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A mediator implements a correlated equilibrium when it proposes a strategy to each player confidentially such that the mediator's proposal is the best interest for every player to follow. In this paper, we present a mediator that implements the best correlated equilibrium for an extended El Farol game with symmetric players. The extended El Farol game we consider incorporates both negative and positive network effects. We study the degree to which this type of mediator can decrease the overall social cost. In particular, we give an exact characterization of Mediation Value (MV ) and Enforcement Value (EV ) for this game. MV is the ratio of the minimum social cost over all Nash equilibria to the minimum social cost over all mediators of this type, and EV is the ratio of the minimum social cost over all mediators of this type to the optimal social cost. This sort of exact characterization is uncommon for games with both kinds of network effects. An interesting outcome of our results is that both the MV and EV values can be unbounded for our game.

Introduction

When players act selfishly to minimize their own costs, the outcome with respect to the total social cost may be poor. The Price of Anarchy [START_REF] Koutsoupias | Worst-case equilibria[END_REF] measures the impact of selfishness on the social cost and is defined as the ratio of the worst social cost over all Nash equilibria to the optimal social cost. In a game, with a high Price of Anarchy, one way to reduce social cost is to find a mediator of expected social cost less than the social cost of any Nash equilibrium.

In the literature, there are several types of mediators [START_REF] Ashlagi | Mediators in position auctions[END_REF][START_REF] Díaz | On the power of mediators[END_REF][START_REF] Forgó | A generalization of correlated equilibrium: A new protocol[END_REF][START_REF] Forgó | Measuring the power of soft correlated equilibrium in 2-facility simple non-increasing linear congestion games[END_REF][START_REF] Monderer | Strong mediated equilibrium[END_REF][START_REF] Peleg | Implementation by mediated equilibrium[END_REF][START_REF] Rozenfeld | Strong and correlated strong equilibria in monotone congestion games[END_REF][START_REF] Rozenfeld | Group dominant strategies[END_REF][START_REF] Rozenfeld | Routing mediators[END_REF][START_REF] Tennenholtz | Game-theoretic recommendations: some progress in an uphill battle[END_REF]. In this paper, we consider only the type of mediator that implements a correlated equilibrium (CE) [START_REF] Aumann | Subjectivity and correlation in randomized games[END_REF].

A mediator is a trusted external party that suggests a strategy to every player separately and privately so that each player has no gain to choose another strategy assuming that the other players conform to the mediator's suggestion.

The algorithm that the mediator uses is known to all players. However, the mediator's random bits are unknown. We assume that the players are symmetric in the sense that they have the same utility function and the probability the mediator suggests a strategy to some player is independent of the identity of that player.

Ashlagi et al. [START_REF] Ashlagi | On the value of correlation[END_REF] define two metrics to measure the quality of a mediator: the mediation value (MV ) and the enforcement value (EV ). In our paper, we compute these values, adapted for games where players seek to minimize the social cost. The Mediation Value is defined as the ratio of the minimum social cost over all Nash equilibria to the minimum social cost over all mediators. The Enforcement Value is the ratio of the minimum social cost over all mediators to the optimal social cost.

A mediator is optimal when its expected social cost is minimum over all mediators. Thus, the Mediation Value measures the quality of the optimal mediator with respect to the best Nash equilibrium; and the Enforcement Value measures the quality of the optimal mediator with respect to the optimal social cost.

El Farol Game

First we describe the traditional El Farol game [START_REF] Arthur | Bounded rationality and inductive behavior (the el farol problem)[END_REF][START_REF] De Cara | Competition, efficiency and collective behavior in the "el farol" bar model[END_REF][START_REF] Challet | Shedding light on el farol[END_REF][START_REF] Lus | El farol revisited[END_REF]. El Farol is a tapas bar in Santa Fe. Every Friday night, a population of people decide whether or not to go to the bar. If too many people go, they will all have a worse time than if they stayed home, since the bar will be too crowded. That is a negative network effect [START_REF] Easley | Networks, Crowds, and Markets: Reasoning About a Highly Connected World[END_REF]. Now we provide an extension of the traditional El Farol game, where both negative and positive network effects [START_REF] Easley | Networks, Crowds, and Markets: Reasoning About a Highly Connected World[END_REF] are considered. The positive network effect is that if too few people go, those that go will also have a worse time than if they stayed home.

