
HAL Id: hal-00923080
https://hal.science/hal-00923080

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vertex pursuit in random directed acyclic graphs
Anthony Bonato, Dieter Mitsche, Pawel Pralat

To cite this version:
Anthony Bonato, Dieter Mitsche, Pawel Pralat. Vertex pursuit in random directed acyclic graphs.
SIAM Journal on Discrete Mathematics, 2013, 27 (2), pp.732–756. �hal-00923080�

https://hal.science/hal-00923080
https://hal.archives-ouvertes.fr


VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS

ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

Abstract. We examine a dynamic model for the disruption of information flow in
hierarchical social networks by considering the vertex-pursuit game Seepage played in
directed acyclic graphs (DAGs). In Seepage, agents attempt to block the movement
of an intruder who moves downward from the source node to a sink. The minimum
number of such agents required to block the intruder is called the green number. We
propose a generalized stochastic model for DAGs with given expected total degree
sequence. Seepage and the green number is analyzed in stochastic DAGs in both the
cases of a regular and power law degree sequence. For each such sequence, we give
asymptotic bounds (and in certain instances, precise values) for the green number.

1. Introduction

The on-line social network Twitter is a well known example of a complex real-world
network with over 300 million users. The topology of Twitter network is highly directed,
with each user following another (with no requirement of reciprocity). By focusing on a
popular user as a source (such as Lady Gaga or Justin Bieber, each of whom have over
11 million followers [15]), we may view the followers of the user as a certain large-scale
hierarchical social network. In such networks, users are organized on ranked levels below
the source, with links (and as such, information) flowing from the source downwards
to sinks. We may view hierarchical social networks as directed acyclic graphs, or DAGs
for short. Hierarchical social networks appear in a wide range of contexts in real-world
networks, ranging from terrorist cells to the social organization in companies; see, for
example [1, 8, 10, 12, 14].

In hierarchical social networks, information flows downwards from the source to sinks.
Disrupting the flow of information may correspond to halting the spread of news or gos-
sip in on-line social network, or intercepting a message sent in a terrorist network. How
do we disrupt this flow of information while minimizing the resources used? We consider
a simple model in the form of a vertex-pursuit game called Seepage introduced in [6].
Seepage is motivated by the 1973 eruption of the Eldfell volcano in Iceland. In order
to protect the harbour, the inhabitants poured water on the lava in order to solidify it
and thus, halt its progress. The game has two players, the sludge and a set of greens
(note that one player controls all the greens), a DAG with one source (corresponding
to the top of the volcano) and many sinks (representing the lake). The players take
turns, with the sludge going first by contaminating the top node (source). Then it

1991 Mathematics Subject Classification. 05C80, 05C57, 94C15.
Key words and phrases. vertex-pursuit games, directed acyclic graphs, Seepage, regular graphs,

power law graphs.
The authors gratefully acknowledge support from NSERC, Mprime, and Ryerson University.

1



2 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

is the greens’ turn, and they choose some non-protected, non-contaminated nodes to
protect. On subsequent rounds the sludge moves a non-protected node that is adjacent
(that is, downhill) to the node the sludge is currently occupying and contaminates it;
note that the sludge is located at a single node in each turn. The greens, on their
turn, proceed as before; that is, choose some non-protected, non-contaminated nodes
to protect. Once protected or contaminated, a node stays in that state to the end of
the game. The sludge wins if some sink is contaminated; otherwise the greens win,
that is, if they erect a cutset of nodes which separates the contaminated nodes from
the sinks. The name “Seepage” is used because the rate of contamination is slow. The
game is related to vertex-pursuit games such as Cops and Robbers (for an introduction
and further reading on such games, see [3]), although the greens in our case need not
move to neighbouring nodes. For an example, see the DAG in Figure 1. (We omit ori-
entations of directed edges in the figure, and assume all edges point from higher nodes
to lower ones.)

s

Figure 1. A DAG where 2 greens are needed to win. The white nodes
are the sinks.

To obtain the results in this paper, a number of different winning strategies are
employed by the two players. In some cases one of the two players can play arbitrarily
(at least up to some point), whereas in other cases the optimal strategy is simply a
“greedy” one (for example, when the greens protect neighbours as close as possible
to the current position of the sludge). In some other cases, much more sophisticated
strategies have to be applied.

To date the only analysis of Seepage was in [6], which presented results for DAGs.
Seepage may be extended to certain directed graphs with cycles, although we do not
consider this variation here (see also Section 6). In [6], a characterization was given of
directed trees where one green has a winning strategy, and bounds were given on the
number of greens needed to win in truncated products of paths. See also Chapter 9 of
[3].

Seepage displays some interesting similarities to an approach used in mathematical
counterterrorism, where cut sets in partially ordered sets (which are just a special kind
of DAG) are used to model the disruption of terrorist cells. As described in Farley [8, 9],
the maximal elements of the poset are viewed as the leaders of the terrorist organization,



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 3

who submit plans down via the edges to the nodes at the bottom (the foot soldiers or
minimal nodes). Only one messenger needs to receive the message for the plan to
be executed. Farley considered finding minimum-order sets of elements in the poset,
which when deleted, disconnect the minimal elements from the maximal one (that is,
find a minimum cut). We were struck by the similarities in the underlying approaches
in [6] and [8, 9]; for example, in Seepage the greens are trying to prevent the sludge
from moving to the sinks by blocking nodes. The main difference is that Seepage is
“dynamic” (that is, the greens can move, or choose new sets of nodes each time-step),
while the min-cut-set approach is “static” (that is, find a cutset in one time-step).
Seepage is perhaps a more realistic model of counterterrorism, as the agents do not
necessarily act all at once but over time. However, in both approaches deterministic
graphs are used.

We note that a stochastic model was presented for so-called network interdiction
in [11], where the task of the interdictor is to find a set of edges in a weighted network
such that the removal of those edges would maximally increase the cost to an evader of
traveling on a path through the network. A stochastic model for complex DAGs was
given in [4]. For more on models of on-line social networks and other complex networks,
see [2].

Our goal in the present article is to analyze Seepage and the green number when
played on a random DAG as a model of disrupting a given hierarchical social network.
We focus on mathematical results, and give a precise formulation of our random DAG
model in Section 2. Our model includes as a parameter the total degree distribution
of nodes in the DAG. This has some similarities to the G(w) model of random graphs
with expected degree sequences (see [5]) or the pairing model (see [17]). We study two
cases: regular DAGs (where we would expect each level of the DAG to have nodes with
about the same out-degree), and power law DAGs (where the degree distribution is
heavy tailed, with many more low degree nodes but a few which have a high degree).
Rigorous results are presented for regular DAGs in Theorem 3.1, and for power law
DAGs in Theorem 3.2. An overview of the main results is given in Section 3.

Throughout, G will represent a finite DAG. For background on graph theory, the
reader is directed to [7, 16]. The total degree of a vertex is the sum of its in- and
out-degrees. Additional background on Seepage and other vertex-pursuit games may
be found in [3].

2. Definitions

We denote the natural numbers (including 0) by N, and the positive integers and
real numbers by N+ and R+, respectively. For an event A on a probability space, we
let P(A) denote the probability of A. Given a random variable X, we let E(X) and
Var(X) be the expectation and the variance of X, respectively.

We now give a formal definition of our vertex-pursuit game. Fix v ∈ V (G) a node of
G. We will call v the source. For i ∈ N let

Li = Li(G, v) = {u ∈ V (G) : dist(u, v) = i},



4 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

where dist(u, v) is the distance between u and v in G. In particular, L0 = {v}. For a
given j ∈ N+ and c ∈ R+, let G(G, v, j, c) be the game played on graph G with the
source v and the sinks Lj. The game proceeds over a sequence of discrete time-steps.
Exactly

ct = bctc − bc(t− 1)c
new nodes are protected at time-step t. (In particular, at most ct nodes are protected
by the time t.) Note that if c is an integer, then exactly c nodes are protected at each
time-step, so this is a natural generalization of Seepage. To avoid trivialities, we assume
that Lj 6= ∅.

The sludge starts the game on the node v1 = v. The second player, the greens, can
protect c1 = bcc nodes of G \ {v}. Once nodes are protected they will stay protected to
the end of the game. At time t ≥ 2, the sludge makes the first move by sliding along a
directed edge from vt−1 to vt, which is an out-neighbour of vt−1. After that the greens
have a chance to protect another ct nodes. Since the graph is finite and acyclic, the
sludge will be forced to stop moving, and so the game will eventually terminate. If he
reaches any node of Lj, then the sludge wins; otherwise, the greens win.

If c = ∆(G) (the maximum out-degree of G), then the game G(G, v, j, c) can be
easily won by the greens by protecting of all neighbours of the source. Therefore, the
following graph parameter, the green number, is well defined:

gj(G, v) = inf{c ∈ R+ : G(G, v, j, c) is won by the greens}.
It is clear that for any j ∈ N+ we have gj+1(G, v) ≤ gj(G, v).

