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Abstract

We produce a family of new, non-arithmetic lattices in PU(2, 1). All previously known
examples were commensurable with lattices constructed by Picard, Mostow, and Deligne–
Mostow, and fell into 9 commensurability classes. Our groups produce 5 new distinct
commensurability classes. Most of the techniques are completely general, and provide
efficient geometric and computational tools for constructing fundamental domains for
discrete groups acting on the complex hyperbolic plane.

1 Introduction

The general context of this paper is the study of lattices in semisimple Lie groups and their
classification. In what follows, X denotes an irreducible symmetric space of non-compact
type, and G denotes its isometry group. Recall that X is a homogeneous space G/K with K
a maximal compact subgroup ofG, and up to scale, it carries a uniqueG-invariant Riemannian
metric.

A subgroup Γ ⊂ G is called a lattice if Γ \ G has finite Haar measure (equivalently, if
Γ \X has finite Riemannian volume for the invariant metric on X). Mostow-Prasad rigidity
says that, for most symmetric spaces, a given lattice Γ in G admits a unique discrete faithful
representation into G (unique in the sense that all such representation are conjugate in G).
In order for this to hold, the only case to exclude is X = H2

R (equivalently G = PSL2(R)),
where lattices are known to admit pairwise non-conjugate continuous deformations.

The discreteness assumption in the statement of the Mostow-Prasad rigidity theorem
cannot be removed, since Galois automorphisms sometimes produce non-discrete represen-
tations that are clearly faithful and type-preserving (see the non-standard homomorphisms
constructed in [Mos80], and also Section 8.2 of the present paper). This is related to the
notion of arithmeticity of lattices, which we now briefly recall.

There is a general construction of lattices, obtained by taking integer matrices in the set
of real points of linear algebraic groups defined over Q; this is a special case of the more gen-
eral notion of arithmetic group, where one considers lattices commensurable with the image
of an integral group under surjective homomorphisms with compact kernel (see [Mar91] for
instance). Recall for further reference that subgroups Γ1 and Γ2 of a group G are commen-
surable if there is a g ∈ G such that Γ1 ∩ gΓ2g

−1 has finite index in both Γ1 and gΓ2g
−1.

Arithmetic groups are classified, and they can be understood (up to commensurability)
from purely number-theoretical data (see [Wei60], [Tit66]). Indeed, it follows from rigidity
that any lattice in a simple real Lie group not isomorphic to PSL2(R) is defined over a number
field, and semisimple groups over arbitrary number fields can be classified in a way similar
to the well known classification of semisimple groups over Q (one uses Dynkin diagrams
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with a symmetry corresponding to the action of the Galois group of the number field). The
arithmeticity condition says that the lattice is given up to commensurability by taking the
corresponding Z-points in the group, hence there are only countably many arithmetic lattices
(since there are only countably many number fields).

It follows from work of Margulis [Mar75], together with work of Corlette [Cor92] and
Gromov-Schoen [GS92], that most lattices are arithmetic (given the discussion in the previous
paragraph, this means that there is a satisfactory classification of lattices in most semisimple
Lie groups). More specifically, if the isometry group G of a symmetric space X = G/K of
non-compact type contains a non-arithmetic lattice, then X can only be Hn

R or Hn
C for some

n; in other words, up to index 2, G can only be PO(n, 1) or PU(n, 1).
Real hyperbolic space Hn

R is the model n-dimensional negatively curved space form, i.e. it
is the unique complete simply connected Riemannian manifold of constant negative curvature
(we may assume that constant is −1). Similary, Hn

C is the model negatively curved complex
space form, in the sense it is the unique complete, simply connected Kähler manifold whose
holomorphic sectional curvature is a negative constant, which we may assume is −1. With
that normalization, the real sectional curvatures of Hn

C vary between −1 and −1/4. This
makes complex hyperbolic spaces very different from real hyperbolic ones (apart from the
coincidence that H1

C is isometric to H2
R).

In the real hyperbolic case, the hybridation procedure described by Gromov and Piatetski-
Shapiro [GPS88] allows the construction of (infinitely many commensurability classes of) non-
arithmetic lattices in PO(n, 1) for any n > 2. In PU(n, 1), it is not clear how to make sense
of the construction of such hybrids, and the construction of non-arithmetic lattices in the
complex hyperbolic setting is a longstanding challenge.