Motivation. Our motivation for studying this problem comes from the following discussion in [START_REF] Easley | Networks, Crowds, and Markets: Reasoning About a Highly Connected World[END_REF]. "It's important to keep in mind, of course, that many real situations in fact display both kinds of [positive and negative] externalities -some level of participation by others is good, but too much is bad. For example, the El Farol Bar might be most enjoyable if a reasonable crowd shows up, provided it does not exceed 60. Similarly, an on-line social media site with limited infrastructure might be most enjoyable if it has a reasonably large audience, but not so large that connecting to the Web site becomes very slow due to the congestion."

We note that our El Farol extension is one of the simplest, non-trivial problems for which a mediator can improve the social cost. Thus, it is useful for studying the power of a mediation.

Formal Definition of the Extended El Farol Game. We now formally define our game, which is non-atomic [START_REF] Aumann | Values of Non-Atomic Games[END_REF][START_REF] Schmeidler | Equilibrium points of nonatomic games[END_REF], in the sense that no individual player has significant influence on the outcome; moreover, the number of players is very large tending to infinity. The (c, s 1 , s 2 )-El Farol game has three parameters c, s 1 and s 2 , where 0 < c < s 1 and s 2 > 0. If x is the fraction of players to go, then the cost f (x) for any player to go is as follows:

c < f(1) c 1 c/s 1 -s 1 s 2 f(x) x 0 Positive Network Effect Negative Network Effect f(1) c 1 c/s 1 -s 1 s 2 f(x) x 0 Positive Network Effect Negative Network Effect c ≥ f(1) f(1)
f (x) = c -s 1 x 0 ≤ x ≤ c s1 , s 2 (x -c s1 ) c s1 ≤ x ≤ 1. (1) 
and the cost to stay is 1. The function f (x) is illustrated in the two plots of Figure 1.

Our Contributions. The main contributions of our paper are threefold:

-We design an optimal mediator, which implements the best correlated equilibrium for an extension of the El Farol game with symmetric players. Notably, this extension incorporates both negative and positive network effects. -We give an exact characterization of the Mediation Value (MV ) and the Enforcement Value (EV ) for our game. -We show that both the MV and EV values can be unbounded for our game.

Paper Organization. In Section 2, we discuss the related work. Section 3 states the definitions and notations that we use in the El Farol game. Our results are given in Section 4, where we show our main theorem that characterizes the best correlated equilibrium, and we compute accordingly the Mediation Value and the Enforcement Value. Finally, Section 5 concludes the paper and discusses some open problems.

Related Work

Mediation Metrics

Christodoulou and Koutsoupias [START_REF] Christodoulou | On the price of anarchy and stability of correlated equilibria of linear congestion games[END_REF] analyze the price of anarchy and the price of stability for Nash and correlated equilibria in linear congestion games. A consequence of their results is that the EV for these games is at least 1.577 and at most 1.6, and the MV is at most 1.015.

Brandt et al. [START_REF] Brandt | A game-theoretic analysis of strictly competitive multiagent scenarios[END_REF] compute the mediation value and the enforcement value in ranking games. In a ranking game, every outcome is a ranking of the players, and each player strictly prefers high ranks over lower ones [START_REF] Brandt | On strictly competitive multi-player games[END_REF]. They show that for the ranking games with n > 2 players, EV = n -1. They also show that MV = n -1 for n > 3 players, and for n = 3 players where at least one player has more than two actions.

The authors of [START_REF] Díaz | On the power of mediators[END_REF] design a mediator that implements a correlated equilibrium for a virus inoculation game [START_REF] Aspnes | Inoculation strategies for victims of viruses and the sum-of-squares partition problem[END_REF][START_REF] Moscibroda | When selfish meets evil: byzantine players in a virus inoculation game[END_REF]. In this game, there are n players, each corresponding to a node in a square grid. Every player has either to inoculate itself (at a cost of 1) or to do nothing and risk infection, which costs L > 1. After each node decides to inoculate or not, one node in the grid selected uniformly at random is infected with a virus. Any node, v, that chooses not to inoculate becomes infected if there is a path from the randomly selected node to v that traverses only uninoculated nodes. A consequence of their result is that EV is Θ(1) and MV is Θ((n/L) 1/3 ) for this game.