2.1. Random DAG model. There are two parameters of the model: n ∈ N+ and an
infinite sequence

w = (w1, w2, . . .)

of non-negative integers. Note that the wi’s may be functions of n. The first layer (that
is, the source) consists of one node: L0 = {v}. The next layers are recursively defined.
For the inductive hypothesis, suppose that all layers up to and including the layer k
are created, and let us label all nodes of those layers. In particular,

Lk = {vdk−1+1, vdk−1+2, . . . , vdk},

where dk =
∑k

i=0 |Li|. We would like the nodes of Lk to have a total degree with the
following distribution (wdk−1+1, wdk−1+2, . . . , wdk). However, it can happen that some

node vi ∈ Lk has an in-degree deg−(vi) already larger than wi, and so there is no hope
for the total degree of wi. If this is not the case, then the requirement can be easily
fulfilled. As a result, w, the desired degree distribution, will serve as a (deterministic)
lower bound for the actual degree distribution we obtain during the (random) process.

Let S be a new set of nodes of cardinality n. All directed edges that are created at
this time-step will be from the layer Lk to a random subset of S that will form a new
layer Lk+1. Each node vi ∈ Lk generates max{wi − deg−(vi), 0} random directed edges
from vi to S. Therefore, we generate

ek =
∑
vi∈Lk

max{wi − deg−(vi), 0}



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 5

random edges at this time-step. The destination of each edge is chosen uniformly at
random from S. All edges are generated independently, and so we perform ek indepen-
dent experiments. The set of nodes of S that were chosen at least once forms a new
layer Lk+1. Note that it can happen that two parallel edges are created during this
process. However, this is a rare situation for sparse random graphs we are going to
investigate in this paper. Hence, our results on the green number will also hold for a
slightly modified process which excludes parallel edges.

3. Main results

In this paper, we focus on two specific sequences: regular and power law. We will
describe them both and state the main results in the next two subsections. We consider
asymptotic properties of the model as n → ∞. We say that an event in a probability
space holds asymptotically almost surely (a.a.s.) if its probability tends to one as n
goes to infinity.

3.1. Random regular DAGs. We consider a constant sequence; that is, for i ∈ N+

we set wi = d, where d ≥ 3 is a constant. In this case, we refer to the stochastic
model as random d-regular DAGs. Since wi = d, observe that |Lj| ≤ d(d − 1)j−1

(deterministically) for any j, since at most d(d − 1)j−1 random edges are generated
when Lj is created. We will write gj for gj(G, v) since the graph G is understood to be
a d-regular random graph, and L0 = {v} = {v1}.

Theorem 3.1. Let ω = ω(n) be any function that grows (arbitrarily slowly) as n tends
to infinity. For the random d-regular DAGs, we have the following.

(i) A.a.s. g1 = d.
(ii) If 2 ≤ j = O(1), then a.a.s.

gj = d− 2 +
1

j
.

(iii) If ω ≤ j ≤ logd−1 n− ω log log n, then a.a.s.

gj = d− 2.

(iv) If logd−1 n − ω log log n ≤ j ≤ logd−1 n − 5
2
s log2 log n + logd−1 log n − O(1) for

some s ∈ N+, then a.a.s.

d− 2− 1

s
≤ gj ≤ d− 2.

(v) Let s ∈ N+, s ≥ 4. There exists a constant Cs > 0 such that if j ≥ logd−1 n+Cs,
then a.a.s.

gj ≤ d− 2− 1

s
.

The whole Section 4 is devoted to prove this theorem. Theorem 3.1 tells us that
the green number is slightly bigger than d− 2 if the sinks are located near the source,
and then it is d − 2 for a large interval of j. Later, it might decrease slightly since an
increasing number of vertices have already in-degree 2 or more, but only for large j
(part (v)) we can prove better upper bounds than d− 2. One interpretation of this fact



6 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

is that the resources needed to disrupt the flow of information is in a typical regular
DAG is (almost) independent of j, and relatively low (as a function of j).

3.2. Random power law DAGs. We have three parameters in this model: β > 2,
d > 0, and 0 < α < 1. For a given set of parameters, let

M = M(n) = nα, i0 = i0(n) = n

(
d

M

β − 2

β − 1

)β−1
,

and

c =

(
β − 2

β − 1

)
dn

1
β−1 .

Finally, for i ≥ 1 let

wi = c(i0 + i− 1)−
1

β−1 .

In this case, we refer to the model as random power law DAGs.
We note that the sequence w is decreasing (in particular, the source has the largest

expected degree). Moreover, the number of coordinates that are at least k is equal to

n

(
β − 2

β − 1

d

k

)β−1
− i0 = (1 + o(1))n

(
β − 2

β − 1

d

k

)β−1
= Θ(nk−β+1),

and hence the sequence follows a power-law with exponent β. From the same observa-
tion it follows that the maximum value is

w1 = ci
− 1
β−1

0 = M.

Finally, the average of the first n values is

c

n

i0+n−1∑
i=i0

i−
1

β−1 = (1 + o(1))
c

n

(
β − 1

β − 2

)
n1− 1

β−1 = (1 + o(1))d,

since M = o(n).
Our main result on the green number gj = gj(G, v) in the case of power law sequences

is the following.

Theorem 3.2. Let

γ = dβ−1
(
β − 2

β − 1

)β−2(1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1


if 1

α
− β + 3 ∈ N+ \ {1, 2}, and γ = 1 otherwise. Let j1 be the largest integer satisfying

j1 ≤ max{ 1
α
− β + 3, 2}. Let j2 = O(log log n) be the largest integer such that

dβ−1
( γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log log n)−max{2,(β−1)2}.

Finally, let

ξ =

(
β − 2

β − 1

)
d

((
d(β − 2)

β − 1

)β−1
+ 1

)− 1
β−1

.



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 7

Then, for 1 ≤ j ≤ j2 − 1 we have that a.a.s.

(1 + o(1))w̄j ≤ gj ≤ (1 + o(1))w̄j−1, (1)

where w̄0 = w̄1 = M , for 2 ≤ j < 1
α
− β + 3,

w̄j =


nα if 2 ≤ j < 1

α
− β + 2

ξnα if 2 ≤ j = 1
α
− β + 2(

β−2
β−1

)
dn

1−α(j−1)
β−1 if 1

α
− β + 2 < j < 1

α
− β + 3 and j ≥ 2,

and for j1 ≤ j ≤ j2 − 1,

w̄j =

(
β − 2

β − 1

)( γ

dβ−1
nα(j1−1)−1

)−(β−2
β−1)

j−j1/(β−1)
.

In the power law case, Theorem 3.2 tells us that the green number is smaller for large
j. This reinforces the view that intercepting a message in a hierarchical social network
following a power law is more difficult close to levels near the source.

4. Proofs for random d-regular DAGs

Before analyzing the game on random d-regular DAGs, we need a few lemmas. We
will be using the following version of a well-known Chernoff bound.

Lemma 4.1 ([13]). Let X be a random variable that can be expressed as a sum X =∑n
i=1Xi of independent random indicator variables where Xi is a Bernoulli random

variable with success probability pi with (possibly) different pi = P(Xi = 1) = EXi > 0.
Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
, (2)

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
. (3)

In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
. (4)

We will start by proving the threshold for appearance of vertices of in-degree k.

Lemma 4.2. Let ω = ω(n) be any function that grows (arbitrarily slowly) as n tends
to infinity. Then a.a.s. the following properties hold.

(i) |Lj| = (1− o(1))d(d− 1)j−1 for any 1 ≤ j ≤ logd−1 n− ω.
(ii) For all k ≥ 2, let jk = k−1

k
logd−1 n. For every v ∈ Lj, we have that deg−(v) < k

if j < jk − ω, and deg−(v) = k for some v ∈ Ljk+ω. In particular, the threshold
for the appearance of vertices of in-degree k is jk.

(iii) |Lj| = d(d− 1)j−1 for 1 ≤ j ≤ 1
2

logd−1 n− ω.



8 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

Proof. For (i) note that the probability that a given vertex v ∈ S has in-degree k ≥ 2
at level j ≥ 1 is at most(

d(d− 1)j−1

k

)(
1

n

)k
= O

(
(d− 1)jk

nk

)
.

Thus, the expected number of vertices of in-degree k at level j is O( (d−1)
jk

nk−1 ) and, in

particular, the expected number of vertices of in-degree 2 or more at Lj is O( (d−1)
2j

n
).

Set αj = (d− 1)
1
2
logd−1 n−

j
2 . By Markov’s inequality, with probability at least 1− 1

αj
we

derive that∣∣∣{v ∈ Lj : deg−(v) ≥ 2}
∣∣∣ = O

(
(d− 1)2jαj

n

)
= O

(
(d− 1)3j/2√

n

)
. (5)

Since
logd−1 n−ω∑

j=1

1

αj
= (d− 1)−

1
2
logd−1 n

logd−1 n−ω∑
j=1

(d− 1)j/2 = O
(

(d− 1)−
ω
2

)
= o(1),

we obtain that a.a.s. (5) holds for all values of j ≤ logd−1 n − ω. Since we aim for a
statement that holds a.a.s., we can assume for j ≤ logd−1 n− ω that

|Lj+1| = (d− 1)|Lj| −O
(

(d− 1)3j/2√
n

)
. (6)

We prove (i) by strong induction. It follows from (5) that |L1| = d, so (i) holds for
j = 1. Suppose that (i) holds for all i < j; that is, |Li| = (1− o(1))d(d− 1)i−1. By (6)
and the inductive hypothesis (used recursively), we obtain that

|Lj| = (d− 1)|Lj−1| −O
(

(d− 1)3j/2√
n

)
= (d− 1)|Lj−1|

(
1−O

(
(d− 1)j/2√

n

))
= d(d− 1)j−1E,

where

E =
∏

j≤logd−1 n−ω

(
1−O

(
(d− 1)j/2√

n

))
.

