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Abstract. This work addresses the problem of fault detection and diag-
nosis (FDD) for a quad-rotor mini aerial vehicle (MAV). Actuator faults
are considered on this paper. The basic idea behind the proposed method
is to estimate the faults signals using the extended state observers the-
ory. To estimate the faults, a polynomial observer is presented by using
the available measurements and know inputs of the system. In order to
investigate the observability and diagnosability properties of the system,
a differential algebra approach is proposed. Furthermore, an evaluation
function depending on the system states is developed, in order to be used
in a controller, which will compensate the failures. The effectiveness of
the methodology is illustrated by means of numerical simulations and
some experimental tests.

Keywords: Quad-rotor, polynomial observer, diagnosability, fault de-
tection and diagnosis.

1 Introduction

The growing development in research on MAVs and the consequent improve-
ment of technologies like microcomputers, vision systems and other sensor de-
vices, have increased the performance requirements of such kind of systems.
Problems related to trajectory tracking, flight-formation, vision-based localiza-
tion and lately MAV equipped with manipulators, have been widely researched
in the last few years. Therefore, a good performance in the inner-loop of such
flight envelopes is needed.

* This work was partially supported by the Institute for Science & Technology of Mex-
ico City (ICyTDF) and the Mexican National Council for Science and Technology
(CONACYT).
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A wide range of nonlinear control techniques like backstepping [1], [2], sin-
gular perturbation techniques [3], sliding modes and switching control [4], [5],
have been treated to deal with the complex dynamics of the quad-rotor.

Due to the high cost of the MAV equipment, it is imperative to provide such
systems with a fault-control loop, responsible for the identification of possible
faults presented at any time of the flight envelope.

Motivated by the fault diagnosis problem, which is the problem of observing
fault signals, and the necessity of developing sufficiently robust controllers to
cope the presence of likely faults, this research work deals not only with the
MAYV stabilization problem, but also with the identification of actuator faults.
Few works dealing with the fault diagnosis problem applied on quad-rotors are
presented in the literature [6], [7], [8], [9], [10].

Taking the attitude, position, angular and translational velocities of the quad-
rotor MAV as available measurements, we develop a solution for the fault diagno-
sis problem by means of the differential algebraic approach. With this approach,
it is possible to construct a bank of observers in order to implement a scheme
of residual generation for fault diagnosis [11], or implement a control law based
on state estimation [12]. Thus, it is possible to combine different schemes of
nonlinear observers. In [13], the authors present a reduced order and a sliding
mode observer, to reconstruct faults in an experimental task, for the case when
only one output is available. A reduced order observer and an algebraic observer
is presented in [14]. The approach given in [15] is used for fault detection and
fault estimation of a wound-rotor induction motor (WRIM). In [16] a polyno-
mial observer, a reduced order observer and a sliding mode observer are used
in order to estimate an reconstruct the system states and faults for the case
of multiple available outputs. In [17], the polynomial observer is used for the
synchronization of chaotic systems.

The paper is organized as follows. The fault diagnosis problem is formulated
in Section 2. In order to estimate not only the system states but also the faults
dynamics, an extended Luenberger observer called polynomial observer is devel-
oped in Section 3. Next, in Section 4, the results previously obtained is applied to
the Quad-rotor MAV. Section 6 presents some simulation results for the fault re-
construction problem. Finally, some conclusions and future works are presented
in section 7.

2 Fault Diagnosis Problem

The Fault Detection and Diagnosis (FDD) task has the goal of detecting the pres-
ence of a fault and construct an estimate of the unknown fault dynamics. Such
faults can affect directly the performance of the system components. Therefore,
a FDD scheme provides all the necessary information about faults, such as pres-
ence (time), type (actuator/sensor) and dynamics (magnitude and form). Thus,
based on this information, it is possible to design a system reconfiguration to
minimize the fault effects. We begin by defining the terms fault and failure as
follows:
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Fault: An undesired change in a system parameter or variable that reduces
the performance/magnitude of one component of its nominal value. In summary,
a fault is an unacceptable tolerable malfunction.