In fact, for n > 2, only a handful of examples are known. The first ones were constructed
by Mostow [Mos80], who showed that some complex reflection groups are non-arithmetic
lattices in Isom(H2

C) (the analogous statement was well known for real reflection groups in
Isom(Hn

R) for low values of n, see [Vin68]).
Complex hyperbolic manifolds are of special interest in complex geometry, because of the

extremal properties of their ratios of Chern numbers. Indeed, compact complex hyperbolic
manifolds are complex manifolds of general type (i.e. their Kodaira dimension is maximal),
and they have the same ratios of Chern numbers as complex projective space Pn

C, which is
the compact symmetric space dual to Hn

C (this is explained by the Hirzebruch proportionality
principle). In fact, any compact complex manifold of general type that realizes equality in the
Miyaoka-Yau inequality (−1)n cn1 ≤ (−1)n 2n+2

n cn−2
1 c2 is biholomorphic to a quotient of Hn

C

(this is a corollary of the Calabi conjecture, proved by Aubin and Yau). In the special case
n = 2, the corresponding equality reads c21 = 3 c2, and it plays an important role in so-called
surface geography.

In principle, this characterization should give a simple way to produce many complex
hyperbolic manifolds, but so far this has been successful in very few cases, only in dimension
2. A spectacular example was obtained by Mumford, using sophisticated techniques from
algebraic geometry to produce a fake projective plane, i.e. a compact surface with the same
Betti numbers as P2

C but not biholomorphic to it. The fundamental group of any such surface
is infinite, and admits a faithful and discrete representation into PU(2, 1), even though it
took a long time for this representation to be made somewhat explicit for Mumford’s example
(see [Kat08]). It is now well known that fake projective planes must be arithmetic (see [Kli03]
and [Yeu04]), and this was used to classify them (see [PY07] and [CS10]).

Hirzebruch systematically explored coverings of P2
C branched along configurations of lines,
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and found all the ball quotients that could be produced in this way, see [Hir83], [BHH87].
The arithmetic properties of Hirzebruch ball quotients were studied later (see [Shv92]). It
turns out that all the non-arithmetic examples can also be obtained from the Deligne-Mostow
construction [DM86].

Our construction is closer in spirit to Mostow’s approach in [Mos80]. We start with some
well-chosen complex reflection groups in PU(2, 1) and show that they are lattices by con-
structing explicit fundamental domains (the domains are shown to be fundamental domains
by applying the Poincaré polyhedron theorem).

The application of this general strategy in the context of complex hyperbolic space is
difficult and subtle, see the difficulties in Mostow’s proof that were analyzed in [Der05]. It
has been successfully carried out in several places, but always for groups closely related to
Mostow’s (see [DFP05], [Par06], [FP06], [Zha12]). For the groups we consider in this paper,
the previously used techniques seem difficult to implement (for instance, the Dirichlet domains
we studied in [DPP11] have extremely complicated combinatorial structure).

Mostow’s lattices turn out to be closely related to monodromy groups of hypergeometric
functions studied a century earlier by Picard [Pic81]. The hypergeometric interpretation
was extended by Deligne and Mostow [DM86], who showed that these monodromy groups
produce a handful of non-arithmetic lattices in PU(2, 1), and a single one in PU(3, 1) (which
is currenctly the only known non arithmetic lattice in PU(n, 1) wih n > 3).

Note that the above hypergeometric monodromy groups can also be interpreted as modular
groups for moduli spaces of weighted points on P1

C, or equivalently moduli spaces of flat
metrics on the sphere with prescribed cone angle singularities (see [Thu98]). The few other
examples of moduli spaces that are known to admit a complex hyperbolic uniformization
(see [ACT02], [Kon00] for instance) produce arithmetic lattices.

The commensurability relations between Deligne-Mostow lattices were studied in detail
in [Sau90] and [DM93], then more recently in [KM12] and [McM13]. In particular, it turns
out that non-arithmetic Deligne-Mostow lattices in PU(2, 1) fall into exactly nine commen-
surability classes.

The main result of this paper produces five new commensurability classes of non-arithmetic
lattices in PU(2, 1). They are the first such groups to be constructed since the work of Deligne
and Mostow.