Note that

E = exp

− ∑
j≤logd−1 n−ω

O

(
(d− 1)j/2√

n

)
= exp

(
−O
(

(d− 1)−ω/2
))

= (1− o(1)).

We now prove (ii) and (iii). By part (i), the number of random edges ej−1 emanating
from Lj−1 is (1 − o(1))d(d − 1)j−1. When layer j is created, these edges are joined to



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 9

random vertices in the set S = {s1, s2, . . . , sn} of cardinality n. For any fixed k ≥ 2
and any fixed layer 1 ≤ j ≤ logd−1 n− ω, we define the indicator variable Ii to be 1 if
si has in-degree k and 0 otherwise, for i = 1, 2, . . . , n. Let X =

∑n
i=1 Ii.

As observed in part (i) of this proof,

P(Ii = 1) =

(
ej−1
k

)(
1

n

)k (
1− 1

n

)ej−1−k

=

(
ej−1
k

)(
1

n

)k
(1 + o(1)) = Θ

(
(d− 1)jk

nk

)
,

and thus, E(X) = Θ( (d−1)
jk

nk−1 ). By Markov’s inequality, a.a.s. for j ≤ k−1
k

logd−1 n − ω,
no vertices of in-degree k are present. By considering the case k = 2, this shows that
for j ≤ 1

2
logd−1 n− ω, all vertices have in-degree 1 a.a.s., and thus, for such j we have

|Lj| = d(d− 1)j−1 a.a.s. Hence, (iii) holds.
We find that

P(Ii = 1, Ii′ = 1) =

(
ej−1
k

)(
ej−1 − k

k

)(
1

n

)2k (
1− 2

n

)ej−1−2k

=

(
ej−1
k

)2(
1

n

)2k

(1 + o(1)).

Thus,

E(X2) =
∑
i 6=i′

(P(Ii = 1, Ii′ = 1) +
∑
i

P(Ii = 1)

≤
∑
i 6=i′

((
ej−1
k

)2(
1

n

)2k

(1 + o(1))

)
+ E(X)

=

[
n

(
ej−1
k

)(
1

n

)k]2
(1 + o(1)) + E(X)

= (E(X))2(1 + o(1)) + E(X).

Hence, for j = k−1
k

logd−1 n+ ω, it follows from Chebyshev’s inequality that

P(X = 0) ≤ Var(X)

(E(X))2
=

E(X2)

(E(X))2
− 1 = o(1),

and hence, a.a.s. there are vertices of in-degree k, proving part (ii) of the lemma. �

The lemma is enough to prove the first two parts of the main theorem.

Proof of Theorem 3.1 (i), (ii), and the upper bound of (iii). By Lemma 4.2 (iii) for j ≤
1
2

logd−1 n− ω the game is played on a tree. Part (i) is trivial, since the greens have to
protect all vertices in L1, or they lose.

To derive the upper bound of (ii), note that for c = d− 2 + 1
j

we have that cj = d− 1

(ci = d − 2 for 1 ≤ i ≤ j − 1). The greens can play arbitrarily during the first j − 1



10 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

steps, and then block the sludge on level j. If j ≥ ω, then we have that d − 2 is an
upper bound of gj, and the upper bound of (iii) holds.

To derive the lower bound of (ii), note that if d − 2 ≤ c < d − 2 − 1
j
, then exactly

d− 2 new vertices are protected at each time-step. Without loss of generality, we may
assume that the greens always protect vertices adjacent to the sludge (since the game
is played on the tree, there is no advantage to play differently). No matter how the
greens play, there is always at least one vertex not protected and the sludge can reach
Lj. �

For a given vertex v ∈ Lt and integer j, let us denote by S(v, j) the subset of Lt+j
consisting of vertices at distance j from v (that is, those that are in the j-th level of the

subgraph whose root is v). Let N(v, j) =
∑j

i=1 S(v, i) be the subgraph of all vertices
of depth j pending at v. Call a vertex u ∈ S bad if u ∈ N(v, j) and u has in-degree at
least 2 (recall, that S is a set of n vertices used in the process of generating a random
graph). Let X(v, j) be the total number of bad vertices in N(v, j). In the next lemma,
we estimate X(v, j).

Lemma 4.3. A.a.s. the following holds for some large enough constant C ′ > 0. For

any v ∈ Lt, where t ≤ logd−1 n− ω, and any j such that (d−1)t+2j

n
≤ log n,

X(v, j) ≤ C ′ log n.

Proof. Fix v ∈ Lt and let j be the maximum integer satisfying (d−1)t+2j

n
≤ log n. Since

there are O(n) possible vertices to consider, it is enough to show that the bound holds
with probability 1− o(n−1).

For u ∈ S, let Iu(v, i) (1 ≤ i ≤ j) be the event that u ∈ S(v, i) and u is bad. In order
for u to be in S(v, i), u must receive at least one edge from a vertex in S(v, i− 1), and
in order to be bad it must have at least one more edge from either S(v, i− 1) or from
another vertex at layer Lt+i−1. Thus,

P(Iu(v, i)) =
O((d− 1)i)

n

O((d− 1)t+i)

n
= O

(
(d− 1)t+2i

n2

)
,

since there are O((d−1)i) edges emanating from S(v, i−1), and there are O((d−1)t+i)
edges emanating from Lt+i−1. Letting Iu = Iu(v, i) being the corresponding indicator
variable, we have that

E

(∑
u∈S

Iu

)
= O

(
(d− 1)t+2i

n

)
.

Note that P(Iu = 1 | Iu′ = 1) ≤ P(Iu = 1), since P(Iu = 1 | Iu′ = 1) ≤ P(Iu = 1 | Iu′ = 0)
(for a fixed total number of edges, the probability for u to be bad is smaller if another
vertex u′ is bad) and, by the law of total probability, at least one of the two conditional
probabilities has to be at most P(Iu = 1). Thus,

∑
u∈S Iu is bounded from above by∑

u∈S I
′
u, where the I ′u are independent indicator random variables with

P(Iu = 1) ≤ P(I ′u = 1) = C
(d− 1)t+2i

n2



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 11

for some sufficiently large C > 0. The total number of bad vertices in the subgraph of

depth j pending at v is X =
∑j

i=1

∑
u∈S Iu(v, i) ≤

∑j
i=1

∑
u∈S I

′
u(v, i). Since (d−1)t+2j

n
≤

log n,

E(X) ≤
j∑
i=1

C
(d− 1)t+2i

n
= O

(
(d− 1)t+2j

n

)
= O(log n),

and by the Chernoff bound given by (2), X ≤ C ′ log n with probability 1 − o(n−1) for
some C ′ > 0 large enough. �

We need one more lemma. For a given vertex v ∈ Lt and integer j, a vertex u ∈ S
is called very bad if it has at least two incoming edges from vertices in S(v, i − 1). In
particular, every very bad vertex is bad. Let Z(v, j) be the number of very bad vertices
in N(v, j).

For a given T = Θ(log log n), and any L̂T ⊆ LT such that |L̂T | = o(|LT |/ log2 n), we

will consider the subgraph G(L̂T ) consisting of all vertices to which there is a directed

path from some vertex in L̂T . For any t > T , let L̂t be a subset of Lt that is in G(L̂T ).

Lemma 4.4. Let L̂T ⊆ LT for some T = Θ(log log n) be such that |L̂T | = o(|LT |/ log2 n).

Then a.a.s. for any v ∈ L̂t, where T ≤ t ≤ logd−1 n − ω, and any integer j with
(d−1)t+2j

n
≤ log n, we have that Z(v, j) = 0.

Proof. Fix any v ∈ L̂t for some T ≤ t ≤ logd−1 n − ω. As in Lemma 4.3, by letting
Hu(v, i) be the event that u ∈ S is very bad, we have

P(Hu(v, i)) =
O((d− 1)i)

n

O((d− 1)i)

n
= O

(
(d− 1)2i

n2

)
.

Letting Hu = Hu(v, i) be the corresponding indicator variable, we have that

E

(∑
u∈S

Hu

)
= O

(
(d− 1)2i

n

)
.

Analogously as in the previous proof, define independent indicator random variables

H ′u with P(Hu = 1) ≤ P(H ′u = 1) = C (d−1)2i
n2 . We have

Z(v, j) =

j∑
i=1

∑
u∈S

Hu(v, i) ≤
j∑
i=1

∑
u∈S

H ′u(v, i),

and so

E(Z(v, j)) ≤
j∑
i=1

C
(d− 1)2i

n
= O

(
(d− 1)2j

n

)
= O

(
log n

(d− 1)t

)
,

since (d−1)t+2j

n
≤ log n.

As |L̂T | = o(|LT |/ log2 n), we have that

|L̂t| ≤ |L̂T |(d− 1)t−T = o((d− 1)t/ log2 n),



12 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

and so the expected number of very bad vertices found in L̂t is o(1/ log n). Finally, the

expected number of very bad vertices in any sublayer L̂t (T ≤ t ≤ logd−1 n−ω) is o(1),
and the result holds by Markov’s inequality. �

We now come back to the proof of the main theorem for random regular DAGs.

