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On the continuity of the eigenvalues

of a sublaplacian

Amine Aribi, Sorin Dragomir1, Ahmad El Soufi2

Abstract. We study the behavior of the eigenvalues of a sublaplacian ∆b

on a compact strictly pseudoconvex CR manifold M, as functions on the

set P+ of positively oriented contact forms on M by endowing P+ with

a natural metric topology.

1. Introduction

Let M be a compact strictly pseudoconvex CR manifold, of CR dimen-

sion n, without boundary. Let P be the set of all C∞ pseudohermitian struc-

tures on M. Every θ ∈ P is a contact form on M i.e. θ ∧ (dθ)n is a volume

form. Let P± be the sets of θ ∈ P such that the Levi form Gθ is positive def-

inite (respectively negative definite). For θ ∈ P+ let ∆b be the sublaplacian

(1) ∆bu = −div(∇Hu)

of (M, θ) acting on smooth real valued functions u ∈ C∞(M,R). As ∆b is a

subelliptic operator (of order 1/2) it has a discrete spectrum

(2) 0 = λ0(θ) < λ1(θ) ≤ λ2(θ) ≤ · · · ↑ +∞
(the eigenvalues of ∆b are counted with their multiplicities). Each eigen-

value λν(θ), ν = 0, 1, 2, · · · , is thought of as a function of θ ∈ P+. We

shall deal mainly with the following problem: Is there a natural topology

on P+ such that each eigenvalue function λν : P+ → R is continuous? The

analogous problem for the spectrum of the Laplace-Beltrami operator on a

compact Riemannian manifold was solved by S. Bando & H. Urakawa, [2],

and our main result is imitative of their Theorem 2.2 (cf. op. cit., p. 155).

We shall establish

Corollary 1. For every compact strictly pseudoconvex CR manifold M the

space of positively oriented contact forms P+ admits a natural complete
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distance function d : P+×P+ → [0,+∞) such that each eigenvalue function

λk : P+ → R is continuous relative to the d-topology.

By a result of J.M. Lee, [8], for every θ ∈ P+ there is a Lorentzian

metric Fθ ∈ Lor(C(M)) (the Fefferman metric) on the total space C(M)

of the canonical circle bundle S 1 → C(M)
π→ M. Also if � is the Laplace-

Beltrami operator of Fθ (the wave operator) then σ(∆b) ⊂ σ(�). Therefore

the eigenvalues λk may be thought of as functions λ
↑
k

: C → R on the set

C = {Fθ ∈ Lor(C(M)) : θ ∈ P+} of all Fefferman metrics on C(M). On

the other hand Lor(C(M)) may be endowed with the distance function d∞g
considered by P. Mounoud, [10] (associated to a fixed Riemannian metric

g on C(M)) and hence (C, d∞g ) is itself a metric space. It is then a natural

question whether λ
↑
k

are continuous functions relative to the d∞g -topology.

The paper is organized as follows. In § 2 we recall the needed material on

CR and pseudohermitian geometry. The distance function d (in Corollary

1) is built in § 3. In § 4 we establish a Max-Mini principle (cf. Proposition

2) for the eigenvalues of a sublaplacian. Then Corollary 1 follows from

Theorem 1 in § 5. In § 6 we prove the continuity of the eigenvalues with

respect to the Fefferman metric (cf. Corollary 2) though only as functions

on C+ = {eu◦πFθ0
: u ∈ C∞(M,R), u > 0}.

2. Review of CR and pseudohermitian geometry

Let (M, T1,0(M)) be a CR manifold, of CR dimension n, where T1,0(M) ⊂
T (M) ⊗ C is its CR structure. Cf. e.g. [5], p. 3-4. The Levi distribution is

H(M) = Re{T1,0(M) ⊕ T1,0(M)}. The Levi distribution carries the complex

structure J : H(M) → H(M) given by J(Z − Z) = i(Z − Z) for any Z ∈
T1,0(M) (here i =

√
−1). A pseudohermitian structure is a globally defined

nowhere zero section θ ∈ C∞(H(M)⊥) in the conormal bundle H(M)⊥ ⊂
T ∗(M). Pseudohermitian structures do exist by the mere assumption that

M be orientable. Let P be the set of all pseudohermitian structures on M.