Failure: A complete breakdown of the system, caused by a catastrophic
malfunction of one or more components of the system. In summary, a failure is
an intolerable malfunction.

Throughout this work, we describe a class of nonlinear systems with faults
as follows

i(t): ($7u7 ) (1)

where

x € R™ is the state vector

u € R™ is the vector of known inputs

f € R is the faults vector (unknown inputs)
y € RP is the outputs vector

In this paper, we consider only the case of faults in the actuators. So, we intro-
duce the concept of observability and diagnosability in the field of the differential
algebra.

2.1 Observability and Diagnosability Condition

The observability and diagnosability notion of a system, linear or nonlinear in
the differential algebra approach need a basic definition. Further details can be
found in [13].

Definition 1. For the system described by (1) a state x is said to be observable
if it is possible to estimate the state by means of the available measurements of
the system, so we say that x is observable if it is algebraically observable, i.e.,
the state x satisfies a polynomial equation in terms of u and y and some of their
time derivatives:

P (2,3 o™ 1 iy u™ ) = 0 2)

Definition 2. A fault f is said to be diagnosable if it is possible to estimate the
fault from the available measurements of the system, i.e., f is diagnosable if it
1s algebraically observable if it satisfies a polynomial equation in terms of u and
y and some of their time derivatives:

P (£.53s 5y, i) = 0 (3)

Remark 1. The diagnosability condition is independent of the observability of
the system.

Referring to system (1), the vector f contains the unknown inputs. In order
to estimate its uncertain dynamics, the state vector is extended to deal with the
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fault vector. So, we can rewritten the system in an extended form as follows
filt) = Qe (zyu, f)  1<k<up (4)
h

The following results from the theory of differential algebraic are on useful
tool to determine whether a fault can be reconstructed from the know inputs
and available outputs.

Theorem 1. Assume that the system (1) is diagnosable, then the number of
faults is less or equal to the number of available measurements (outputs), i.e.

w<p

The proof of Theorem 1 can be seen in [18].

3 Polynomial Observer

The polynomial observer, is a scheme that combines two kinds of observers. The
first one is like an extended Luenberger observer which is used to reconstructing
and estimate the system states. While the second one is a free mode observer,
which has the function of reconstruct an estimate of the faults dynamics. The
polynomial observer can be seen as a Taylor series, where the first-order term
is the observed state, thus improving the performance and speed of convergence
including terms of high-order correction in the structure. It is worth mentioning
that this scheme is considered for the case of multiple outputs available, where
the terms of higher order correction are odd powers and are a linear combination
of the observation errors of each output available and the order of the polynomial
compensations is a determining factor for the parameter ”¢”.

Consider the system with presence of faults, given in (4), the observation
problem for the unknown vector of faults can be estimated using a polynomial
observer. Therefore the system (4) can be rewritten as

i(t) = Az + ¥ (2, u)
fe(t) = 92k (z,u) 1<k<up (5)
y(t)=Cx

where [[2;(z,0)|| < N,N € R* and ¥(z, ) is a nonlinear function that satisfies
the Lipschitz condition, with @ = (u, f) uniformly bounded.

[¥(x, @) = ¥(2,u)|| < Lz — (6)

3.1 Observer design

Now, consider the system with faults (5), the following lemma describes the
construction of the polynomial observer.
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Lemma 1. Let the system (5) be algebraically diagnosable, then, the following
nonlinear system is a full order state observer for the given system

:é(t):Amw(;z u, f)+
+y Z Kij(y: — Ci) (7)

Zl]