In a previous paper [DPP11], we conjectured that a specific set of ten groups should
produce ten new commensurability classes of non-arithmetic lattices in PU(2, 1) (the only
part that was conjectural was the fact that these groups were indeed discrete). In this paper,
we prove that conjecture for five of the ten groups. Very similar methods can be applied to
handle the other five commensurability classes, which will be treated elsewhere.

These ten groups were obtained by classifying the triangle groups where certain specific
words in the generators are elliptic of finite order, and applying a result of Conway and
Jones that classifies rational relations between roots of unity (see [Par08] and [PP09] for more
details).

Our main results are proved using a standard application of the Poincaré polyhedron
theorem, but we also provide new, useful techniques for studying fundamental domains for
lattices in PU(2, 1). We apply systematic techniques for producing a fundamental domain
with fairly simple combinatorics and with sides contained in bisectors (as other nice fea-
tures, all vertices are fixed by specific isometries in the group, and all 1-faces of our poly-
tope are chosen to be geodesic arcs). Moreover, unlike a number of papers in the literature
(see [DFP05], [FP06], [Zha12]), we avoid using geodesic cones by producing fundamental
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domains for coset decompositions rather than usual fundamental domains.
Another novel aspect is the provision of efficient computational tools in Section 6 for

certification of the combinatorics of a polytope bounded by (finitely many) bisectors. We
summarize these techniques, since they have not systematically been used in the literature.

The determination of the combinatorics amounts to solving a system of (finitely many)
quadratic inequalities in the real and imaginary parts of ball coordinates, for which no stan-
dard computational techniques are known. The main difficulty is to determine which pairs
of bisectors contain a non-empty 2-face, and to give a precise list of the vertices and edges
adjacent to that 2-face.

Using geometric properties of bisectors and bisector intersections (see Section 2.3), we can
give parameters for any intersection B1 ∩ B2 of bisectors, and write explicit equations for
the intersection B1 ∩ B2 ∩ B3 for any third bisector B3. For well-chosen parametrizations,
these equations are given by polynomials in two variables, quadratic in each variable. This is
a consequence of the fact that the (hyperbolic cosine of the) distance between two points in
H2

C is given by a quadratic polynomial in the real and imaginary part of affine coordinates
for the points. The coefficients of these polynomial equations are algebraic numbers (in fact,
they lie in the adjoint trace field), which allows for arbitrary precision calculations.

The determination of the combinatorics is then reduced to the minimization of finitely
many polynomials in two variables on finitely many polygonal regions, where the polygons are
bounded by plane curves of degree at most two. We perform this minimization by computing
critical points of the above polynomials, which can be done by exact computations since the
coefficients are known exactly.

Most of these techniques are completely general, and can be used to reduce the certification
of fundamental domains for discrete subgroups of PU(2, 1) to a finite number of verifications.
Note that the determination of fundamental domains is clearly important in the context
of the search of non-arithmetic lattices, but it is also important for arithmetic ones, where
discreteness comes for free. For instance, the determination of explicit group presentations
for small covolume arithmetic lattices in PU(2, 1) allowed Cartwright and Steger to complete
the classification of fake projective planes (see [PY07] and [CS10]).

The paper is organized as follows. In Sections 2 and 3 we give well-known background
material. Section 4 contains the statements of our main results and establishes notation.
In the remaining sections we break the proof of these results into steps: we define a region

E ∈ H
2
C, Section 5; construct a combinatorial model Ê for E, Section 6.2; show that the

3-skeleton of Ê is homeomorphic to S3, Section 6.3; show that the geometric realization of
Ê is embedded, Sections 6.4 through 6.8; apply the Poincaré polyhedron theorem to E in
order to show that our groups are lattices, Section 7; and finally we show that these lattices
are non-arithmetic and not commensurable to each other or to any Deligne-Mostow lattice,
Section 8.
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Network) and ICERM at Brown University. The third author was also partially supported
by SNF grant 200020-121506/1 and NSF grant DMS 1007340/1249147.
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2 Complex hyperbolic geometry

We define complex hyperbolic space, introduce totally geodesic subspaces and bisectors, and
review properties of bisector intersections. Most of this material may be found in [Gol99].