As H(M)⊥ → M is a real line bundle for any θ, θ0 ∈ P there is a C∞

function λ : M → R \ {0} such that θ = λθ0. Given θ ∈ P the Levi form is

Gθ(X, Y) = (dθ)(X, JY) for every X, Y ∈ X(M). Then Gλθ0
= λGθ0

. The CR

manifold M is strictly pseudoconvex if Gθ is positive definite (write Gθ > 0)

for some θ ∈ P. If M is strictly pseudoconvex then each θ ∈ P is a contact

form i.e. Ψθ = θ ∧ (dθ)n is a volume form on M. Clearly, if Gθ is positive

definite then G−θ is negative definite. Hence P admits a natural orientation

P+ (Gθ > 0 for each θ ∈ P+). Let M be a strictly pseudoconvex CR manifold

and θ ∈ P+. The Reeb vector field is the globally defined, nowhere zero,

tangent vector field T ∈ X(M), transverse to H(M), determined by θ(T ) = 1

and (dθ)(T, X) = 0 for any X ∈ X(M) (cf. Proposition 1.2 in [5], p. 8). The
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Webster metric is the Riemannian metric gθ on M given by

gθ(X, Y) = Gθ(X, Y), gθ(X, T ) = 0, gθ(T, T ) = 1,

for every X, Y ∈ H(M). Let S 1 → C(M)
π−→ M be the canonical circle

bundle (cf. Definition 2.9 in [5], p. 119). For every θ ∈ P+ there is a

Lorentzian metric Fθ on C(M) (the Fefferman metric, cf. Definition 2.15 in

[5], p. 128) such that the set C = {Fθ : θ ∈ P+} of all Fefferman metrics is

given by C = {eu◦πFθ : u ∈ C∞(M,R)} for each fixed contact form θ ∈ P+
(by a result of J.M. Lee, [8], or Theorem 2.3 in [5], p. 128). C is also

referred to as the restricted conformal class of Fθ and it is a CR invariant.

If u ∈ C∞(M,R) then the horizontal gradient ∇Hu ∈ C∞(H(M)) is given

by ∇Hu = ΠH∇u. Here ΠH : T (M)→ H(M) is the projection relative to the

decomposition T (M) = H(M)⊕RT and ∇u is the gradient of u with respect

to the Webster metric i.e. gθ(∇u, X) = X(u) for any X ∈ X(M). The diver-

gence operator div : X(M)→ C∞(M,R) is meant with respect to the volume

form Ψθ i.e. LXΨθ = div(X)Ψθ for any X ∈ X(M). The sublaplacian ∆b

of (M, θ) is then the formally self-adjoint, second order, degenerate ellip-

tic (in the sense of J.M. Bony, [4]) operator given by ∆bu = −div(∇Hu)

for any u ∈ C∞(M,R). A systematic application of functional analysis

methods to the study of sublaplacians (on domains in strictly pseudoconvex

CR manifolds) was started in [3]. By a result following essentially from

work in [9] (cf. also [12]) if M is compact then ∆b has a discrete spectrum

σ(∆b) = {λν : ν ≥ 0} such that λ0 = 0 and λν ↑ +∞ as ν→ ∞.

3. A topology on the space of oriented contact forms

Let {Uλ}λ∈Λ be a finite open covering of M such that the closure of each

Uλ is contained in a larger open set Vλ which is both the domain of a local

frame {Xa : 1 ≤ a ≤ 2n} ⊂ C∞(Vλ,H(M)) with Xα+n = JXα for any 1 ≤ α ≤
n, and a coordinate neighborhood with the local coordinates (x1, · · · , x2n+1).

For each point x ∈ M let Px (respectively S x) be the set of all symmetric

positive definite (respectively merely symmetric) bilinear forms on Tx(M).

Let us consider the anti-reflexive partial order relation on S x defined by

ϕ < ψ⇐⇒ ψ − ϕ ∈ Px , ϕ, ψ ∈ S x .

Next let ρ′′x : Px × Px → [0,+∞) be the distance function given by

ρ′′x (ϕ, ψ) = inf
{

δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ
}

for any ϕ, ψ ∈ Px. Then (Px , ρ
′′
x ) is a complete metric space (by (iii) of

Lemma 1.1 in [2], p. 158).

Let M be the set of all Riemannian metrics on M, so that gθ ∈ M for

every θ ∈ P+. Following [2] one may endowM with a complete distance
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function ρ. Indeed as M is compact one may set

ρ′′(g1 , g2) = sup
x∈M

ρ′′x (g1,x , g2,x), g1 , g2 ∈ M.