Jék(t) = Z K fr — fr)?1

Where
A E Rnxn
& € R™*! is the estimate of the state
fr € R* is the estimate of faults vector f
qgeRT
(2, u, k) € R>1
[K”]1<1<p, [Kri]1<k<, are positive gains
1<5<q 1<i<q
where &9 = & (o) and ka = fk (to) are arbitrary initial conditions, the parameter
q determines the order of the polynomial compensation. To ensure the observer
convergence, the following assumptions are considered:

A1: fi(t) is algebraically observable
A2: The gains [Kj;;]1<i<p can be chosen such that the following algebraic Riccati
equation has a symmetric and positive definite solution P for some € > 0

r p
(A— Z KinC)TP+ P(A— ZKﬂOi) + L’PP+1+el=0

=1 =1

A3: The gains [K;;]i<i<p are chosen such that
2<j<q

Amin(PK;;C)" + (PK;;C;)) > 0

We define the estimation error vector as e = [e,, ex]”, whit e, = 2 — & and

k = fr — fr. So from the systems (5) and (7), we determine the dynamics for
the corresponding error estimation

(A Zp: KﬂC’t)ex

i=

-3

Kij(Ciep)¥ =1+
i=

+[ ( z, ) (93 u)]
éx = 2 — Kpieg — 22 Kyj(eg)? !

.||Mm
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3.2 Convergence Analysis

In order to ensure the convergence to zero of the estimation error, we establish
the following theorem.

Theorem 2. For the system (5), suppose that x(t) 3V t > 0, the function
U(x,u) satisfies the Lipschitz condition given in (6), and xz(t), f(t) are alge-
braically observable. Thus, if there exists a positive definite matriz P and posi-
tive observer gains Kij,l_(kl such that the system (7) is an observer for system
(5), then the estimation error converges to zero asymptotically.

Proof. Consider the following Lyapunov function candidate

V=V+W )
Vi =elPey; Vo = %ei

where the matrix P satisfies the assumption A2.

The proof of theorem 2, is developed in two parts as follows:

i) The time derivative of V; is given as
Vi = ¢L Pey + el Pé,
= T(A— 3 KaC)TP+ P(A— 3 KnCi))eat
+2eaT P (z, 1) — W (3, )] =

P q .
-2 3 Kij(Ciex)¥~2eL (PK;Ci)T + (PKi;Ci))ex
i=1j=2

From the follow inequality based on the Lipschitz condition

2ex” P[W(z, 1) — ¥(z,u)] < L*eI PPe, +ele, (10)
and using the Rayleigh’s inequality together with assumption A3. it follows
that

—erPKijCiem < _/\min(PKijCi + (PKUCl)T)HeIHQ (11)

Therefore, applying inequalities (10) and (11) we have

. D p
Vi <ell[(A= 3 KuCy)" P+ P(A— 3 KuCi)+
i=1 i=1
+L?PP + Ies—
P q )
=23 3 Kij(Ciex)® *Amin(PKijo, + (PKijo;)")lleal?
i=j=2
- P
<ef[(A- Y KnC)TP+PA- Y KinCi)+
i=1 =1

i=

+L2PP + Ie,

= —clleaI?

ii) In the same way, for the second term in the Lyapunov function candidate,
we obtain the time derivative of V5 as

Vo = exéy
o L= a1
=ep( — Kpiep — > Kiiep' ™)
=2
T2 e 2l
= epfe — Kpiej — > Kpej)
=2

<lex||2| — Kr1€3
< leg| N — Kyalex|
= —[Kxilex| — Nlex|
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IZg is negative inside the set {|ey| > N/Kj1}, i.e., exists € > 0 such that
Kk1|6k| —N=¢>0.
We prove that |ey| is upper bounded. Now let constants «, 5 upper bounds of

Va(ex). With g > %, the solution that initiates in the set {Va(ex) < G}

will remain inside that set for all ¢ > 0, because Vg is negative in V5, =
B. Therefore the solution of é; is uniformly bounded [19]. Furthermore, if