2.1 Complex hyperbolic space

We define Hn
C to be the subset of Pn

C consisting of negative complex lines in Cn,1. Here Cn,1

denotes Cn+1 equipped with a Hermitian form of signature (n, 1), and a negative line is one
spanned by a vector u ∈ Cn,1 with 〈u,u〉 < 0. There is a natural action on Hn

C of the unitary
group of the Hermitian form, which is denoted by U(n, 1). We shall often work with SU(n, 1),
which is an (n+ 1)-fold cover of the projective group PU(n, 1).

Up to scaling, Hn
C carries a unique U(n, 1)-invariant Riemannian metric, which is given

explicitly by

ds2 =
−4

〈u,u〉 det
(
〈u,u〉 〈u, du〉
〈du,u〉 〈du, du〉

)
. (1)

It is well known that Hn
C is a complex space form, in fact the holomorphic sectional curvature

of the above metric is equal to −1. This implies that real sectional curvatures are pinched
between −1 and −1/4 (when n = 1 the curvature is in fact constant).

It is a standard fact that the group of holomorphic isometries of Hn
C is precisely PU(n, 1).

The full group Isom(Hn
C) contains PU(n, 1) with index 2, the other component consisting

of all anti-holomorphic isometries (an example of which is complex conjugation in affine
coordinates, provided that the Hermitian form has real entries).

The only metric information we will need in this paper is the following distance formula:

cosh

(
d(u, v)

2

)
=

|〈u,v〉|√
〈u,u〉〈v,v〉

, (2)

where u, v denote lifts of u, v to Cn+1. The standard choice of a Hermitian form of signature
(n, 1) is the Lorentzian form

〈u,v〉 = −u0v0 + u1v1 + · · ·+ unvn. (3)

In the affine coordinates (z1, . . . , zn) = (u1/u0, . . . , un/u0) for the chart {u0 6= 0} of Pn
C,

complex hyperbolic space corresponds to the unit ball |z1|2 + · · ·+ |zn|2 < 1. We will denote
H

n
C = Hn

C ∪ ∂Hn
C the corresponding closed ball.

We will use the standard classification of isometries of negatively curved spaces into ellip-
tic, parabolic and hyperbolic isometries, with the following refinements. An elliptic element
of PU(n, 1) is called regular elliptic if any of its lifts to U(n, 1) has distinct eigenvalues.
In particular, regular elliptic isometries have isolated fixed points in Hn

C (given by the single
negative eigenspace). When n = 2, non-regular elliptic isometries of H2

C have two distinct
eigenvalues, one simple and one double eigenvalue. These elements are called complex re-
flections in points or in lines, depending on the sign of the simple eigenspace.

2.2 Totally geodesic subspaces

If V ⊂ Cn,1 is any complex linear subspace where the restriction of the Hermitian form has
signature (k, 1), then the set of negative complex lines in V gives a copy of Hk

C, which can
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easily be checked to be totally geodesic. In terms of the ball model, they correspond to the
intersection with the unit ball of complex affine subspaces in Cn. When k = n − 1, the
subspaces V as above are simply obtained by taking the orthogonal complement of a positive
vector n, which we refer to as a polar vector to the corresponding complex hyperplane.
When k = 1, the complex totally geodesic submanifolds described above are called complex
lines, or complex geodesics. Note that there is a unique complex line joining any two
distinct points in Hn

C.
Similarly, some R-linear subspaces can be used to produce totally geodesic submanifolds,

namely those where the Hermitian form restricts to a quadratic form of hyperbolic signature.
These yield copies of Hk

R, k 6 n (with real sectional curvature −1/4). For k = 1 these are
precisely the real geodesics, and for k = 2, they are called R-planes.

It is a standard fact that every complete totally geodesic submanifold is in one of the two
families described above (see [Gol99], Section 3.1.11). Note that in particular, there are no
totally geodesic real hypersurfaces in complex hyperbolic spaces.

2.3 Bisectors

The basic building blocks for our fundamental domains are bisectors, which are hypersurfaces
equidistant from two given points. Their geometric structure has been analyzed in great detail
in [Mos80], [Gol99], we only recall a few facts that will be needed in the paper.