Also let S (M) be the space of all C∞ symmetric (0, 2)-tensor fields on M,

organized as a Fréchet space by the family of seminorms {| · |k : k ∈ N∪ {0}}
where

|g|k =
∑

λ∈Λ
|g|λ,k , |g|λ,k = sup

x∈Uλ

∑

|α|≤k

∣

∣

∣Dαgi j(x)
∣

∣

∣ ,

where

Dα
= ∂|α|/∂(x1)α1 · · · ∂(x2n+1)α2n+1 , gi j = g(∂/∂xi , ∂/∂x j) ∈ C∞(Vλ,R),

for any g ∈ S (M). The topology of S (M) as a locally convex space is

compatible to the distance function

ρ′(g1 , g2) =

∞
∑

k=0

1

2k

|g1 − g2|k
1 + |g1 − g2|k

, g1 , g2 ∈ S (M).

In particular (S (M), ρ′) is a complete metric space. If

ρ(g1 , g2) = ρ′(g1 , g2) + ρ′′(g1 , g2)

then (M, ρ) is a complete metric space (cf. Proposition 2 in [2], p. 158).

Each metric g ∈ M determines a Laplace-Beltrami operator ∆g hence the

eigenvalues of ∆g may be though of as functions of g and as such the eigen-

values are (by Theorem 2.2 in [2], p. 161) continuous functions on (M, ρ).

To deal with the similar problem for the spectrum of a sublaplacian, we start

by observing that the natural counterpart of M in the category of strictly

pseudoconvex CR manifolds is the setMH of all sub-Riemannian metrics

on (M,H(M)). Nevertheless only a particular sort of sub-Riemannian met-

ric gives rise to a sublaplacian i.e. ∆b is associated to Gθ ∈ MH for some

positively oriented contact form θ ∈ P+. Of course P+ ⊂ Ω1(M) and one

may endow Ω1(M) with the C∞ topology. One may then attempt to re-

peat the arguments in [2] (by replacing S (M) with Ω1(M)). The situation

at hand is however much simpler since, once a contact form θ0 ∈ P+ is

fixed, all others are parametrized by C∞(M,R) i.e. for any θ ∈ P+ there is

a unique u ∈ C∞(M,R) such that θ = euθ0. We may then use the canonical

Fréchet space structure (and corresponding complete distance function) of

C∞(M,R). Precisely, for every u ∈ C∞(M,R), λ ∈ Λ and k ∈ N ∪ {0} we set

pλ,k(u) = sup
x∈Uk

∑

|α|≤k

|Dαu(x)| ,

pk(u) =
∑

λ∈Λ
pλ,k(u) , |u|C∞ =

∞
∑

k=0

1

2k

pk(u)

1 + pk(u)
.
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If θ0 ∈ P+ is a fixed contact form then we set

d′(θ1 , θ2) = |u1 − u2|C∞ , θ1 , θ2 ∈ P+ ,
where ui ∈ C∞(M,R) are given by θi = euiθ0 for any i ∈ {1, 2}. The definition

of d′ doesn’t depend upon the choice of θ0 ∈ P+.

Lemma 1. (P+ , d′) is a complete metric space.

Proof. Let {θν}ν≥1 be a Cauchy sequence in (P+ , d′). If uν ∈ C∞(M,R)

is the function determined by θν = euνθ0 then (by the very definition of d′)

{uν}ν≥1 is a Cauchy sequence in C∞(M,R). Here C∞(M,R) is organized as a

Fréchet space by the (countable, separating) family of seminorms {pk : k ∈
N ∪ {0}}. Hence there is u ∈ C∞(M,R) such that |uν − u|C∞ → 0 as ν → ∞.

Finally if θ = euθ0 ∈ P+ then d′(θν , θ)→ 0 as ν→ ∞. Q.e.d.

Let S (H) ⊂ H(M)∗ ⊗ H(M)∗ be the subbundle of all bilinear symmetric

forms on H(M). For every G ∈ C∞(S (H)), k ∈ Z, k ≥ 0, and λ ∈ Λ we set

|G|λ,k = sup
x∈Uλ

∑

|α|≤k

2n
∑

a,b=1

|DαGab(x)| ,

|G|k =
∑

λ∈Λ
|G|λ,k , |G|C∞ =

∞
∑

k=0

1

2k

|G|k
1 + |G|k

,

where Gab = G(Xa, Xb) ∈ C∞(Vλ,R). Moreover we set

ρ′H(G1 , G2) = |G1 −G2|C∞ , G1,G2 ∈ C∞(S (H)).