% < a < 3, then Vs will be negative in the set {a < Vo < 8}. In this
k1

set V2 will decrease monotonously until the solution is in the set {V, < a}.
According to [19] the solution is uniformly ultimately bounded with ultimate

bound |eg| < v2a. For example, if we define o = N and B = 2, the

2K7, Ki?
ultimate bound is
N
eul <
K
Hence )
Vo < —é€leg]

Finally, from (i) and (ii), we conclude that

V< —elles||* - Elex| <0

4 Application to Quad-rotor MAV

In this section, the polynomial observer approach developed in Section 3 is ap-
plied to a Quad-rotor MAV. We will state the mathematical model of the MAV
and some notations. Then, the diagnosability analysis of such vehicle dynamics
is developed.

4.1 Modeling

The Quad-rotor mathematical model using the corresponding coordinate system
shown in Figure (1) is given as follows

m& = (u1 + ug + ug + ua)(SySs + CySeCy)
miy = (u1 + ug + uz + U4)(S¢,SQC¢ — C¢S¢)
mZ=mg — (u1 + uz + uz + uyg)(CyCp)
é = U3 — U1
Q? = U2 —U4q
Y =up —uz+uz—ug
where wu; are the control inputs, (z,y, z) the position states and (8, ¢,1) the

orientation angles. Using the model (12), the following changes of coordinates is
made in order to formulate the problem

T =2 T3 =1y T5 =2 x7 =10 g = ¢ T =19

To =10 T4 =19 Tg =2 T8 = Ti0 = ¢ Tig =Y
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¥4

Fig. 1. The three-dimensional quad-rotor model.

With this notation, the state vector is given by z = [z, xa, ...,x12]T and the
input vector as u = [uy, ua, us, uq]. For a Quad-rotor MAV, we consider a fault
as a reduction of the performance of one or two actuator, with the constraint
that if the failure affects an actuator, the second failure will affect the opposite
actuator by the symmetry of the structure, i.e. the failure effects can only be
minimized when these occurs in the following form:

1. The fault effects only one actuator
2. The fault affects the pairs (ug,us) or (ug,u4)

Other wise we would have a catastrophic malfunction and it would be impossible
to minimize the fault effects.

We now consider the presents of a fault on four of the engines, so we define
the input with presents of fault as 4 = ug+ fi. Therefore the system with faults
is given by:

T1 = X2
. Lo
To = E(m + Uz + Uz + Ua)(Sz1y Sze + Cuyy Sz7Cg)
T3 = X4
) Lo
Ty = a(m + Uz + Uz + Us)(Sz1, w7 Cug — Cayy Sag)
Ty = Tg
. ' ) B B 13
286:9_%(“1 + U2 + Uz + Us)(Cry Cuy) "
T7 =8
(tg =u3z — Uy
-:i’g = %’10 _
T10 = Uz — U4
L11 = T12

Tiz = Uy — Uz + U3z — Ug
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where f; are additive faults that which affect directly the performance of the
engines that produce the thrust inputs ug.

4.2 Control Strategy

The proposed control strategy is based on the idea that the global system (12) is
constituted of two subsystems, the attitude dynamics and the position dynamics,
each one with a time-scale separation between them [20]. From this fact, it is
possible to propose a hierarchical control scheme where the position controller
provides desired attitude angles ¢4, 8; which are the angles to be tracked by the
orientation controllers. We have implemented a nonlinear control strategy based
on this principle. In this paper we don’t present the control strategy, due this is
not the purpose of the present work, however the interested lector can see more
details about the control strategy applied on this paper in [3].