Jiang et al. [START_REF] Jiang | Defender (mis)coordination in security games[END_REF] analyze the price of miscoordination (PoM) and the price of sequential commitment (PoSC) in security games, which are defined to be a certain subclass of Stackelberg games. A consequence of their results is that MV is unbounded in general security games and it is at least 4/3 and at most e e-1 ≈ 1.582 in a certain subclass of security games.

We note that a poorly designed mediator can make the social cost worse than what is obtained from the Nash equilibria. Bradonjic et al. [START_REF] Bradonjic | On the price of mediation[END_REF] describe the Price of Mediation (P oM ) which is the ratio of the social cost of the worst correlated equilibrium to the social cost of the worst Nash equilibrium. They show that for a simple game with two players and two possible strategies, P oM can be as large as 2. Also, they show for games with more players or more strategies per player that P oM can be unbounded.

Finding and Simulating a Mediator

Papadimitriou and Roughgarden [START_REF] Papadimitriou | Computing correlated equilibria in multiplayer games[END_REF] develop polynomial time algorithms for finding correlated equilibria in a broad class of succinctly representable multiplayer games. Unfortunately, their results do not extend to non-atomic games; moreover, they do not allow for direct computation of MV and EV, even when they can find the best correlated equilibrium.

Abraham et al. [START_REF] Abraham | Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation[END_REF][START_REF] Abraham | Lower bounds on implementing robust and resilient mediators[END_REF] describe a distributed algorithm that enables a group of players to simulate a mediator. This algorithm works robustly with up to linear size coalitions, and up to a constant fraction of adversarial players. The result suggests that the concept of mediation can be useful even in the absence of a trusted external party.

Other Types of Mediators

In all equilibria above, the mediator does not act on behalf of the players. However, a more powerful type of mediators is described in [START_REF] Ashlagi | Mediators in position auctions[END_REF][START_REF] Forgó | A generalization of correlated equilibrium: A new protocol[END_REF][START_REF] Forgó | Measuring the power of soft correlated equilibrium in 2-facility simple non-increasing linear congestion games[END_REF][START_REF] Monderer | Strong mediated equilibrium[END_REF][START_REF] Peleg | Implementation by mediated equilibrium[END_REF][START_REF] Rozenfeld | Strong and correlated strong equilibria in monotone congestion games[END_REF][START_REF] Rozenfeld | Group dominant strategies[END_REF][START_REF] Rozenfeld | Routing mediators[END_REF][START_REF] Tennenholtz | Game-theoretic recommendations: some progress in an uphill battle[END_REF], where a mediator can act on behalf of the players that give that right to it.

For multistage games, the notion of the correlated equilibrium is generalized to the communication equilibrium in [START_REF] Forges | An approach to communication equilibria[END_REF][START_REF] Myerson | Multistage games with communication[END_REF]. In a communication equilibrium, the mediator implements a multistage correlated equilibrium; in addition, it communicates with the players privately to receive their reports at every stage and selects the recommended strategy to each player accordingly.

Definitions and Notations

Now we state the definitions and notations that we use in the El Farol game. Definition 1. A configuration C(x) characterizes that a fraction of players, x, is being advised to go; and the remaining fraction of players, (1 -x), is being advised to stay.

Definition 2. A configuration distribution D{(C(x 1 ), p 1 ), .., (C(x k ), p k )} is a probability distribution over k ≥ 2 configurations, where (C(x i ), p i ) represents that configuration C(x i ) is selected with probability p i , for 1 ≤ i ≤ k. Note that 0 ≤ x i ≤ 1, 0 < p i < 1, k i=1 p i = 1 and if x i = x j then i = j for 1 ≤ i, j ≤ k.
For any player i, let E i G be the event that player i is advised to go, and C i G be the cost for player i to go (when all other players conform to the advice).

Also let E i S be the event that player i is advised to stay, and C i S be the cost for player i to stay. Since the players are symmetric, we will omit the index i.

A configuration distribution, D{(C(x 1 ), p 1 ), ..,

(C(x k ), p k )}, is a correlated equilibrium iff E [C S |E G ] ≥ E [C G |E G ], E [C G |E S ] ≥ E [C S |E S ]. Definition 3.
A mediator is a trusted external party that uses a configuration distribution to advise the players such that this configuration distribution is a correlated equilibrium. The set of configurations and the probability distribution are known to all players. The mediator selects a configuration according to the probability distribution. The advice the mediator sends to a particular player, based on the selected configuration, is known only to that player.