Lemma 2. {| · |k : k ∈ N∪{0}} is a countable separating family of seminorms

organizing X = C∞ (S (H)) as a Fréchet space. In particular (X, ρ′H) is a

complete metric space.

Proof. For each k ∈ N ∪ {0} and N ∈ N we set

(3) V(k,N) = {G ∈ X : |G|k < 1/N} .
Let B be the collection of all finite intersections of sets (3). Then B is

(cf. e.g. Theorem 1.37 in [11], p. 27) a convex balanced local base for a

topology τ on X which makes X into a locally convex space such that every

seminorm | · |k is continuous and a set E ⊂ X is bounded if and only if every

| · |k is bounded on E. τ is compatible with the distance function ρ′H. Let

{Gm}m≥1 ⊂ X be a Cauchy sequence relative to ρ′H. Thus for every fixed

k ∈ N∪{0} and N ∈ N one has Gm−Gp ∈ V(k,N) for m, p sufficiently large.

Consequently
∣

∣

∣Dα(Gm)ab(x) − Dα(Gp)ab(x)
∣

∣

∣ < 1/N ,

x ∈ Uλ , λ ∈ Λ, |α| ≤ k, 1 ≤ a, b ≤ 2n.
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It follows that each sequence {Dα(Gm)ab}m≥1 converges uniformly on Uλ to

a function Gα
ab

. In particular for α = 0 one has (Gm)ab(x) → G0
ab

(x) as

m→ ∞, uniformly in x ∈ Uλ. If λ, λ′ ∈ Λ are such that Uλ ∩ Uλ′ , ∅ and

X′b = Aa
b Xa , A ≡ [

Aa
b

]

: Uλ ∩ Uλ′ → GL(2n,R),

is a local transformation of the frame in H(M) then

(Gm)′ab = Ac
a Ad

b (Gm)cd on Uλ ∩ Uλ′

so that (for m → ∞) G′0ab = Ac
aAd

b
G0

cd
on Uλ ∩ Uλ′ . Thus G0

ab
∈ C∞(Uλ)

glue up to a (globally defined) bilinear symmetric form G0 on H(M) and

Gm → G0 in X as m→ ∞. Q.e.d.

For each point x ∈ M let P(H)x be the set of all symmetric positive

definite bilinear forms on H(M)x. We endow S (H)x with the anti-reflexive

partial order relation

ϕ < ψ⇐⇒ ψ − ϕ ∈ P(H)x , ϕ, ψ ∈ S (H)x .

Next let ρ′′x : P(H)x × P(H)x → [0,+∞) be given by

ρ′′x (ϕ, ψ) = inf
{

δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ
}

for any ϕ, ψ ∈ P(H)x.

Lemma 3. ρ′′x is a distance function on P(H)x.

Proof. As e−δϕ < ψ < eδϕ is equivalent to e−δψ < ϕ < eδψ, it follows that

ρ′′x is symmetric. To prove the triangle inequality we assume that ρ′′x (ϕ, ψ) >

ρ′′x (ϕ, χ) + ρ′′(χ, ψ) for some ϕ, ψ, χ ∈ P(H)x. Then

ρ′′x (ϕ, ψ) − ρ′′x (ϕ, χ) > inf{δ > 0 : exp(−δ)χ < ψ < exp(δ)χ}
hence there is δ2 > 0 such that e−δ2χ < ψ < eδ2χ and ρ′′x (ϕ, ψ)−ρ′′x (ϕ, χ) > δ2.

Similarly

ρ′′x (ϕ, ψ) − δ2 > inf{δ > 0 : exp(−δ)ϕ < χ < exp(δ)ϕ}
yields the existence of a number δ1 > 0 such that e−δ1ϕ < χ < eδ1ϕ and

ρ′′x (ϕ, ψ) − δ2 > δ1. Let us set δ ≡ δ1 + δ2. The inequalities written so far

show that e−δϕ < ψ < eδϕ and ρ′′x (ϕ, ψ) > δ, a contradiction. Finally, let us

assume that ρ′′x (ϕ, ψ) = 0 so that for any k ∈ N
inf{δ > 0 : exp(−δ)ϕ < ψ < exp(δ)ϕ} < 1/k

i.e. there is δk > 0 such that e−δkϕ < ψ < eδkϕ and δk < 1/k. Thus

limk→∞ δk = 0 and ψ − e−δkϕ ∈ P(H)x shows (by passing to the limit with

k → ∞ in ψ(v, v) − e−δkϕ(v, v) > 0, v ∈ H(M)x \ {0}) that ϕ < ψ. Similarly

eδkϕ−ψ ∈ P(H)x yields in the limit ψ < ϕ, and we may conclude that ϕ = ψ.