4.3 Diagnosability analysis

From Theorem 1 it is required that the number of faults (u = 4) be less or
equal to available measurements. For this case, we consider the output vector
as y = [y1, 93, Ys, Y7, Y9, Y11] = [x1, 3,5, T7, T, x11].1 Taking into account the
above mentioned considerations, the condition from theorem 1 is hold with 4 =
1 < p = 6. To determine the diagnosability of the system (13), we evaluate the
algebraic diagnosability condition given in definition 2. For the considered faults,
inputs and outputs, the system (13) results in

. r_
Y2 = *(ul + Uz + Uz + U4)(Synsy9 + Cy11Sy7Cy9)

Yz = E(ﬂl + Uz + Uz + ﬂ4)(Syusy7Cy9 - Cyusyg)

.. 1,_ _ _ _ 14
ng—a(ul + g + U3 + 1) (Cyy Cyy) (14)
i = s
Yo =uz —Uy
Y11 = Uy — U2 + U3 — Uy
From system (14), we have that
7m(giy6):u1+f1+zu+f2+u3+f3+u4+f4 (15a)
Cyy Cy,
Yr=us+ fz3—u1 — f1 (15b)
fio =u2 + fa —us — fa (15¢)
gnn=uw1+ fi—ux— fotus+fzs—us— fa (15d)
Adding (15a) and (15d)
m(g — g ..
M+yllzul+fl+2u3+2f3 (16)
Cy90y7
Adding 2(15b) and (16)
m(g — 1. 1.
fz= M + Y7+ —yY11 —us (17)

iC,,C,. 2771
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Replacing (17) into (15b)

m(g—19s) 1. 1.
h 10,,C,. 27 VL (18)

Adding, (15a) and (15c¢)

M+ygzu1+f1+2u2+2f2+u;3+f3 (19)
Cy90y7

Replacing (18) and (17) into (19)

m(g—9s) 1. 1.
f2 1C,,C,, + 2y9 + 4y11 U2 (20)

Finally, replacing (20) into (15¢) it follows that

m(g—149s) 1. 1.
fa 10,0y, 5¥o + i1 — ua (21)

Therefore, from equations (17), (18), (20) and (21) we conclude that the
system (13) is diagnosable, with the considered inputs and outputs.

4.4 Polynomial Observer

The system (13), can be expressed in a similar way as in (5) with:
A € R2%12 where the elements of the matrix are given as follows: a2 =
az.4 = as6 = 7,8 = Q9,10 = 11,12 = 1 and zero other wise.
The nonlinear function ¥ (z,a) = [¢)1, psia, ..., ¥12] is given by:
1 =93 =195 =7 =19 =111 =0
Vo = (g + U + U3 + U4)(Sey, Sy + Cuyy SerCly)
¢4 = E(al + Uz +uz + a4)(Sw115937CI9 - 090115939)
Yeg = _%(al + ug +us + ﬂ4)(05611019)
g = Uz — Uy
P10 = Uz — Uy
P12 = Uy — Uz + Uz — Uy

So, the following system is a polynomial observer for the given system
()= A+ (30, f) +
6 3 ,
+ 30 2 Ky — Cia) ! (22)

i=1j=1
X 3. _ X«
@) = 3 Ku(fe — fi)*

=1

Where we fixed the parameter ¢ = 3 and the f1<x<4 are given by (18), (20),
(17), (21).
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5 Evaluation Function

In this section, an evaluation function is presented in order to use the estimate
of the failure with the methodology developed in the previous section. Such
evaluation function is presented in a way that could be used in a controller to
compensate the failure.

Without loss of generality, we present the evaluation function for the roll
dynamics, but the same procedure could be developed for the pitch and yaw
dynamics.

5.1 Fault detection

In order to detect the fault and at the same time differentiate it from perturba-
tions inherent in the system, we define the evaluation function e; as a function
of system states as follows

1
(1 + e—co(9=0))(1 + e—cal(d—a))

ef = (23)

where parameters ¢, and ¢, are positive real numbers which define the fault

slope for ¢ and ¢ respectively. The parameters a and b represent the position
and velocity in roll dynamics for which there will be a fault. Accordingly, they
are the boundaries between a disturbance and a fault.