Throughout the paper, we let n be the number of players.

Our Results

In our results, we assume that the cost to stay is 1; we justify this assumption at the end of this section. Our first results in Lemmas 1 and 2 are descriptions of the optimal social cost and the minimum social cost over all Nash equilibria for our extended El Farol game. We next state our main theorem which characterizes the best correlated equilibrium and determines the Mediation Value and Enforcement Value.

Lemma 1. For any (c, s 1 , s 2 )-El Farol game, the optimal social cost is (y * f (y * )+ (1 -y * ))n, where

y * =    1 2 ( c s1 + 1 s2 ) if c s1 ≤ 1 2 ( c s1 + 1 s2 ) ≤ 1, c s1 if 1 s2 < c s1 , 1 otherwise.
Proof. By Equation (1), f (x) has two cases. Let f 1 (x) be f (x) for x ∈ [0, c s1 ], and let f 2 (x) be f (x) for x ∈ [ c s1 , 1]. Also let h 1 (x) be the social cost when 0 ≤ x ≤ c s1 , and let h 2 (x) be the social cost when c s1 ≤ x ≤ 1. Thus,

h 1 (x) = (xf 1 (x) + (1 -x))n and h 2 (x) = (xf 2 (x) + (1 -x))n.
We know that h 1 (x) is minimized at x = c s1 . In addition, we know that h 2 (x) is a quadratic function with respect to x, and thus it has one minimum over x ∈ [ c s1 , 1] at x = y * , where:

y * =    1 2 ( c s1 + 1 s2 ) if c s1 ≤ 1 2 ( c s1 + 1 s2 ) ≤ 1, c s1 if 1 2 ( c s1 + 1 s2 ) < c s1 , 1
otherwise.

Let h * be the optimal social cost. Then h * = min(h 1 ( c s1 ), h 2 (y * )). Since

f 1 ( c s1 ) = f 2 ( c s1 ), we have h 1 ( c s1 ) = h 2 ( c s1
). Hence, h * = min(h 2 ( c s1 ), h 2 (y * )). This implies that h * = h 2 (y * ).

Lemma 2. For any (c, s 1 , s 2 )-El Farol game, if f (1) ≥ 1, then the best Nash equilibrium is at which the cost to go in expectation is equal to the cost to stay; otherwise, the best Nash equilibrium is at which all players would rather go. The social cost of the best Nash equilibrium is min(n, f (1) • n).

Proof. There are two cases for f (1) to determine the best Nash equilibrium. Case 1: f (1) ≥ 1. Let N y be a Nash equilibrium with the minimum social cost over all Nash equilibria and with a y-fraction of players that go in expectation. If f (y) > 1, then at least one player of the y-fraction of players would rather stay. Also if f (y) < 1, then at least one player of the (1 -y)-fraction of players would rather go. Thus, we must have f (y) = 1. Assume that each player has a mixed strategy, where player i goes with probability y i . Recall that N y has a y-fraction of players that go in expectation. Thus, y = 1 n n i=1 y i . Then the social cost is n i=1 (y i f (y) + (1 -y i )), or equivalently, n. Case 2: f (1) < 1. In this case, the best Nash equilibrium is at which all players would rather go, with a social cost of f (1) • n.

Therefore, the social cost of the best Nash equilibrium is min(n, f (1) • n).

Theorem 1. For any (c, s 1 , s 2 )-El Farol game , if c ≤ 1, then the best correlated equilibrium is the best Nash equilibrium; otherwise, the best correlated equilibrium is D{(C(0), p), (C(x * ), 1 -p)}, where λ(c, s

1 , s 2 ) = c( 1 s1 + 1 s2 ) - c( 1 s 1 + 1 s 2 )(c-1) s2 , x * =    λ(c, s 1 , s 2 ) if c s1 ≤ λ(c, s 1 , s 2 ) < 1, c s1 if λ(c, s 1 , s 2 ) < c s1 , 1 
otherwise.

and p = (1-x * )(1-f (x * )) (1-x * )(1-f (x * ))+c-1 . Moreover, 1) the expected social cost is (p + (1 -p)(x * f (x * ) + (1 -x * )))n, 2) the Mediation Value (MV) is min(f (1),1) p+(1-p)(x * f (x * )+(1-x * )) and 3) the Enforcement Value (EV) is p+(1-p)(x * f (x * )+(1-x * )) y * f (y * )+(1-y * )
, where

y * =    1 2 ( c s1 + 1 s2 ) if c s1 ≤ 1 2 ( c s1 + 1 s2 ) ≤ 1, c s1 if 1 s2 < c s1 , 1 otherwise. 
. Due to the space constraints, the proof of this theorem is not given here.