Viceversa, if ϕ ∈ P(H)x then

{δ > 0 : (1 − e−δ)ϕ, (eδ − 1)ϕ ∈ P(H)x} = (0,+∞)
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hence ρ′′x (ϕ, ϕ) = 0. Q.e.d.

Lemma 4. i) (P(H)x , ρ
′′
x ) is a complete metric space.

ii) Let {ϕ j} j∈N ⊂ P(H)x such that lim j→∞ ϕ j = ϕ ∈ P(H)x in the ρ′′x -

topology. Then lim j→∞ ϕ j(v,w) = ϕ(v,w) for any v,w ∈ H(M)x.

Proof. i) Let {ϕ j} j∈N ⊂ P(H)x be a Cauchy sequence in the ρ′′x -topology

i.e. for any ǫ > 0 there is jǫ ∈ N such that ρ′′x (ϕ j+p, ϕ j) > ǫ for any j ≥ jǫ
and any p = 1, 2, · · · . Hence there is δǫ > 0 such that e−δǫϕ j < ϕ j+p < eδǫϕ j

and δǫ < ǫ. Consequently
∣

∣

∣logϕ j+p(v, v) − logϕ j(v, v)
∣

∣

∣ < δǫ < ǫ

for any v ∈ H(M)x \ {0}. Therefore if

ξ j ≡ (logϕ j(v, v), · · · , logϕ j(v, v)) ∈ R2n

then {ξ j} j∈N is a Cauchy sequence in R2n. Let then ξ = lim j→∞ ξ j and let

ϕ : H(M)x ×H(M)x → R be the bilinear form given by ϕ(v, v) = exp(ξa) for

any v ∈ H(M)x \ {0} followed by polarization. Here ξ = (ξ1, · · · , ξ2n). Then

ϕ ∈ P(H)x and lim j→∞ ϕ j = ϕ in the ρ′′x -topology.

ii) If ϕ j → ϕ as j → ∞ then logϕ j(v, v) → logϕ(v, v) as j → ∞, for any

v ∈ H(M)x\{0}. Then lim j→∞ ϕ j(v, v) = ϕ(v, v) uniformly in v and statement

(ii) follows by polarization. Q.e.d.

As M is compact we may set

ρ′′H(G1,G2) = sup
x∈M

ρ′′x (G1,x , G2,x),

ρH(G1,G2) = ρ′H(G1,G2) + ρ′′H(G1,G2), G1,G2 ∈ MH .

Also let d be the distance function on P+ given by

d(θ1 , θ2) = d′(θ1 , θ2) + ρ′′H(Gθ1
, Gθ2

), θ1 , θ2 ∈ P+ .

Proposition 1. i) (MH , ρH) is a complete metric space.

ii) The map θ ∈ P+ 7→ Gθ ∈ MH of (P+ , d) into (MH, ρH) is continuous.

iii) (P+ , d) is a complete metric space.

Proof. i) Let {G j} j≥1 be a Cauchy sequence in (MH , ρH). Then {G j} j≥1 is

a Cauchy sequence in both (X , ρ′H) and (MH , ρ
′′
H). Yet (X, ρ′H) is complete

(by Lemma 2). Thus ρ′
H

(G j , G) → 0 as j → ∞ for some G ∈ X. In

particular

(4) lim
j→∞

G j,x(v,w) = Gx(v,w)

for every x ∈ M and v,w ∈ H(M)x. On the other hand, as {G j} j≥1 is Cauchy

in (MH , ρ
′′
H

), for every ǫ > 0 there is Nǫ ≥ 1 such that

(5) ρ′′x (Gi,x , G j,x) ≤ ρ′′H(Gi , G j) < ǫ
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for every i, j ≥ Nǫ and x ∈ M. Thus {G j,x} j≥1 is Cauchy in the complete (by

Lemma 4) metric space (P(H)x , ρ
′′
x ) so that ρ′′x (G j,x , ϕ) → 0 as j → ∞ for

some ϕ ∈ P(H)x. Then (by (iii) in Lemma 4) lim j→∞G j,x(v,w) = ϕ(v,w) for

every v,w ∈ H(M)x hence Gx = ϕ yielding G ∈ MH.