So, the basic idea is to estimate the disturbances and then use them in the
evaluation function (23). In this way, one should predefine the parameter values
a, b. So, by means of an observation of the system dynamics, one knows the
existence of a fault. This approach allows to determine the existence of a fault
without any measurement of engine speed, eliminating the use of additional
sensors on the platform.

In addition, a control strategy could be implemented by using (23), due such
evaluation function is continuously differentiable and furthermore, it depends on

the system states (¢, ¢).

5.2 Experimental results by using the evaluation function

In this subsection, some experimental results are presented to visualize the per-
formance of the evaluation function at real-time experiments. The experimental
results have been tested on the Quad-rotor experimental platform developed at
the HEUDIASYC Laboratory. More details about this platform can be seen in
[21]. We have simulated the failures by disturbing the Quad-rotor platform in
the roll dynamics. For these tests, we have used the parameters shown in table

Two motors are involved in the pitch dynamics (Fig. 1). Thus, if one of this
motors fails, its velocity will be reduced or augmented, causing an aggressive
rolling moment due to the difference of thrust between the faulty motor and
the operating motor. Therefore, we can evaluate such moment by inspecting the

pitching dynamics, i.e. the behavior of the states (6,6). In order to visualize
the behavior of the evaluation function on the real-time experiments, we have
perturbed the Quad-rotor platform on its roll axis. Fig. 2 shows the performance
of the evaluation function (23). As we see in this figure, the disturbances lower
than 20 deg have been omitted by the evaluation function, while the disturbances
greater or equal to 20 deg have been taken as failures. With this approach, we can
tune the parameters given in table 1, in order to choose a desired performance
to tell the system how to distinguish a perturbation of a fault.
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Table 1. The parameters of the Quad-rotor MAV considered for the experimental
tests.

ParameterH Value

cp 1
Ca 1

b 20 deg

a 10 deg/sec

0 2 4 6 8 10 12 14 16 18

timel[s]

Fig. 2. Evaluation function (23) and states of the roll dynamics.

6 Fault reconstruction results

In this section, we present some simulation results of the procedure developed in
Section 3. The dynamics of the Quad-rotor MAV and the fault dynamics have
been simulated using MATLAB Simulink. For the simulation procedure, we have
consider the following conditions: The desired values for the position dynamics
are g = yg = Om and z4 = 0.75m and for the attitude dynamics are 8; = ¢4 = 0
and 1y = 45 degrees. The objective is that the Quad-rotor take off and reaches
the desired height and remain stable in that position, in other words, we want
that the desired values for the linear and angular velocities are equal to zero. To
simplify the calculations we assume that m = g = 1. A simulation time of 300s
and a step of 0.001s has been chosen.

For all simulation results we have considered that the fault affects the per-
formance of each engine, i.e. the actuators for the Quad-rotor MAV. Four faults
were artificially generated as follows

f1=0.226(1 + sin(0.5te= 1)) (t — 50)
f2 = 0.045(1 + 5in(0.076e*=0-3)))4(t — 20)
f3 = 0.055e~0-01=03)4(+ — 10)+
+0.068e 00051z (¢t — 80)+
+0.159¢ =007t =13)74(¢ — 140)
fa=0.718e~-01=2)14(¢ — 30)
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where U(t) is the unit step function. The magnitude of the faults were selected
very close to the magnitude of the generated thrusts inputs for the case without
faults, to obtain better results.

The results of the implementation of the polynomial observer proposed in
(22) for the fault diagnosis task, for the considered available outputs and inputs.
As shown in the Figure 3, for the fault f;. The gain values for the proposed
observer were K11 = 2.5, K15 = 34 and K;3 = 66. In the same way in figures 4,
5 and 6, we show the estimation result for the faults fo, f3 and fy4, where the gain
values for each observer are Ko = 5.05, Koo = 2, K93 = 1.6, K31 = 1.5, K35 =
27, K33 =56 and K41 = 4.23, K40 = 7, K43 = 3 respectively.

