtain    ḣ1 (0) = λ 2 cos(α) + λ 4 sin(α) -λ 1 cos(2α) -λ 3 sin(2α) ḣ2 (0) = -λ 2 sin(α) + λ 4 cos(α) + λ 1 sin(2α) -λ 3 cos(2α) ḣ3 (0) = λ 6 .

From the linearized Hamiltonian system, since Y (0) = (-1, 0, 0) and P (0) = V (0) = E 1 (0), we have q(0) = ḣ(0) + 2h 1 (0)E 1 (0).

Recalling that h( t) = 0 ⇒ u(t) = 0, we get λ 2 = -λ 1 t , λ 4 = -λ 3 cos( t) sin( t) , λ 6 = -λ 5 cos( t) sin( t) .

Thus we finally obtain   q 1 (0) q 2 (0) q 3 (0) Let us now show that MT W(K 0 , K 0 ) holds. For that, it is sufficient to show that for for every V of the form V = (r, 0, 0) with r ∈ (0, π), every ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 with |ξ| = 1 and every η = (η 1 , η 2 , 0) ∈ R 3 with |η| = 1, one has ξ, K(0)ξ ≥ We note that α(0) = 0, α(0) = -η 2 r α(0) = 2η 1 η 2 r 2 , and This shows that if g(r) > 0 for every r ∈ (0, r), then h(r) > 0 on (0, r]. But if r ∈ (0, π) is such that g(r) = 0, then cos(r) sin(r) = 1 r -r 3 , so that

  = q(0) = S α ( t)h(0) =   a α (
T (0) = r, Ṫ (0) = η 1 , T (0) 
g (r) = r sin 2 (r) - 1 r - r 3 = r c 2 (r) - 1 3 = h(r) r > 0.
Since g is strictly positive for r small, we conclude easily that g, h ≥ 0 on [0, π), which proves the lemma.

Proof of Lemma A. It is easily seen that F (r) = r 4 90 + o(r 4 ), so that F (r) > 0 for r > 0 small. Differentiating the

2 y

 2 = d(xt, y) 2 . Then d dτ c(x t+τ , y) |τ =0 = dxc(xt, y), ẋt = -pt, ẋt , so that differentiating again at t = 0 we obtain d 2 dt 2 c(xt, y) |t=0 = -ṗ0 , ξ , where ṗ0 denotes the covariant derivate of pt along the curve xt, and we used that the covariant derivative of ẋt along xt is zero. Hence, since φ H 1 (xt, pt) = (y, qt), by the definition of K(x, p + sη) we easily get ṗ0 = K(x, p + sη)ξ.

  as in [20, Proof of Theorem 3.1] we can easily compute ẏt and ÿt at time t: using Einstein convention of summation over repeated indices, we get ẏi = -ĉ xiyj ṗj , ÿi = -ĉ xiy k ĉx k y yj ẏ ẏj -ĉxiyj pj ,

1 ( 1

 11 Y, V ) k 2 (Y, V ) 0 k 2 (Y, V ) k 3 (Y, (Y, V ) = ta α ( t), k 2 (Y, V ) = tb α ( t), k 3 (Y, V ) = tc α ( t), k 4 (Y, V ) = td( t).

2 3 K 0 1 -

 31 ξ, η , where K(s) is defined asK(s) := K(Y, V + sη)By the discussion above, we haveK(s) = T (s)S α(s) (T (s)), where α(s) = -arctan sη 2 r + sη 1 , T (s) = r + sη 1 sη 2 = (r + sη 1 ) 2 + s 2 η 2 2 .