Proof of Theorem 3.1(iii) and (iv). Note that we already proved an upper bound of
(iii) (see the proof of parts (i) and (ii)). Since gj is non-increasing as a function of j,
an upper bound of (iv) also holds.

We will prove a lower bound of (iv) first. The lower bound of (iii) will follow easily
from there. Let s ∈ N+ and suppose that we play the game with parameter c = d−2− 1

s
.

If s 6= 1, then for every i ∈ N, we have that csi+1 = d − 3 and ct = d − 2, otherwise.
(For s = 1 we find that ct = d − 3 for any t.) Suppose that the greens play greedily
(that is, they always protect vertices adjacent to the sludge) and the graph is locally
a tree. Note that during the time between si + 2 and s(i + 1), they can direct the
sludge leaving him exactly one vertex to choose from at each time-step. However, at
time-step s(i + 1) + 1, the sludge has 2 vertices to choose from. The sludge has to
use this opportunity wisely, since arriving at a bad vertex (see definition above) when
the greens can protect d− 2 vertices would result in him losing the game. Our goal is
to show that the sludge can avoid bad vertices and, as a result, he has a strategy to
reach the sink Lj. Since we aim for a statement that holds a.a.s. we can assume that
all properties mentioned in Lemmas 4.2, 4.3, and 4.4 hold.

Before we describe a winning strategy for the sludge, let us discuss the following
useful observation. While it is evident that the greens should use a greedy strategy to
play on the tree, it is less evident in our situation. Perhaps instead of playing greedily,
the greens should protect a vertex far away from the sludge, provided that there are at
least two paths from the sludge to this vertex. However, this implies that the vertex
is very bad and we know that very bad vertices are rare. It follows from Lemma 4.4
that there is no very bad vertex within distance j, provided that the sludge is at a

vertex in Lt, t = Ω(log log n) and (d−1)t+2j

n
≤ log n. (For early steps we know that

the graph is locally a tree so there are no bad vertices at all.) Therefore, without loss
of generality, we can assume that at any time-step t of the game, the greens protect
vertices greedily or protect vertices at distance at least j where j is the smallest value

such that (d−1)t+2j

n
> log n. We call the latter protected vertices dangerous. The sludge

has to make sure that there are no nearby bad nor dangerous vertices.
Let

T = s(log2 log n+ C),

where the constant C > 0 will be determined soon and is sufficiently large such that the
sludge is guaranteed to escape from all bad or dangerous vertices which are close to him.
Let δ = 3/log2

(
d−1
d−2

)
. During the first δT time-steps, the sludge chooses any arbitrary

branch. Since he is given this opportunity at least δ log2 log n = 3 log(d−1)/(d−2) log n

times and each time he cuts the number of possible destinations by a factor of d−2
d−1 , the

number of possible vertices the sludge can reach at time δT is O(|LδT |/ log3 n). From
that point on, it follows from Lemma 4.4 that there are no nearby very bad vertices.



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 13

At time t1 = δT , by Lemma 4.2, there are no bad vertices at distance

d1 =
1

2
logd−1 n− δT − ω ≥ T

from the sludge, and hence, no dangerous vertices within this distance. It follows from
Lemma 4.3 that there are O(log n) bad vertices at distance

d̄1 =
1

2
logd−1 n+

1

2
logd−1 log n− δT

2
.

There are O(log n) dangerous vertices within this distance (since the total number of
protected vertices during the whole game is of this order). Thus, there are O(log n)
bad or dangerous vertices at a distance between d1 and d̄1 from the sludge.

To derive a lower bound on the length of the game, we provide a strategy for the
sludge that allows him to play for at least a certain number of steps, independently of
the greens’ behaviour. In particular, his goal is to avoid these bad or dangerous vertices:
as long as the sludge is occupying a vertex that is not bad, there is at least one vertex
on the next layer available to choose from. More precisely, it follows from Lemma 4.4,
that from time δT onwards, locally there are no very bad vertices. Let us call a round
a sequence of T time-steps. Since all bad vertices are in distinct branches, in every s-th
time-step the sludge can half the number of bad vertices. Therefore, after one round
the sludge can escape from all (C ′ + 1) log n bad or dangerous vertices that are under
consideration in a given round, provided that C > 0 is large enough constant. (Recall
the constant C ′ is defined in Lemma 4.3.)

Using this strategy, at time t2 = (δ + 1)T there are no bad or dangerous vertices at
distance

d2 = d̄1 − T =
1

2
logd−1 n+

1

2
logd−1 log n− δ + 2

2
T ≥ T.

To see this, note that since the sludge escaped from all bad or dangerous vertices, which
at time t1 were at distance d̄1, and he has advanced T steps by now. Using Lemma 4.3
again, we find that there are O(log n) bad or dangerous vertices at distance

d̄2 =
1

2
logd−1 n+

1

2
logd−1 log n− δ + 1

2
T.

Arguing as before, we find that it takes another T steps to escape from them.
In general, at time ti = (δ + i− 1)T , there are O(log n) bad or dangerous vertices at

a distance between

di =
1

2
logd−1 n+

1

2
logd−1 log n− δ + i

2
T

and

d̄i =
1

2
logd−1 n+

1

2
logd−1 log n− δ + i− 1

2
T

Thus, as long as di ≥ T , the strategy of escaping from bad or dangerous vertices before
actually arriving at that level is feasible. Moreover, we can finish this round, and so
the sludge is guaranteed to use this strategy until time ti, where i is the smallest value
such that di ≤ T . Solving this for i we obtain that

(δ + i+ 2)

2
T ≤ 1

2
logd−1 n+

1

2
logd−1 log n,



14 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

and so
ti = (δ + i− 1)T ≤ logd−1 n+ logd−1 log n− 3T.

Hence,

ti = (δ + i− 1)T ≤ logd−1 n− 3s log2 log n+ logd−1 log n−O(1).

Finally, note that if i is the smallest value such that di ≤ T , we get that di−1 ≥ T and
so di ≥ T

2
. Hence, another T/2 steps can be played, and the constant of the second

order term can be improved from 3s log2 log n to 5
2
s log2 log n, yielding part (iv). Part

(iii) follows by taking s to be a function of n slowly growing to infinity. �

Our next goal is to show that when j = logd−1 n + C, the value of gj is slightly
smaller than d − 2, provided that C is a sufficiently large constant. However, before
we do it, we need one more observation. It follows from Lemma 4.2(i) that a.a.s.
|Lt| = (1 − o(1))d(d − 1)t−1 for t = logd−1 n − ω (ω = ω(n) is any function tending to
infinity with n, as usual). However, this is not the case when t = logd−1 n + O(1). At
this point of the process, a positive fraction of vertices of Lt are bad. This, of course,
affects the number of edges from Lt to Lt+1. In fact, the number of edges between two
consecutive layers converges to c0n as shown in the next lemma.

Lemma 4.5. Let c0 be the constant satisfying

d−1∑
k=1

(d− k)
ck

k!
e−c = c.

For every ε > 0, there exists a constant Cε such that a.a.s. for every logd−1 n + Cε ≤
t ≤ 2 logd−1 n,

(1− e−c0+ε)n ≤ |Lt| ≤ (1− e−c0−ε)n,
and the number of edges between Lt and Lt+1 is at least (c0−ε)n and at most (c0 +ε)n.

Proof. Suppose that the layer Lt has in total cn random incoming edges, for some
c = c(n) ∈ (0, 1]. Then the probability that a vertex v ∈ S (recall that S is the set of
cardinality n used to create layer Lt) has in-degree k ∈ N (that is, absorbs k incoming
edges, or attracts no edge if k = 0) is(

cn

k

)(
1

n

)k (
1− 1

n

)cn−k
= (1 + o(1))

ck

k!
e−c.

Note that each vertex of in-degree 1 ≤ k ≤ d − 1 generates d − k edges to the next
layer. Further, vertices of in-degrees k or more do not have any offspring, and vertices
of S of in-degree zero are not in Lt. Therefore, the expected number of outgoing edges
produced by all vertices in layer Lt is

(1 + o(1))
d−1∑
k=1

(d− k)
ck

k!
e−cn.

The events considered here are almost independent (one can compute higher moments
and see that the kth moment is asymptotically equal to the kth power of the first
moment), so for any 0 ≤ k ≤ d−1 it follows from Chernoff bounds that with probability



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 15

1− o(log−1 n) the number of vertices of degree k is (1 + o(1))cke−c/k!. Thus, with the
same probability, strong concentration also follows for the number of edges. If the
number of incoming edges equals c0n, then the expected number of outgoing edges
equals

(1 + o(1))
d−1∑
k=1

(d− k)
ck0
k!
e−c0n = (1 + o(1))c0n.

If less than c0n edges are incoming, then more will be going out, and vice versa. A.a.s.
the process converges and so there exists a constant Cε such that a.a.s. the number of
edges between two consecutive layers Lt and Lt+1 is between (c0− ε)n and (c0 + ε)n for
any t such that logd−1 n+ Cε ≤ t ≤ 2 logd−1 n.