In order to evaluate the effectiveness of the proposed polynomial observer,
we use initial conditions different from zero, to see how long it takes to converge
to the actual value of the fault. The initial conditions were f; .; = 0.087, f3.; =
0.065, f3,c; = 0.055 and f4.; = 0.073.

0.5 T
—fl
0.45[| = = flhat

0.4

0.351

0.3f

Newtons
=}
N
(6]
T

0.2}
0.151
0.1f

0.05|

150 200 250 300
Time (sec)

0 50 100

Fig. 3. Estimation result for the fault f;

For all faults we obtained good estimation results. As can be seen, the pro-
posed observer converge quickly to the actual values of the faults, and although
the approach only considers the case of fault with differentiable dynamics, it is
noted that the approach has the capacity to reconstruct abrupt faults as shown
in figures 5 and 6.

The attitude dynamic under the effect of the faults is shown in figure 7. The
direct consequence of the presence of faults on actuators, is that, the controller
tries to stabilize the system and bring the dynamics of roll, pitch and yaw to
the desired values. However due to thrust limitation, the objective is not fully
accomplished .Noticed that the faults affects more the dynamics in yaw.

Figure 8, shows the corresponding angular velocities in roll, pitch and yaw for
the case of presence of faults. As can be seen, between in the first 100 seconds the
angular velocities change abruptly, because in this time interval, all the faults
appear.
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— 2 B
== f2hat

015}

i

01y -+

0.05f

Newtons

-0.05

0 50 100 150 200 250 300
Time (sec)

Fig. 4. Estimation result for the fault fo

0.08

o

o

)
T

Newtons

0.04f

0.02} : ]

—f3
== f3hat

0 50 100 150 200 250 300
Time (sec)

Fig. 5. Estimation result for the fault fs3

The position dynamics affected for the faults are shown in Figure 9. Note
that the difference between the dynamic without faults and with fault is very
significant, especially for the dynamics in the y-axis, which is very large. The
Position controller generates large inputs to try reach the desired position val-
ues. However due to the faults the errors grow and the controller is unable to
compensate such errors.
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Finally figures 10 and 11 show the control inputs and corresponding thrusts
generated by the control strategy. As can be seen in Figure 10 the difference
between both cases is very significant, because for the case without faults the
control inputs are constant while for the case with faults, the thrusts are non-
constant and larger. The controller tries to compensate the error generated by
the presence of the faults, but it shows clearly in Figure 11, where we see that
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the corresponding thrust forces inputs are very similar to the dynamics of the
faults but with opposite sign. Notice that the faults cause the controller does
not function properly, as we observed for the thrusts 1 and 4 (Figure 11) and the
control inputs 2, 3 and 4 (Figure 10), there is a time instant when its becomes
negative and this is impossible, because it would mean that the thrust force is
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opposite, i.e, when the thrust force becomes negative, the engine does not have
the ability to change the direction of rotation, and therefore stops completely
(turned off) and in this case we are not dealing with a fault, we would have a
failure.
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7 Conclusion and Future Work

This work deals with the problem of fault detection and diagnosis task for a
Quad-rotor mini air vehicle (MAV) using the differential algebra approach. This
approach consider the unknown faults like an augmented state of the system, the
strategy is proposes a bank of observers in order to estimate the fault dynamics,
in this case we are only use the available measurements and known inputs. A
polynomial observer was proposed to deal with the fault estimation problem for
the case of multiple faults. This approach detects and identifies multiple faults
of relative small magnitudes. In this work the FDD task for a system stabilized
in the closed-loop using a control strategy is presented.

The second part of this paper concentrates on the study of the controllability
of the system with a failure. For that purpose, we have presented an evaluation
function depending on system states. By means of this evaluation function, we
can develop a control methodology which compensates the effect of the failure
under certain considerations. That will be the subject of the second part of the

paper.
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