Given two distinct points p0, p1 ∈ Hn
C, write

B(p0, p1) = {u ∈ Hn
C : d(u, p0) = d(u, p1)}

for the bisector equidistant from p0 and p1.
There is some freedom in choosing the pair of points p0, p1, but perhaps surprisingly, the

possible choices are much more constrained than in constant curvature geometries. Indeed,
the points q0 for which there exists a q1 with B(q0, q1) = B(p0, p1) all lie on the complex line
through p0 and p1; thus the complex line through the two points is canonically attached to
the bisector, and is called its complex spine.

The real spine is the intersection of the complex spine with the bisector itself, which is
a (real) geodesic; it is the locus of points inside the complex spine which are equidistant from
p0 and p1. It consists of points z ∈ Hn

C associated to negative vectors u ∈ Cn,1 that are in
the complex span of p0 and p1 and that satisfy

|〈u,p0〉| = |〈u,p1〉|, (4)

where p0 and p1 denote lifts of p0 and p1 to Cn,1 with the same norm (e.g. one could take
〈p0,p0〉 = 〈p1,p1〉 = −1). The nonzero vectors in SpanC(p0,p1) satisfying (4), but that are
not necessarily negative, span a real projective line in Pn

C, which we call the extended real
spine of the bisector.

We will sometimes describe bisectors by giving two points of their extended real spines;
as mentioned in Section 2.2, we can think of a real geodesic as a real 1-dimensional hyper-
bolic space. Hence, we can describe it as the projectivization of a totally real 2-dimensional
subspace of Cn,1, i.e. we take two vectors v and w in Cn+1 with 〈v,w〉 ∈ R, and consider
their real span. The simplest way to guarantee that the span really yields a geodesic in Hn

C

is to require moreover that v and w form a Lorentz basis, i.e. 〈v,v〉 = −1, 〈w,w〉 = 1 and
〈v,w〉 = 0.
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Recall that bisectors are not fixed point sets of any isometric involution, since they are not
totally geodesic. According to the discussion in Section 2.2, there are two kinds of maximal
totally geodesic submanifolds contained in a given bisector. The complex ones are called
complex slices of B; they are the preimages of points of the real spine under orthogonal
projection onto the complex spine. They can also be described as hyperplanes with polar
vectors n ∈ Cn,1 satisfying 〈n,n〉 > 0 and |〈n,p0〉| = |〈n,p1〉|, see equation (4). The totally
real submanifolds that are contained in B are precisely those containing the real spine and
are called real slices of B.

2.4 Bisectors and geodesics

Several times in the paper, we will need to determine when a geodesic arc is contained in
a bisector. Recall that bisectors in H2

C are not convex: given two distinct points p, q in a
bisector B, the geodesic through p and q is in general not contained in B. This is stated
more precisely in the following (see Theorem 5.5.1 of [Gol99]).

Lemma 2.1 Let α ⊂ H2
C be a real geodesic, and let B be a bisector. Then α is contained in

B if and only if it is contained either in a real slice or in a complex slice of B.

In particular, we have:

Lemma 2.2 Let u and v be distinct points of a bisector B, such that u is on the real spine
of B. Then the geodesic through u and v is contained in B.

Indeed, if v is in the complex slice through u this is obvious. Otherwise, taking lifts u, v of u,
v, the point v is in a slice w⊥ with 〈u,w〉 6= 0 in which case u,v,w are linearly independent.
Since 〈v,w〉 = 0, we can normalize u, v, w to have pairwise real inner products, so they span
a copy of H2

R which contains the real spine of B, i.e. they span a real slice of B.
The following result will also be useful (see also Lemma 2.2 of [DFP05] for a related

statement).

Lemma 2.3 Let B be a bisector and let C be a complex line orthogonal to a complex slice of
B. Then C ∩ B is a real geodesic contained in a real slice of B.