ii) Let {θν}ν≥1 ⊂ P+ such that d(θν, θ)→ 0 for ν→∞ for some θ ∈ P+. If

θν = euνθ0 and θ = euθ0 then |uν − u|C∞ → 0 as ν → ∞. Then Gθν = euνGθ0

and Gθ = euGθ0
. Since Dαuν → Dαu as ν → ∞, uniformly on Uλ, for any

λ ∈ Λ, |α| ≤ k and k ∈ N ∪ {0}, it follows that Dα(Gθν)ab → Dα(Gθ)ab as

ν → ∞ uniformly on Uλ for any 1 ≤ a, b ≤ 2n. Hence Gθν → Gθ in X so

that (by the very definition of d and ρH) ρH(Gθν , Gθ)→ 0. Q.e.d.

iii) If {θν}ν≥1 is a Cauchy sequence in (P+ , d) then {uν}ν≥1 is Cauchy in

(P+ , d′) as well. Yet (by Lemma 1) (P+ , d′) is complete hence d′(θν , θ)→
0 for some θ ∈ P+. Then, as a byproduct of the proof of statement (ii), one

has Gθν → Gθ in X. Finally, the verbatim repetition of the arguments in the

proof of statement (i) yields ρ′′H(Gθν , Gθ)→ 0 so that d(θν , θ)→ 0. Q.e.d.

4. A max-mini principle

For each k ∈ N ∪ {0} we consider a (k + 1)-dimensional real subspace

Lk+1 ⊂ C∞(M,R) and set

Λθ(Lk+1) = sup















‖∇H f ‖2
L2

‖ f ‖2
L2

: f ∈ Lk+1 \ {0}














.

Here

‖ f ‖L2 =

(∫

M

f 2
Ψθ

)
1
2

, ‖X‖L2 =

(∫

M

gθ(X, X) Ψθ

)
1
2

,

for any f ∈ C∞(M,R) and any X ∈ X(M). Let {uν}ν≥0 ⊂ C∞(M,R) be

a complete orthonormal system relative to the L2 inner product ( f , g)L2 =
∫

M
f g Ψθ such that uν ∈ Eigen(∆b ; λν(θ)) for every ν ≥ 0. If f ∈ C∞(M,R)

then f =
∑∞
ν=0 aν( f ) uν (L2 convergence) for some aν( f ) ∈ R. Let L0

k+1
be

the subspace of C∞(M,R) spanned by {uν : 0 ≤ ν ≤ k}. Let (∇H)∗ be the

formal adjoint of ∇H i.e.

(∇H f , X)L2 = ( f , (∇H)∗X)L2

for any f ∈ C∞(M,R) and X ∈ C∞(H(M)). Mere integration by parts shows

that

(∇H)∗X = −div(X), X ∈ C∞(H(M)),

implying (by (1)) the useful identity

(6) ‖∇H f ‖2
L2 = ( f , ∆b f )L2 , f ∈ C∞(M,R).
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Let f ∈ L0
k+1
\ {0} so that f =

∑k
ν=0 aνuν for some aν ∈ R. Then (by (6))

∥

∥

∥∇H f
∥

∥

∥

2

L2 =

k
∑

ν=0

a2
ν λν(θ) ≤ λk(θ)

k
∑

ν=0

a2
ν = λk(θ) ‖ f ‖2L2

hence

(7) Λθ(L
0
k+1) ≤ λk(θ).

Our purpose in this section is to establish

Proposition 2. Let M be a compact strictly pseudoconvex CR manifold and

θ ∈ P+ a positively oriented contact form. Then

(8) λk(θ) = inf
Lk+1

Λθ(Lk+1)

where the g.l.b. is taken over all subspaces Lk+1 ⊂ C∞(M,R) with dimR Lk+1 =

k + 1.

So far (by (7)) λk(θ) ≥ Λθ(L0
k+1

) ≥ infLk+1
Λθ(Lk+1). The proof of Proposi-

tion 2 is by contradiction. We assume that λk(θ) > infLk+1
Λθ(Lk+1) i.e. there

is a (k + 1)-dimensional subspace Lk+1 ⊂ C∞(M,R) such that Λθ(Lk+1) <

λk(θ). Then Λθ(Lk+1) is finite and

‖ f ‖2
L2Λθ(Lk+1) ≥ ‖∇H f ‖2

L2 , f ∈ Lk+1 .

Then (by (6))
∞
∑

ν=0

aν( f )2
Λθ(Lk+1) ≥

∞
∑

ν=0

λν(θ)aν( f )2

so that

(9)
∑

Λθ(Lk+1)≥Λν(θ)
aν( f )2 [Λθ(Lk+1) − λν(θ)] ≥

≥
∑

Λθ(Lk+1)<λν(θ)

aν( f )2 [λν(θ) − Λθ(Lk+1)] .