Finally, let us recall that the layer Lt consists of vertices of S with in-degree at least
one. The number of in-degree 0 vertices is concentrated around its expectation, and
thus we have that a.a.s.

(1− e−c0+ε)n ≤ |Lt| ≤ (1− e−c0−ε)n.
The lemma is proved. �

The value of c0 (and so 1 − e−c0 as well) can be numerically approximated. It is
straightforward to see that c0 tends to d/2 (hence, 1 − e−c0 tends to 1) when d → ∞.
We present below a few approximate values.

d 3 4 5 10 20
c0 0.895 1.62 2.26 4.98 ≈ 10

1− e−c0 0.591 0.802 0.895 0.993 ≈ 1

Table 1. Approximate values of c0 and 1− e−c0 .

Finally, we are ready to finish the last part of Theorem 3.1.

Proof of Theorem 3.1(v). We assume that the game is played with parameter c =
d − 2 − 1

s
for some s ∈ N+ \ {1, 2, 3}. For every i ∈ N, we have that csi+1 = d − 3,

and ct = d− 2, otherwise. To derive an upper bound of gj that holds a.a.s., we need to
prove that a.a.s. there exists no winning strategy for the sludge.

We will use a combinatorial game-type argument. The greens will play greedily (that
is, they will always protect nodes adjacent to the sludge). Suppose that the sludge
occupies node v ∈ Lsi+1 for some i ∈ N (at time t = si + 2 he moves from v to some
node in Lt) and he has a strategy to win from this node, provided that no node in the
next layers is protected by the greens. We will call such a node sludge-win. Note that
during the time period between si+ 2 and s(i+ 1), the greens can protect d− 2 nodes
at a time, so they can direct the sludge leaving him exactly one node to choose from at
each time-step. Therefore, if there is a node of in-degree at least 2 in any of these layers,
the greens can force the sludge to go there and finish the game in the next time-step.
This implies that all nodes within distance s− 2 from v (including v itself) must have
in-degree 1 and so the graph is locally a tree. However, at time-step s(i + 1) + 1, the
greens can protect d − 3 nodes, one less than in earlier steps. If the in-degree of a
node reached at this layer is at least 3, then the greens can protect all out-neighbours



16 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

and win. Further, if the in-degree is 2 and there is at least one out-neighbour that is
not sludge-win, the greens can force the sludge to go there and win by definition of
not being sludge-win. Finally, if the in-degree is 1, the sludge will be given 2 nodes to
choose from. However, if there are at least two out-neighbours that are not sludge-win,
the greens can “present” them to the sludge and regardless of the choice made by the
sludge, the greens win.

We summarize now the implications of the fact that v ∈ Lsi+1 is sludge-win. First of
all, all nodes within distance s− 2 are of in-degree 1. Nodes at the layer Ls(i+1) below
v have in-degree at most 2. If u ∈ Ls(i+1) has in-degree 2, then all of the d − 2 out-
neighbours are sludge-win. If u ∈ Ls(i+1) has in-degree 1, then all out-neighbours except
perhaps one node are sludge-win. Using this observation, we characterize a necessary
condition for a node v ∈ L1 to be sludge-win. For a given v ∈ L1 that can be reached
at time 1, we define a sludge-cut to be the following cut: examine each node of Lsi,
and proceed inductively for i ∈ N+. If u ∈ Lsi has out-degree d− 1, then we cut away
any out-neighbour and all nodes that are not reachable from v (after the out-neighbour
is removed). The node that is cut away is called an avoided node. After the whole
layer Lsi is examined, we skip s− 1 layers and move to the layer Ls(i+1). We continue
until we reach the sink, the layer Lj = Lsi′ for some i′ (we stop at Lj without cutting
any further). The main observation is that if the sludge can win the game, then the
following claim holds.

Claim. There exists a node v ∈ L1 and a sludge-cut such that the graph left after
cutting is a (d − 1, d − 2)-regular graph, where each node at layer Lsi, 1 ≤ i ≤ i′ − 1
has out-degree d− 2, and all other nodes have out-degree d− 1. In particular, for any

1 ≤ i ≤ i′ − 1 the graph induced by the set
⋃s(i+1)−1
t=si Lt is a tree.

It remains to show that a.a.s. the claim does not hold. (Since there are at most d
nodes in L1 it is enough to show that a.a.s. the claim does not hold for a given node in
L1.) Fix v ∈ L1. The number of avoided nodes at layer Lsi+1 is at most the number of
nodes in Lsi (after cutting earlier layers), which is at most

`i = (d− 1)si−1
(
d− 2

d− 1

)i−1
= (d− 1)(s−1)i(d− 2)i−1.

In particular, `, the number of nodes in the sink after cutting, is at most `i′ ≤ n. It
can be shown that a.a.s. ` > nα for some α > 0.

Fix nα ≤ ` ≤ `i′ ≤ n. We need to show that for this given ` the claim does not hold
with probability 1−o(n−1). Since each node in Lsi′ has in-degree at most 2, the number
of nodes in Lsi′−1 is at most 2` (as before, after cutting). Since the graph between layer
Ls(i′−1) and Lsi′−1 is a tree, the number of nodes in Lsi′ is at most 2`/(d− 1)s−1, which
is an upper bound for the number of avoided nodes at the next layer Lsi′+1. Applying
this observation recursively we obtain that the total number of avoided nodes up to
layer si′ is at most 4(d − 1)−s+1`. To count the total number of sludge-cuts of a given
graph, observe that each avoided node corresponds to one out of d− 1 choices. Hence,
the total number of sludge-cuts is at most

(d− 1)4(d−1)
−s+1`. (7)



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 17

We now estimate the probability that the claim holds for a given v ∈ L1 and a
sludge-cut. To obtain an upper bound, we estimate the probability that all nodes in
the layer Lsi′−1 are of in-degree 1. Conditioning on the fact that we have ` nodes in
the last layer, we find that the number of nodes in Lsi′−1 is at least `

d−1 . Let i′ be large
enough such that we are guaranteed by Lemma 4.5 that the number of edges between
the two consecutive layers is at least c0n(1− ε/2). Hence, the probability that a node
in Lsi′−1 has in-degree 1 is at most(

1− 1

n

)c0n(1−ε/2)
= (1 + o(1))e−c0(1−ε/2) ≤ e−c0(1−ε), (8)

where ε > 0 can be arbitrarily small by taking i′ large enough. Let pε be the probability
in (8). We derive that j = si′ ≥ logd−1 n+C ′, where C ′ = C ′(ε, s) > 0 is a large enough
constant. Conditioning under v ∈ Lsi′−1 having in-degree 1, it is harder for v′ ∈ Lsi′−1
to have in-degree 1 than without this condition, as more edges remain to be distributed.
Thus, the probability that all nodes in Lsi′−1 have the desired in-degree is at most

p
`

d−1
ε = exp

(
−c0(1− ε)

`

d− 1

)
. (9)

Thus, by taking a union bound over all possible sludge-cuts (the upper bound for the
number of them is given by (7)), the probability that the claim holds is at most(

(d− 1)4(d−1)
−s+1 (

e−c0(1−ε)
) 1
d−1

)`
which can be made o(n−1) by taking ε small enough, provided that s is large enough
so that

(d− 1)4(d−1)
−s+2

e−c0 < 1.

By considering the extreme case for the probability of having in-degree one when d = 3
we obtain that

e−c0 ≤ e−
0.895

3
d ≤ e−0.29d

for d ≥ 3 (see Table 1). It is straightforward to see that s ≥ 4 will work for any d ≥ 3,
and s ≥ 3 for d ≥ 5. �

5. Proofs for random power law DAGs

Let us recall that we have three parameters in this model: β > 2, d > 0, and
0 < α < 1. For a given set of parameters, we defined

M = M(n) = nα, i0 = i0(n) = n

(
d

M

β − 2

β − 1

)β−1
, and c =

(
β − 2

β − 1

)
dn

1
β−1 .

Finally, for i ≥ 1 we have that

wi = c(i0 + i− 1)−
1

β−1 .

Before we analyze the game for this model, let us focus on investigating some proper-
ties of the random graph we play on. We already mentioned that the sequence (wi)i∈N
is decreasing but it is not obvious which weights we obtain for a given level Lj. We start
by providing a lower bound for the weight of vertices in each layer j (which will imply



18 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

an upper bound for the previous layer j − 1). Since the weight wi is a function of the
index i, it is enough to focus on the latter. For j ∈ N, let `j be the smallest index among
the vertices of layer Lj. Using the notation introduced in Section 2, `j = dj−1 + 1. The
maximum weight at Lj is w`j , the minimum one is w`j+1−1. The first lemma investigates
the behaviour of `j.

Lemma 5.1. Let

γ = dβ−1
(
β − 2

β − 1

)β−2(1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1


if 1

α
− β + 3 ∈ N+ \ {1, 2}, and γ = 1, otherwise. Let

ξ =

(
β − 2

β − 1

)
d

((
d(β − 2)

β − 1

)β−1
+ 1

)− 1
β−1

.

The following holds a.a.s.

(i) `0 = 1, `1 = 2, and `2 = (1 + o(1))M .
In particular, w`0 = M , w`1 = (1 + o(1))M , and

w`2 = (1 + o(1))


nα if α < 1

β

ξnα if α = 1
β(

β−2
β−1

)
dn

1−α
β−1 if α > 1

β
.