Proof. In the unit ball, we may normalize the real spine σ of B to be the set of points
of the form (x1, 0), with x1 ∈ R, the slice of B to be {z1 = 0}, and C to be of the form
{z2 = β} for some β (with |β| < 1). Since orthogonal projection onto {z2 = 0} is just the
usual projection onto the first coordinate axis, and a bisector is the preimage of its real spine
under orthogonal projection onto its complex spine, C ∩ B is given by (x1, β) with x1 ∈ R

(and |x1| <
√

1− |β|2). The latter curve is a geodesic; in fact it is the intersection C∩L where

L is obtained from the real ball B2
R ⊂ B2

C by applying the isometry (z1, z2) 7→ (z1,
β
|β|z2). ✷

2.5 Coequidistant bisector intersections

It is well-known that bisector intersections can be somewhat complicated, see the detailed
analysis in [Gol99]. In what follows, for simplicity of notation, we restrict ourselves to the
case of complex dimension n = 2.
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A simple way to get these intersections to be somewhat reasonable is to restrict to co-
equidistant pairs, i.e. intersections B1 ∩ B2 where B1, B2 are equidistant from a common
point p0 ∈ Hn

C. We write Σ1, Σ2 for the complex spines of B1, B2 respectively, and σ1, σ2
for their real spines.

In view of the discussion in Section 2.3, it should be clear that this is a restrictive condition,
which implies that Σ1, Σ2 intersect insideH

n
C. Since complex lines with two points in common

coincide, there are two possibilities for coequidistant pairs B1,B2; either the complex spines
coincide or they intersect in a single point.

When the complex spines coincide, the bisectors are called cospinal, and the intersection
is easily understood; it is non-empty if and only if the real spines σ1 and σ2 intersect, and
in that case the intersection B1 ∩ B2 consists of a complex line (namely the complex line
orthogonal to Σ1 = Σ2 through σ1 ∩ σ2).

Now suppose Σ1 and Σ2 intersect in a point which lies outside of the real spines σ1 and
σ2, so that B1∩B2 can be written as the equidistant locus from three points p0, p1, p2 which
are not contained in a common complex line. The following important result is due to G.
Giraud [Gir21] (see also Theorem 8.3.3 of [Gol99]).

Proposition 2.4 Let p0, p1, p2 be distinct points in H2
C, not all contained in a complex line.

When it is non empty, the intersection B(p0, p1)∩B(p0, p2) is a (non-totally geodesic) smooth
disk. Moreover, it is contained in precisely three bisectors, namely B(p0, p1), B(p0, p2) and
B(p1, p2).

Definition 2.5 We define a Giraud disk to be a bisector intersection as in Proposition 2.4
and we denote it by G (p0, p1, p2).

Given a Giraud disk G = B1∩B2∩B3, the complex slices of the three bisectors Bj intersect
G in hypercycles, so that G has three pairwise transverse foliations by arcs.

Parametrizing Giraud disks: Let pj denote a lift of pj to C3. By rescaling the lifts, we
may assume that the three square norms 〈pj ,pj〉 are equal, and also that 〈p0,p1〉 and 〈p0,p2〉
are real and positive.

Now for j = 1, 2, consider ṽj = p0 − pj and w̃j = p0 + pj (note that ṽj corresponds to
the midpoint of the geodesic segment between p0 and pj), and normalize these to unit vectors
vj = ṽj/

√
−〈ṽj , ṽj〉 and wj = w̃j/

√
〈w̃j, w̃j〉.

Here recall that u⊠v is the Hermitian cross product of u and v associated to the Hermitian
form H (see p. 43 of [Gol99]). By definition, u ⊠ v is 0 if u and v are collinear, and spans
their H-orthogonal complement otherwise. In other words, it is the Euclidean cross product
of the vectors u∗H and v∗H (the cross product makes sense because the vector space of
homogeneous coordinates has dimension three).

Then the extended real spine of B(p0, pj) is given by real linear combinations of vj and
wj, so (lifts of) points in B1 ∩ B2 are given by negative vectors of the form

V (t1, t2) = (w1 + t1v1)⊠ (w2 + t2v2), (5)

with t1, t2 ∈ R. The only linear combinations we are missing with this parametrization of the
extended real spines are v1 and v2, but these are negative vectors so the projectivization of
their orthogonal complement does not intersect H2