Let Φ : Lk+1 → C∞(M,R) be the linear map given by

Φ( f ) =

m
∑

ν=0

aν( f ) uν , f ∈ Lk+1 ,

where m = max{ν ≥ 0 : λν(θ) ≤ Λθ(Lk+1)}. Note that 0 ≤ m ≤ k − 1 (by the

contradiction assumption). We claim that

(10) Ker(Φ) , (0).

Of course (10) is only true within the contradiction loop. The statement

follows from dimRΦ(Lk+1) ≤ m + 1 ≤ k < k + 1 (hence Φ cannot be

injective). Let (by (10)) f0 ∈ Lk+1 such that Φ( f0) = 0 and f0 , 0. Then

aν( f0) = 0 for any 0 ≤ ν ≤ m i.e. whenever Λθ(Lk+1) ≥ λν(θ). Applying
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(9) to f = f0 yields aν( f0) = 0 whenever Λθ(Lk+1) < λν(θ). Thus f0 = 0, a

contradiction.

5. Continuity of eigenvalues

The scope of § 5 is to establish

Theorem 1. Let M be a compact strictly pseudoconvex CR manifold. If

δ > 0 and θ, θ̂ ∈ P+ are two contact forms on M such that d(θ , θ̂) < δ then

e−δ λk(θ) ≤ λk(θ̂) ≤ eδ λk(θ) for any k ≥ 0.

Proof. For any x ∈ M

δ > inf
{

ǫ > 0 : e−ǫGθ,x < Gθ̂,x < eǫGθ,x

}

i.e. there is 0 < ǫ < δ such that Gθ̂,x − e−ǫGθ,x ∈ P(H)x and eǫGθ,x − Gθ̂,x ∈
P(H)x. There is a unique u ∈ C∞(M,R) such that θ̂ = euθ. Consequently

(11) θ̂ ∧ (dθ̂)n
= e(n+1)u θ ∧ (dθ)n .

On the other hand e−δGθ,x(v, v) < Gθ̂,x(v, v) < eδGθ,x(v, v) for any v ∈
H(M)x \ {0} implies |u| < δ. Then for every f ∈ C∞(M) (by (11))

(12) e−(n+1)δ

∫

M

f 2
Ψθ ≤

∫

M

f 2
Ψθ̂ ≤ e(n+1)δ

∫

M

f 2
Ψθ.

Moreover

(13) ∇̂H f = e−u ∇H f

where ∇̂H f is the horizontal gradient of f with respect to θ̂. Thus (by (13))

‖∇̂H f ‖2
θ̂
= e−u‖∇H f ‖2θ < eδ‖∇H f ‖2θ so that (by (11))

(14) e−(n+2)δ

∫

M

‖∇H f ‖2θ Ψθ ≤
∫

M

‖∇̂H f ‖2
θ̂
Ψθ̂ ≤

≤ e(n+2)δ

∫

M

‖∇H f ‖2θ Ψθ .

Finally (by (12)-(13))

e−δ
‖∇H f ‖2

L2

‖ f ‖2
L2

≤

∫

M

‖∇̂h f ‖2
θ̂
Ψθ̂

∫

M

f 2
Ψθ̂

≤ eδ
‖∇H f ‖2

L2

‖ f ‖2
L2

so that (by the Max-Mini principle)

(15) e−δ λk(θ) ≤ λk(θ̂) ≤ eδ λk(θ).

Theorem 1 is proved. Corollary 1 follows from (15).
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6. Spectra of ∆b and �

Let Fθ be the Fefferman metric of (M, θ) and � the corresponding wave

operator (the Laplace-Beltrami operator of (C(M), Fθ)). We setM = C(M)

for simplicity. Let g be a fixed Riemannian metric onM. The space S (M)

of all symmetric tensor fields may be identified with the space of all fields

of endomorphisms of T (M) which are symmetric with respect to g i.e. for

each h ∈ S (M) let h̃ ∈ C∞(End(T (M))) be given by

g(h̃X, Y) = h(X, Y), X, Y ∈ X(M).