(ii) For 3 ≤ j < 1
α
− β + 3 we have that

`j = (1 + o(1))M j−1 = (1 + o(1))nα(j−1).

In particular,

w`j = (1 + o(1))


nα if 3 ≤ j < 1

α
− β + 2

ξnα if 3 ≤ j = 1
α
− β + 2(

β−2
β−1

)
dn

1−α(j−1)
β−1 if 1

α
− β + 2 < j < 1

α
− β + 3 and j ≥ 3.

(iii) If j0 = 1
α
− β + 3 ∈ N+ \ {1, 2}, then,

`j0 = (1 + o(1))γM j0−1 = (1 + o(1))γnα(j0−1) = Θ(nα(j0−1)).

In particular,

w`j0 = (1 + o(1))γ−
1

β−1

(
β − 2

β − 1

)
dn

1−α(j0−1)
β−1 .

(iv) Let j1 be the largest integer satisfying j1 ≤ max{ 1
α
− β + 3, 2}. Let j2 =

O(log log n) be the largest integer such that

dβ−1
( γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log log n)−max{2,β−2}.



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 19

Then for j1 < j ≤ j2 we have that

`j = (1 + o(1))dβ−1n
( γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j−j1

.

In particular, for j1 < j ≤ j2 we have that

w`j = (1 + o(1))

(
β − 2

β − 1

)( γ

dβ−1
nα(j1−1)−1

)−(β−2
β−1)

j−j1/(β−1)
.

(v) For any 1 ≤ j < j2, the number of edges between Lj−1 and Lj is (1 + o(1))`j+1.

Proof. Clearly, we have `0 = 1, `1 = 2; (i) holds deterministically for j = 0, 1. The
number of vertices on levels 0 and 1 is at most 1 + w1 = 1 + M but can be slightly
smaller if there are some parallel edges (which happens a.a.s. if α > 1/2). We derive a
deterministic upper bound for `2 of 2 +M but in fact, using the first moment method,
we can show that a.a.s. `2 = (1 + o(1))M . Indeed, the probability that a given vertex
from S has in-degree at least 2 is (1 + o(1))

(
M
2

)
/n2 so we expect O(M2/n) vertices of

in-degree at least 2. With probability 1−O(1/(ω log log n)) we have O(M2ω log log n/n)
of such vertices and so `2 ≥M(1−O(Mω log log n/n)). The statement for j = 2 holds,
and hence, part (i) follows.

Now, let us generalize this observation. Let j ≥ 3 and suppose that `j−1 is already
estimated. Note that `j = `j−1 + |Lj−1| so it remains to estimate the size of Lj−1. We
obtain that

|Lj−1| ≤ ¯̀
j−1 =

`j−1−1∑
i=`j−2

(wi − 1) = O(w`j−2
) +O(`j−1) +

∫ `j−1

i=`j−2

c(i0 + i− 1)−
1

β−1di

= O(w`j−2
) +O(`j−1) +

∫ `j−1

i=1

c(i0 + i− 1)−
1

β−1di

= O(M) +O(`j−1) + c

(
β − 1

β − 2

)(
(`j−1 + i0)

β−2
β−1 − i

β−2
β−1

0

)
= O(`j−1) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

`j−1
i0

)β−2
β−1

− 1

)
.

Note that ¯̀
j−1 is an upper bound for the number of edges between layer Lj−2 and

Lj−1 (and so an upper bound for |Lj−1|), and we derive the equality |Lj−1| = ¯̀
j−1

if all vertices in Lj−1 and Lj−2 have in-degree 1. Arguing as before, we deduce that
with probability 1 − O(1/(ω log log n)) the number of edges going to vertices in Lj−2
(in Lj−1) that are of degree at least 2 is O(`2j−1ω log log n/n) (O(¯̀2

j−1ω log log n/n),
respectively). Each edge of this type directed to a vertex in Lj−2 affects its out-degree,
and so decreases the number of vertices in Lj−1 by at most one. Similarly, one edge
going to a vertex in Lj−1 of in-degree at least 2 decreases by at most one the number
of vertices of in-degree 1. Thus, with probability 1−O(1/(ω log log n)), by considering



20 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

vertices of in-degree 1 only, we obtain that

|Lj−1| ≥ ¯̀
j−1 −O(¯̀2

j−1ω log log n/n)−O(`2j−1ω log log n/n)

= ¯̀
j−1 −O(¯̀2

j−1ω log log n/n). (10)

(The last equality follows from the fact that ¯̀
j−1 = Ω(`j−1), provided that w`j−1

= Ω(1).
In fact, we consider values of j at most j2 for which it will be shown that w`j−1

≥ ω

and so ¯̀
j−1 > `j−1.) This, together with the fact that `j = `j−1 + |Lj−1|, implies that

`j = O(`j−1)−O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

`j−1
i0

)β−2
β−1

− 1

)
. (11)

If `j−1 = o(i0), then

`j = O(`j−1) +O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

(
β − 2

β − 1

`j−1
i0

+O

(
`j−1
i0

)2
)

= O(`j−1) +O(¯̀2
j−1ω log log n/n) +M`j−1

(
1 +O

(
`j−1
i0

))
= M`j−1

(
1 +O

(
`j−1
i0

))(
1 +O

(
M−1))(1 +O

(
M`j−1ω log log n

n

))
.

Note that M j−2 = n(j−2)α and i0 = Θ(n1−α(β−1)). Therefore this recursive formula is
to be applied O(1) times only before the condition `j−1 = o(i0) fails (it may, of course,
happen that it fails for j = 3 so we do not apply it at all). We have that a.a.s. the
statement holds for any value of j such that (j−2)α < 1−α(β−1); that is, j < 1

α
−β+3.

Moreover, the error term can be estimated much better; it is, in fact, (1 +O(n−ε)) for
some ε > 0. Let us note one more time that it may happen that 1

α
− β ≤ 0 and so the

condition fails for j = 3 but then (ii) trivially holds. Thus, part (ii) is finished.
For part (iii), suppose that j0 = 1

α
− β + 3 ∈ N+ \ {1, 2}. Since our goal is to

show that the statement holds a.a.s., we may assume that `j0−1 = (1 + O(n−ε))M j0−2

for some ε > 0. From the assumption it follows that `j0−1 and i0 are of the same

order. By the relations between i0 and M , we have Mβ−1 = n(dβ−2
β−1)β−1/i0. Thus,

`j0−1 = (1 + O(n−ε))M−(β−1)+ 1
α , and hence, `j0−1 = (1 + O(n−ε))

(
dβ−2
β−1

)1−β
i0. It

follows from (11) that a.a.s.

`j0 = O(`j0−1) +O(¯̀2
j0−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

`j0−1
i0

)β−2
β−1

− 1

)

= (1 +O(n−ε))c
β − 1

β − 2
i
β−2
β−1

0

(1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1


= (1 +O(n−ε))`j0−1Mdβ−1

(
β − 2

β − 1

)β−2(1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1

 ,



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 21

so (iii) holds.
For part (iv), let j1 be the largest integer satisfying j1 ≤ max{ 1

α
−β+3, 2}. Based on

earlier parts, we may assume that `j1 = (1 +O(n−ε))γM j1−1. Note that `j1/i0 = Ω(nε)
for some ε > 0, and so `j−1/i0 = Ω(nε) for any j1 < j ≤ j2, since `j is monotonic as a
function of j.

Fix j > j1. This time we derive from (11) that with probability 1−O(1/(ω log log n))

`j = O(`j−1) +O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

((
1 +

`j−1
i0

)β−2
β−1

− 1

)

= O(`j−1) +O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
i
β−2
β−1

0

(
`j−1
i0

)β−2
β−1

(1 +O(n−ε))

= O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
`
β−2
β−1

j−1 (1 +O(n−ε))(1 +O(c−1`
1

β−1

j−1 ))

= O(¯̀2
j−1ω log log n/n) + c

(
β − 1

β − 2

)
`
β−2
β−1

j−1 (1 +O(n−ε))(1 +O((`j−1/n)
1

β−1 ))

= (1 +O(1/(ω log log n)))c

(
β − 1

β − 2

)
`
β−2
β−1

j−1 ,

provided that

c

(
β − 1

β − 2

)
`
β−2
β−1

j−1 (ω log log n)/n ≤ (ω log log n)−1, and

`j−1/n ≤
(

2

d

)β−1
β−2

(ω log log n)−(β−1).

(Note that we have ¯̀
j−1 = O(c`

β−2
β−1

j−1 ), and thus we obtain the first condition, coming

from the term O(¯̀2
j−1ω log log n/n).) The first condition is equivalent to `j−1/n ≤(

2
d

)β−1
β−2 (ω log log n)−2

β−1
β−2 , and so both conditions combined together are equivalent to

`j−1/n ≤
(

2

d

)β−1
β−2

(ω log log n)−max{2β−1
β−2

,β−1}.