The following corollary shows that for c > 1, if λ(c, s 1 , s 2 ) ≥ 1, then the best correlated equilibrium is the best Nash equilibrium, where all players would rather go.

Corollary 1. For any (c, s 1 , s 2 )-El Farol game, if c > 1 and λ(c, s 1 , s 2 ) ≥ 1 then MV = 1.
Proof. By Theorem 1, when λ(c, s 1 , s 2 ) ≥ 1, x * = 1 and p = 0. Now we prove that if λ(c, s 1 , s 2 ) ≥ 1, then the best correlated equilibrium is the best Nash equilibrium of the case f (1) < 1 in Lemma 2. To do so, we prove that λ(c, s 1 , s 2 ) ≥ 1 ⇒ f (1) < 1. Now assume by way of contradiction that λ(c, s

1 , s 2 ) ≥ 1 ⇒ f (1) ≥ 1. Recall that f (1) = s 2 (1 -c s1 ). Then λ(c, s 1 , s 2 ) ≥ 1 ⇒ c s1 + 1 s2 ≤ 1, or equivalently, λ(c, s 1 , s 2 ) ≥ 1 ⇒ c s1 + 1 s2 ≤ λ(c, s 1 , s 2 ). Also recall that λ(c, s 1 , s 2 ) = c( 1 s1 + 1 s2 ) - c( 1 s 1 + 1 s 2 )(c-1) s2
. Thus, we have:

λ(c, s 1 , s 2 ) ≥ 1 ⇒ c s 1 + 1 s 2 ≤ c( 1 s 1 + 1 s 2 ) - c( 1 s1 + 1 s2 )(c -1) s 2 ⇒ s 2 • c s 1 ≤ -1,
which contradicts since s 1 , s 2 and c are all positive. Therefore, for c > 1 and λ(c, s 1 , s 2 ) ≥ 1, M V must be equal to 1. Now we show that MV and EV can be unbounded in the following corollaries.

Corollary 2. For any (2 + , 2+ 1-, 1 )-El Farol game, as → 0, MV → ∞.

Proof. For any (2 + , 2+ 1-, 1 )-El Farol game, we have f (1) = 1. By Theorem 1, we obtain x * = 1 -, f (x * ) = 0 and p = 1+2 for ≤ 

1+2 + ( 1+ 1+2 ) = ∞.
Corollary 3. For any (1 + , 1+ 1-, 1 )-El Farol game, as → 0, EV → ∞.

Proof. For any (1 + , 1+ 1-, 1 )-El Farol game, by Theorem 1, we obtain

x * = 1 + 2 - √ 1 + 2 and f (x * ) = 1 + - √ 1 -2 . Then we have p = (1 -(1 + 2 - √ 1 + 2 ))(1 -(1 + - √ 1 -2 )) (1 -(1 + 2 - √ 1 + 2 ))(1 -(1 + - √ 1 -2 )) + .
Also we have y * = 1 -and f (y * ) = 0 for ≤ 1 2 . Thus we have lim Based on these results, we show in Figures 2 and3 the social cost of the best Nash equilibrium (NE), the expected social cost of our optimal mediator (MED) and the optimal social cost (OPT), normalized by n, with respect to s 1 , s 2 and In Figure 2, the left plot shows that for c = 2 and s 2 = 10, the values of NE, MED, OPT increase, each up to a certain point, when s 1 increases; however, the values of MV and EV decrease when s 1 increases. Moreover, MV reaches its peak at the point where the best Nash equilibrium starts to remain constant with respect to s 1 . In the right plot, we set c = 2 and s 1 = 2.25; it shows that the values of NE, MED, OPT, MV and EV increase, each up to a certain point, when s 2 increases.