From now on we assume that M is compact. ThenM is compact as well (as

M is the total space of a principal bundle with compact base and compact

fibres) and we endow S (M) with the distance function

d∞g (h1 , h2) = sup
z∈M

[

trace
(

ϕ2
z

)]1/2
, h1, h2 ∈ S (M),

where ϕ = h̃1− h̃2 and ϕ2
z = ϕz◦ϕz. The set Lor(M) of all Lorentz metrics on

M is an open set of (S (M), d∞g ) and for any pair g1, g2 of Riemannian metrics

on M the distance functions dg1
and dg2

are uniformly equivalent (cf. e.g.

[10], p. 49). We shall use the topology induced by d∞g on Lor(M) (and

therefore on C ⊂ Lor(M)). By a result of J.M. Lee, [8], the sublaplacian

∆b of (M, θ) is the pushforward of the wave operator i.e. π∗� = ∆b. In

particular σ(∆b) ⊂ σ(�). Thus each λk : P+ → R may be thought of as

a function λ
↑
k

: C → R such that λ
↑
k
◦ F = λk for every k ≥ 0, where

F : P+ → C is the map given by F(θ) = Fθ for every θ ∈ P+. As another

consequence of Theorem 1 we establish

Corollary 2. Let M be a compact strictly pseudoconvex CR manifold and

let g be an arbitrary Riemannian metric on M = C(M). Let θ0 ∈ P+ be a

fixed contact form and P++ = {euθ0 : u ∈ C∞(M,R), u > 0}. If C+ = {Fθ :

θ ∈ P++} then for every k ∈ N ∪ {0} the function λ
↑
k

: C+ → R is continuous

relative to the d∞g -topology.

Proof. Let θi ∈ P+, i ∈ {1, 2}, and let us set ϕ = F̃θ1
− F̃θ2

. Let {Ep : 1 ≤
p ≤ 2n + 2} be a local g-orthonormal frame on T (M), defined on the open

setU ⊂ M. Then

trace
(

ϕ2
)

=

2n+2
∑

p=1

g(ϕ2Ep , Ep) =
∑

p

{

Fθ1
(ϕEp , Ep) − Fθ2

(ϕEp , Ep)
}

on U. On the other hand if ϕEp = ϕ
q
pEq then ϕ

q
p = F(θ1)(Ep , Eq) −

F(θ2)(Ep , Eq) hence

(16) trace
(

ϕ2
)

= (eu1◦π − eu2◦π)2 ‖Fθ0
‖2g
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where ui ∈ C∞(M,R) is given by θi = euiθ0 and ‖Fθ0
‖g is the norm of Fθ0

as

a (0, 2)-tensor field onM with respect to g. Then (by (16))

(17) d∞g
(

Fθ1
, Fθ2

)

= sup
M

|eu1◦π − eu2◦π| ‖Fθ0
‖g .

As M is compact a = infz∈M ‖Fθ0
‖g,z > 0. Indeed (by compactness) a =

‖Fθ0
‖g,z0

for some z0 ∈ M. If a = 0 then Fθ0 , z0
= 0, a contradiction (as Fθ0

is

Lorentzian, and hence nondegenerate). Let ǫ > 0 such that d∞g (Fθ1
, Fθ2

) <

ǫ. Then |eu1 − eu2 | < ǫ/a everywhere on M. As both u1 > 0 and u2 > 0 it

follows that |u1 − u2| < log(1 + ǫ/a). Indeed eu1 − eu2 < ǫ/a is equivalent to

eu1−u2 < 1 + (ǫ/a)e−u2 hence (as u2 > 0)

u1 − u2 < log[1 + (ǫ/a) e−u2] < log(1 + ǫ/a).

Therefore

(1 + ǫ/a)−1 Gθ1 , x(v, v) < Gθ2 , x(v, v) < (1 + ǫ/a) Gθ1 , x(v, v)

for any v ∈ H(M)x \ {0} and any x ∈ M. Consequently ρ′′
H

(Gθ1
, Gθ2

) <

log(1 + ǫ/a). The arguments in § 5 then yield

(1 + ǫ/a)−1 λ
↑
k
(Fθ1

) ≤ λ↑
k
(Fθ2

) ≤ (1 + ǫ/a) λ
↑
k
(Fθ1

)

and Corollary 2 follows. The problem of the behavior of λ
↑
k

: C → R is

open. So does the more general problem of the behavior of the spectrum of

the wave operator on M with respect to a change of F ∈ Lor(M). Further

work (cf. [1]) on the behavior of σ(∆b) under analytic 1-parameter defor-

mations {θ(t)}t∈R of a given contact form θ0 ∈ P+ builds on the Riemannian

counterpart in [6] and the functional analysis results in [7].
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