If this condition is satisfied, then we obtain that `j = (1+o(1))n
1

β−1 `
β−2
β−1

j−1 d, or equivalently

`j/n = (1+o(1))(`j−1/n)
β−2
β−1d. By using the condition on `j−1/n, we obtain the following

slightly stronger condition (where we ignore the factor of 2) for `j:

`j/n ≤ (ω log log n)−max{2,β−2}. (12)

Now, suppose that (12) is satisfied, and we rewrite the relation between `j and `j−1

using the fact that c = β−2
β−1dn

1
β−1 :

`j
dβ−1n

=

(
(1 +O(1/(ω log log n)))

`j−1
dβ−1n

)β−2
β−1

= (1 +O(1/(ω log log n)))

(
`j−1
dβ−1n

)β−2
β−1

.



22 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

Applying this argument recursively, we obtain that

`j = dβ−1n(1 +O(1/(ω log log n)))j
(

`j1
dβ−1n

)(β−2
β−1)

j−j1

.

Finally, since we will soon show that j ≤ j2 = O(log log n) we derive by the previous
cases that

`j = (1 + o(1))dβ−1n

(
γM j1−1

dβ−1n

)(β−2
β−1)

j−j1

= (1 + o(1))dβ−1n
( γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j−j1

.

Indeed, since

`j = dβ−1n exp

(
(1 + o(1))

(
β − 2

β − 1

)j−j1
(α(j1 − 1)− 1) log n

)
,

the condition (12) fails for j = C log log n (by taking C > 0 large enough), and item
(iv) follows.

Finally, the proof of part (v) follows now by inspecting closely the parts (ii), (iii),
and (iv). In each case, `j+1 − `j is the size of Lj and it follows from earlier parts that
`j+1− `j = (1 + o(1))`j+1. This is clearly a lower bound for the number of edges we try
to estimate. On the other hand, ¯̀

j serves as an upper bound. Hence, it remains to show
that ¯̀

j = (1 + o(1))`j+1. If j + 1 < 1
α
− β + 3, then `j = o(i0). By looking at part (ii),

we see that the leading term of both ¯̀
j and `j+1 is (1+o(1))cβ−2

β−1i
β−2
β−1

0

(
β−2
β−1

`j
i0

+O(
`j
i0

)2
)

,

and the result follows for this case (alternatively, in this case we can also observe
`j = (1 + o(1))nα(j−1), `j+1 = (1 + o(1))nαj, and by the trivial bound on the degree,
¯̀
j ≤ `jM = (1 + o(1))nαj holds). Next, if j + 1 = 1

α
− β + 3, then `j = Θ(i0), and

by the calculations of part (iii), in both `j+1 and in ¯̀
j the leading term is of order

(1+o(1))cβ−1
β−2i

β−2
β−1

0

((
1 +

`j
i0

)β−2
β−1 − 1

)
, and the result follows also for this case. Finally,

if j + 1 > 1
α
− β + 3, then `j = ω(i0), ¯̀

j = (1 + o(1))cβ−1
β−2`

β−2
β−1

j , and as observed in part

(iv), `j+1 = (1 + o(1))n
1

β−1 `
β−2
β−1

j d, and thus ¯̀
j = (1 + o(1))`j+1, and part (v) follows. �

We are now ready to come back to investigating the green number. We provide some
obvious bounds for the green number and after that we sketch the idea that could be
used to estimate it precisely. However, we do not perform these calculations rigorously,
since the approach is rather delicate.

Lemma 5.2. Let γ and j1 be defined as in Lemma 5.1. That is, let

γ = dβ−1
(
β − 2

β − 1

)β−2(1 +

(
d
β − 2

β − 1

)1−β
)β−2

β−1

− 1





VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 23

if 1
α
− β + 3 ∈ N+ \ {1, 2}, and γ = 1 otherwise. Let j1 be the largest integer satisfying

j1 ≤ max{ 1
α
− β + 3, 2}. Moreover, let j2 = O(log log n) be the largest integer such that

dβ−1
( γ

dβ−1
nα(j1−1)−1

)(β−2
β−1)

j2−j1

≤ (ω log log n)−max{2,(β−1)2}.

Then, for 1 ≤ j ≤ j2 − 1 we have that a.a.s.

(1− o(1))w`j ≤ gj ≤ w`j−1
.

Note that the definition of j2 in Lemma 5.2 is slightly modified compared to the one
from Lemma 5.1. However there is only a O(1) difference between these values; in this
case it is smaller.

Proof of Lemma 5.2. Fix 1 ≤ j ≤ j2 − 1 and suppose that the game is played with
the sink Lj. Since the maximum total degree (and thus, the maximum out-degree) of
vertices in Lj−1 is at most w`j−1

, the greens can easily win when the game is played
with parameter c = w`j−1

. They can play arbitrarily at the beginning of the game when
the sludge is moving towards the sink. Once he reaches a vertex u ∈ Lj−1, the greens
can block all out-neighbours and the game ends. We obtain that gj ≤ w`j−1

.
In order to derive a lower bound, we will need the following property that follows

directly from the proof of Lemma 5.1 and holds a.a.s. Let us note that for j1 < j ≤ j2
we have that

`j = (1 + o(1))`j−1d

(
n

`j−1

) 1
β−1

≥ (1 + o(1))`j−1d(ω log log n)
max{2,(β−1)2}

β−1 . (13)

For j ≤ j1 we have `j = Ω(`j−1n
α) so in fact (13) holds for any j ≤ j2.

Now let us play the game with parameter c = w`j(1−ε) for some ε > 0. We will show
that a.a.s. the sludge can win the game, independently of the strategy of the greens.
This will prove that gj ≥ w`j(1 − ε) a.a.s. and the result will hold after taking ε → 0.
If j = 1, then for any α ∈ (0, 1), a.a.s. |L1| = M(1 + o(1)) = w`1(1 + o(1)), and thus,
the greens clearly cannot win the game by protecting w`1(1− ε) = M(1− ε)(1 + o(1))
vertices. Hence, we may assume that j ≥ 2.

Suppose first that α ≤ 1
β

and 2 ≤ j ≤ j1 − 1. Since in this case j ≤ 1
α
− β + 3,

by the formulas for `j given by Lemma 5.1, for any 2 ≤ j ≤ j1 − 1, `j = Θ(nα(j−1)).
Moreover, by part (v) of Lemma 5.1, the number of edges between Lj−1 and Lj is at
most (1 + o(1))`j+1 = O(n1−αβ+2α) = O(n1−ε0), with ε0 = α(β− 2) > 0. Hence, for any
vertex v ∈ Lj,

P(deg−(v) ≥ 2) ≤ (1 + o(1))

(
`j+1

2

)(
1

n

)2

= O(n−2ε0) ≤ n−ε0 ≤ n−ε1 ,

where ε1 = min{ε0, α/2} > 0. Denoting by Bv the number of out-neighbours of v with
in-degree 2 or more, we have that E(Bv) ≤ nα−ε1 . Since O(n1−ε0) is a fixed upper bound
on the number of edges between two consecutive layers, for any two vertices v, v′ ∈ Lj,
P(deg−(v) ≥ 2 | deg−(v′) ≥ 2) ≤ P(deg−(v) ≥ 2) ≤ n−ε1 .



24 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

Consider now another stochastic process in which each vertex v ∈ Lj, has exactly nα

out-neighbours, and for each out-neighbour w of v, independently of all other vertices,
P(deg−(w) ≥ 2) = n−ε1 . Denote by B′v the number of out-neighbours of v with in-
degree 2 or more in this new stochastic process. Clearly, E(B′v) = nα−ε1 ≥ nα/2 for any
v. Furthermore, by the previous observation of negative correlation between vertices of
in-degree 2 or more (in the original process), P(Bv ≥ x) ≤ P(B′v ≥ x) for any x ≥ 0.
Set δ to be a sufficiently small constant. Then, by Lemma 4.1, for some c > 0 we have
that

P(Bv ≥ (1 + δ)E(B′v)) ≤ P(B′v ≥ (1 + δ)E(B′v)) ≤ e−n
c

.

By taking a union bound over all O(n) vertices of the first j = O(1) layers, a.a.s. all
vertices have at least a 1− o(1) fraction of out-neighbours with in-degree 1.

Now, in order to show a lower bound on the green number, we can assume that
all vertices with in-degree 2 or more are already protected by the greens in the very
beginning (they are cut away from top to bottom together with the subgraphs pending
at them), and thus, the sludge is playing on the remaining graph that is a tree. We
showed that a.a.s. the minimum degree in the remaining tree is at least (1− o(1))w`j .
Observe that in a tree the best strategy for the greens is always to protect neighbours
of the vertex currently occupied by the sludge. Indeed, if they protect a vertex at
distance 2 or more from the vertex occupied by the sludge, they can consider the path
between the vertex occupied by the sludge and the vertex originally protected, and
instead protect the unique out-neighbour of the vertex occupied by the sludge. Clearly,
this is at least as good move as the original one. Since the greens have only w`j(1− ε)
at their disposal, in each round at least εw`j − o(w`j) neighbours remain unprotected,
and the sludge can go to any of these, and finally reach the sink.