→0 EV = lim →0 p + (1 -p)(x * f (x * ) + (1 -x * )) y * f (y * ) + (1 -y * ) = ∞.
Figure 3 illustrates Corollaries 2 and 3, and it shows how fast MV and EV go to infinity with respect to c/s 1 , where c/s 1 = 1 -. The left plot shows that for any (2 + , 2+ 1-, 1 )-El Farol game, as c/s 1 → 1 ( → 0), M V → ∞ and EV → 2. In the right plot, for any (1 + , 1+ 1-, 1 )-El Farol game, as c/s 1 → 1 ( → 0), EV → ∞ and M V → 2.

Note that for any (c, s 1 , s 2 )-El Farol game, if c/s 1 = 1, then the best correlated equilibrium is at which all players would rather go with a social cost of 0, that is the best Nash equilibrium as well. Therefore, once c/s 1 is equal to 1, MV drops to 1.

The cost to stay assumption

Now we justify our assumption that the cost to stay is unity. Let (c , s 1 , s 2 , t )-El Farol game be a variant of (c, s 1 , s 2 )-El Farol game, where 0 < c < s 1 , s > 0 and the cost to stay is t > 0. If x is the fraction of players to go, then the cost f (x) for any player to go is as follows:

f (x) = c -s 1 x 0 ≤ x ≤ c s 1 , s 2 (x -c s 1 ) c s 1 ≤ x ≤ 1.
The following lemma shows that any (c , s 

(C(0), p ), (C(x ), 1 -p )}, where λ (c , s 1 , s 2 , t ) = c ( 1 s 1 + 1 s 2 ) - c ( 1 s 1 + 1 s 2 )(c -t ) s 2 ; x =      λ (c , s 1 , s 2 , t ) if c s 1 ≤ λ (c , s 1 , s 2 , t ) < 1, c s 1 if λ (c , s 1 , s 2 , t ) < c s 1 , 1
otherwise.

and p =

(1-x )(t -f (x ))

(1-x )(t -f (x ))+c -t . Moreover, 1) the Mediation Value (M V ) is min (f (1),t ) p t +(1-p )(x f (x )+(1-x )t ) and 2) the Enforcement Value (EV ) is p t +(1-p )(x f (x )+(1-x )t ) y f (y )+(1-y )t

, where

y =      1 2 ( c s 1 + t s 2 ) if c s 1 ≤ 1 2 ( c s 1 + t s 2 ) ≤ 1, c s 1 if t s 2 < c s 1 , 1 otherwise. 
. Similarly, for c ≤ t , we have M V = 1 and EV = min (f (1),t ) y f (y )+(1-y )t . For both cases, by Theorem 1, if we set c = c /t , s 1 = s 1 /t and s 2 = s 2 /t , then we have f (1) = f (1) • t ; also we get y = y * and λ (c , s 1 , s 2 , t ) = λ(c, s 1 , s 2 ). This implies that f (y ) = f (y * ) • t and x = x * ; which in turn f (x ) = f (x * ) • t and p = p. Thus, we obtain M V = M V and EV = EV .

Conclusion

We have extended the traditional El Farol game to have both negative and positive network effects. We have described an optimal mediator, and we have measured the Mediation Value and the Enforcement Value to completely characterize the benefit of our mediator with respect to the best Nash equilibrium and the optimal social cost.

Several open questions remain including the following: can we generalize our results for our game where the players choose among k > 2 actions? How many configurations are required to design an optimal mediator when there are k > 2 actions? Another problem is characterizing the MV and EV values for our game with the more powerful mediators in [START_REF] Ashlagi | Mediators in position auctions[END_REF][START_REF] Forgó | A generalization of correlated equilibrium: A new protocol[END_REF][START_REF] Forgó | Measuring the power of soft correlated equilibrium in 2-facility simple non-increasing linear congestion games[END_REF][START_REF] Monderer | Strong mediated equilibrium[END_REF][START_REF] Peleg | Implementation by mediated equilibrium[END_REF][START_REF] Rozenfeld | Strong and correlated strong equilibria in monotone congestion games[END_REF][START_REF] Rozenfeld | Group dominant strategies[END_REF][START_REF] Rozenfeld | Routing mediators[END_REF][START_REF] Tennenholtz | Game-theoretic recommendations: some progress in an uphill battle[END_REF]. How much would these more powerful mediators reduce the social cost over our type of weaker mediator?
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