3 . 1 (

 31 First of all we observe that the Taylor expansions of c 1 , c 2 , c 3 at r = 0 are given by c π) → R by (r) := r 2 c 4 (r). Its derivative is given by(r) = r 2c 3 (r) -c 2 (r) -c 1 (r) .We first reamark that obviously c 3 ≥ c 1 on [0, π). Moreover the derivative of the functionm : [0, π) → R defined as m(r) := r 2 (c 3 (r) -c 2 (r)) is given by m (r) = r 3 sin 2 (r) 3(c 2 (r) + c 1 (r)) -2 ,and it is nonnegative by Lemma A.2. Since by (A.1) lim r→0 + m(r) = 1/15 > 0, we obtain that m(r) ≥ 0 on [0, π). This gives (r) ≥ 0 for every r ∈ [0, π), and soc 4 = c 2 -c 1 is nonnegative on [0, π).Let us now prove the second assertion of the lemma. We first want to show that the functionc 1 c 3 -c 22 is strictly positive on (0, π). With the notation of Lemma A.2, we havec 1 (r)c 3 (r) = f 2 (r) r 2 sin 2 (r).Thus we need to prove thatf (r) r sin(r) > c 2 (r) ∀ r ∈ (0, π),or equivalently F (r) := f (r) -r sin(r)c 2 (r) = f (r)

  2 t h(t) = ü1 (t)E 1 (t) + ü2 (t)E 2 (t) + ü3 (t)E 3 (t). Therefore, since (R 3 , g) has constant curvature, we have 0 = D 2 t h + R(h, θα ) θα = D 2 t h + g θα , θα h -g h, θα θα = ü1 (t)E 1 (t) + ü2 (t)E 2 (t) + ü3 (t)E 3 (t) + u 1 (t)E 1 (t) + u 2 (t)E 2 (t) + u 3 (t)E 3 (t) -u 1 (t) θα (t) = ü1 (t)E 1 (t) + [ü 2 (t) + u 2 (t)]E 2 (t) + [ü 3 (t) + u 3 (t)]E 3 (t).

Actually, since MT W(K, C) implies that the sectional curvature of M is bounded from below by K > 0 (see the discussion after Definition 2.2), C 0 = 1 would work.

= 0,

Lemma A.2. One has c i (r) ≥ c i (0) = 1 3 ∀r ∈ [0, π), ∀i = 1, 2, 3.

Lemma A.3. The function c 4 = c 2 -c 1 is nonnegative on [0, π), and there exists α ∈ (0, 2/π 2 ) such that c 1 (r) -α c 3 (r) -α -c 2 (r) -α 2 ≥ 0 ∀r ∈ [0, π).

We note that c 4 = c 2 -c 1 and c 5 = c 1 + c 2 . Set ci (r) := c i (r) -1 3 for every r ∈ (0, π) and i = 1, 2, 3. By Lemmas A.2 and A.3, together with the fact that

For any r ∈ (0, π) and i = 1, 2, 3, set ĉi (r) := c i (r) -α, with α given by Lemma A.3. Then

where we used again Lemma A.3. Thus we finally obtain

which shows that the round sphere satisfies MT W(K 0 , K 0 ) with K 0 := 3α.

Proof of Lemma A.2. Define f : [0, π) → R by f (r) := 1 -r cos(r) sin(r) . The Taylor expansion of f at r = 0 is given by

This means that f (r) > r 2 3 for small r in (0, π). Define g : [0, π) → R by g(r) := f (r) -r 2 3 . By the latter remark, g is strictly positive for small r in (0, π). One has

∀r ∈ (0, π).

Therefore showing that c 1 , c 3 ≥ 1/3 is equivalent to showing that g ≥ 0. Define h : [0, π) → R by h(r) := r 2 c 2 (r) -r 2 /3. The derivatives of g and h are respectively given by

above expression we get

Assume by contradiction that there exists r > 0 such that F (r) = 0. Then

which gives

Since r 2 > sin 2 (r) and r 2 + sin 2 (r) -r sin(r) < r 2 ∀ r ∈ (0, π),

we get F (r) > 0, absurd. Thus c 1 c 3 -c 2 2 > 0 on (0, π). We now observe that, thanks to (A.1), for every α > 0 we have

On the other hand, for r close to π and every α > 0,

Combining all together, we conclude easily that there exists α ∈ (0, 2/π 2 ) such that

Remark A.4. Starting from the formula for ξ, K(0)ξ given just after Lemma A.3, it is not difficult to see that (S n , g can ) satisfies MT W(1, 1) if and only if the quantity 2c 1 (r) ξ2 1 η2 2 -4c 2 (r) ξ1 ξ2 η1 η2 + 2c 3 (r) ξ2

is nonnegative for any ξ, η ∈ S 1 and any r ∈ (0, π), where ci (r) := c i (r) -1 3 . Numerical simulations suggest that the above inequality should be true.