Suppose now that α > 1
β

or j1 − 1 < j ≤ j2 − 1. For any j1 < j ≤ j2 − 1 we have

w`j−1
= (1 + o(1))c`

− 1
β−1

j−1 ≥ (1 + o(1))c`
− 1
β−1

j d
1

β−1 (ω log log n)
max{2,(β−1)2}

(β−1)2

≥ (1 + o(1))w`jd
1

β−1 (ω log log n). (14)

Moreover, note that the formula is true if j > j1 − 1, but j ≤ j1, and also in the case
α > 1

β
we have j1 = 2, and w`1 = Ω(w`2n

δ) for some δ > 0. Thus, combining these

statements, for any j1 − 1 < j ≤ j2 − 1, or any 2 ≤ j ≤ j2 − 1 in the case α > 1
β
,

w`j = o(w`j−1
/ log log n). Since (wi)i≥0 is a monotonically decreasing sequence, any

vertex up to (and including) layer Lj−2 has weight at least w`j−1
= ω(w`j log log n) =

ω(c log log n).
We will provide a strategy for the sludge and show that it guarantees him win a.a.s.,

provided that the game is played with parameter c = w`j(1−ε), as before. The strategy
is straightforward; in particular, he always goes to any non-protected vertex u with the
property that no out-neighbour of u is protected. Note that the total number of vertices
protected at the end of the game is O(cj2) = O(c log log n). Moreover, each protected
vertex can only eliminate this vertex or its parents. The number of parents of a given
vertex u, the in-degree of u, can be large but these parents are “scattered” across the
whole layer, as we will show in the following claim.



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 25

Claim. The following holds a.a.s. The number of paths from any vertex v (a vertex
possibly occupied by the sludge) and vertex u two layers below (a vertex possibly
protected by the greens) is bounded by some universal constant K.

Proof of the claim. Fix ε > 0 to be an arbitrarily small constant. Suppose first that j
is such that w`j−2

< n
1
2
−ε. Then, by monotonicity of w`j , the number of directed paths

of length two starting at v ∈ Lj−2 is at most (n
1
2
−ε)2 = n1−2ε. Thus, the probability

that for a given vertex u ∈ Lj there are K paths of length two starting from v, is at most(
n1−2ε

K

)
( 1
n
)K . By taking a union bound over all n vertices u from S ⊇ Lj and all starting

vertices v (there are at most n of them), we see that n2
(
n1−2ε

K

)
( 1
n
)K = o(1/ log log n) for

a sufficiently large constant K. The claim then holds for this range of values of j, by
taking a union bound over O(log log n) possible values of j.

On the other hand, if j is such that w`j−2
≥ n

1
2
−ε, then by the formulas for w`j given in

Lemma 5.1 we see that j−2 = O(1) and so j+1 = O(1) as well. (Indeed, the exponent
of n in the formula for w`j−2

in Lemma 5.1(iv) can be made arbitrarily small by taking
a sufficiently large constant j − 2.) Since j + 1 = O(1), it follows from Lemma 5.1 that
`j+1 ≤ n1−ε0 for some ε0 > 0, and as shown in part (v) of Lemma 5.1, the number of
edges between Lj−1 and Lj is at most (1 + o(1))`j+1 = O(n1−ε0). Thus, the number of
paths of length two starting at v ∈ Lj−2 is at most O(n1−ε0). Hence, as before, the
probability that for a given vertex u ∈ Lj there are K paths of length two starting from

v, is at most
(
O(n1−ε0 )

K

)
( 1
n
)K , and as before, by taking a union bound over all n2 pairs

of vertices u, v and over all j = O(1), for K sufficiently large, n2
(
O(n1−ε0 )

K

)
( 1
n
)K = o(1),

and the claim follows.

Hence, by the claim, we obtain that the number of eliminated vertices is stillO(c log log n).
Finally, since the degree of each vertex in layers up to and including the layer Lj−2 is
ω(c log log n), the sludge can easily reach the layer Lj−1. Since the minimum degree in
this layer is (1 + o(1))w`j and the game is played with parameter c = w`j(1 − ε)’, no
matter what the greens do in this very last move, the sludge reaches the sink. Thus,
gj ≥ w`j(1− ε) a.a.s. As we already mentioned, the result follows by taking ε tending
to zero. �

Theorem 3.2 follows immediately from Lemma 5.1 and Lemma 5.2.

We finish by remarking on how we can try to close the gap in the previous lemma. It
follows from Lemma 5.2 that for 1 ≤ j ≤ j2−1 we have that a.a.s. (1−o(1))w`j ≤ gj ≤
w`j−1

. Suppose then that the game is played with parameter c such that (1 + ε)w`j ≤
c ≤ (1 − ε)w`j−1

for some ε > 0. Clearly, the sludge tries to stay on vertices with as
small label as possible (that is, the largest possible total degree). The greens aim for
the opposite, they want the sludge to go to large labels (the smallest total degree). In
the first round, the sludge is guaranteed to be able to go to a vertex with label at most
c + 2 and, in fact, the greens can force him to go to vc+2. In the next round, it might
be the case that there are some “shortcuts” to vertices of degree at least 2 with small
labels but, since the number of such edges is very small, the greens can easily prevent
the sludge from using these edges. After securing these edges, the greens should protect



26 ANTHONY BONATO, DIETER MITSCHE, AND PAWE L PRA LAT

the remaining neighbours of vc+2 with small labels. However, this time this does not
help much. The sludge is forced to (but also is able to) go to a vertex whose label is

(1 + o(1))
c+2∑
i=1

(wi − 1) +O(c) = (1 + o(1))
c+2∑
i=1

wi.

Repeating this argument, and the calculations performed in the proof of Lemma 5.1,
we can compute the position of the sludge at time j − 1 and based on that we can
decide if he wins or looses this game. Optimizing this with respect to the parameter c
would yield the asymptotic value of gj.

6. Further directions

We considered Seepage played on regular DAGs in Theorem 3.1, and in power law
DAGs in Theorem 3.2. It would be interesting to analyze the game on random DAGs
with other degree sequences; for example, where the degree distribution remains the
same at each level, or there are the same number of vertices at each level. While our
emphasis was on asymptotic results for the green number in random DAGs, our results
could be complemented by an analysis (via simulations) of the green number on small
DAGs, say up to 100 vertices. We will consider such an approach in future work.
Finally, hierarchical social networks are not usually strictly acyclic; for example, on
Twitter, directed cycles of followers may occur. Seepage was defined in [6] for DAGs,
but it naturally extends to the setting with directed cycles (here, the directed graphs
considered must have at least one source and a set of sinks; the game is then played
analogously as before). A next step would be to extend our results, if possible, to a
setting where such cycles occur, and analyze the green number on, say, their strongly
connected components. One question is to determine if the green number change as a
function of the number of backward edges.

7. Acknowledgements

We would like to thank the anonymous referees for suggestions which improved the
paper.

References

[1] J.A. Almendral, L. López, and M.A.F. Sanjuán, Information flow in generalized hierarchical net-
works, Physica A 324 (2003) 424–429.

[2] A. Bonato, A Course on the Web Graph, Graduate Studies in Mathematics Series, American
Mathematical Society, Providence, Rhode Island, 2008.

[3] A. Bonato and R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American Mathe-
matical Society, Providence, Rhode Island, 2011.

[4] J.T. Chayes, B. Bollobás, C. Borgs, and O. Riordan, Directed scale-free graphs, In: Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

[5] F.R.K. Chung and L. Lu, Complex graphs and networks, American Mathematical Society, Provi-
dence RI, 2006.

[6] N.E. Clarke, S. Finbow, S.L. Fitzpatrick, M.E. Messinger, and R.J. Nowakowski, Seepage in
directed acyclic graphs, Australasian Journal of Combinatorics 43 (2009) 91–102.

[7] R. Diestel, Graph theory, Springer-Verlag, New York, 2000.



VERTEX-PURSUIT IN RANDOM DIRECTED ACYCLIC GRAPHS 27

[8] J.D. Farley, Breaking Al Qaeda cells: a mathematical analysis of counterterrorism operations
(A guide for risk assessment and decision making), Studies in Conflict & Terrorism 26 (2003)
399–411.

[9] J.D. Farley, Toward a Mathematical Theory of Counterterrorism, The Proteus Monograph Series
Jonathan David Farley, Stanford University, 2007.

[10] M. Gupte, S. Muthukrishnan, P. Shankar, L. Iftode, and J. Li, Finding hierarchy in directed online
social networks, In: Proceedings of WWW’2011.

[11] A. Gutfraind, A. Hagberg, and F. Pan, Optimal interdiction of unreactive Markovian evaders, In:
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, Hoeve, Willem-Jan van; Hooker, John N. (Eds), (Springer Berlin / Heidelberg) 2009.

[12] K. Ikeda and S.E. Richey, Japanese network capital: the impact of social networks on japanese
political participation, Political behavior 27 (2005) 239–260.

[13] S. Janson, T.  Luczak, and A. Ruciński, Random Graphs, Wiley, New York, 2000.
[14] L. López, J.F.F. Mendes, and M.A.F. Sanjuán, Hierarchical social networks and information flow,

Physica A: Statistical Mechanics and its Applications 316 (2002) 695–708.
[15] Twitaholic. Accessed January 10, 2012. http://twitaholic.com/.
[16] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.
[17] N.C. Wormald, Models of random regular graphs, Surveys in Combinatorics, 1999, J.D. Lamb

and D.A. Preece, eds. London Mathematical Society Lecture Note Series, vol 276, pp. 239–298.
Cambridge University Press, Cambridge, 1999

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: abonato@ryerson.ca

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: dmitsche@ryerson.ca

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: pralat@ryerson.ca