C. We will call t1, t2 spinal coordinates
for G .
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We will use this parametrization repeatedly; for now, note that, given three points p0, p1
and p2, it is easy to determine whether the intersection B(p0, p1)∩B(p0, p2) is empty or not.
Indeed, negative vectors in C2,1 are characterized by the fact that their orthogonal complement
is a positive definite complex 2-plane, so the condition that (w1+t1v1)⊠(w2+t2v2) is negative
is equivalent to requiring that g(t1, t2) > 0 where

g(t1, t2) = det

[
〈w1 + t1v1,w1 + t1v1〉 〈w1 + t1v1,w2 + t2v2〉
〈w2 + t2v2,w1 + t1v1〉 〈w2 + t2v2,w2 + t2v2〉

]
. (6)

2.6 Cotranchal bisectors

We will encounter more complicated intersections than coequidistant ones. Two bisectors
are called cotranchal if they have a common complex slice; the intersection of cotranchal
bisectors is completely understood; see Thm 9.2.7 in [Gol99].

Theorem 2.6 (Goldman) Let B1, B2 be distinct bisectors, with real spines σ1, σ2. Assume
that B1 and B2 share a complex slice C0.

(1) If σ1 and σ2 intersect, then B1 ∩ B2 is equal to C0;

(2) If σ1 and σ2 lie in a common R-plane L and are ultraparallel, then B1 ∩ B2 = C0 ∪ L;

(3) If σ1 and σ2 do not lie in a totally geodesic plane, then either B1 ∩ B2 = C0, or
B1 ∩ B2 = C0 ∪R where R is diffeomorphic to a disk and R ∩ C0 is a hypercycle.

Goldman’s proof also gives a way to distinguish between the two very different possibilities
that are described in case (3), working with Heisenberg coordinates for the vertices of the
bisectors (which are the endpoints in ∂H2

C of their real spines). We briefly review this in
terms of our notation.

Let C be a complex line with polar vector n. Note that this implies 〈n,n〉 > 0. Let
v1 and v2 be two vectors in n⊥ with 〈vj ,vj〉 < 0. Hence vj projects to a point vj in H2

C,
which of course is in C. Consider bisectors B1 and B2 so that the extended real spine of
Bj contains n and vj . (Note that we have to be careful when choosing the lift vj in C2,1 of
the corresponding points vj in C since we want the extended spine to be the real span of n
and vj; choosing a different lift of vj rotates Bj around C.) We want to decide when the
intersection of B1 and B2 is precisely C; see [Gol99], [Hsi03].

Proposition 2.7 Let B1, B2 be cotranchal bisectors with common slice C. Let n be a polar
vector for C and let v1, v2 be negative vectors with 〈vj ,n〉 = 0 so that the extended real spine
of Bj is the real span of n and vj . Then the intersection of B1 and B2 is precisely C if and
only if

〈v1,v1〉〈v2,v2〉 ≥
(
ℜ〈v1,v2〉

)2
.

Proof. By assumption C is a slice of B1 and B2. The other slices are parametrized by
the polar vectors tjn+ vj subject to 〈tjn+ vj , tjn+ vj〉 > 0. In other words,

t2j >
−〈vj ,vj〉
〈n,n〉 . (7)

Hence we want to find conditions under which the corresponding slices are disjoint, for all t1
and t2 satisfying this inequality.
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Two complex lines a⊥ and b⊥ are disjoint if and only if the restriction of the Hermitian
form to the span of a and b is indefinite, so the above condition is equivalent to the following
inequality being satisfied for all t1 and t2 in the range (7):

0 ≤
∣∣〈t1n+ v1, t2n+ v2〉

∣∣2 − 〈t1n+ v1, t1n+ v1〉〈t2n+ v2, t2n+ v2〉
= −t21〈n,n〉〈v2,v2〉+ t1t2〈n,n〉2ℜ〈v1,v2〉 − t22〈n,n〉〈v1,v1〉 (8)

+
∣∣〈v1,v2〉

∣∣2 − 〈v1,v1〉〈v2,v2〉.

First, note that the constant term is non-negative since

1 ≤ cosh2
(
d(v1, v2)

2

)
=

∣∣〈v1,v2〉
∣∣2

〈v1,v1〉〈v2,v2〉
.

Therefore, the expression in (8) is always non-negative if and only if its quadratic part is
positive semi-definite. (Recall 〈n,n〉 > 0 and 〈vj ,vj〉 < 0.) This is equivalent to

〈v1,v1〉〈v2,v2〉 ≥
(
ℜ〈v1,v2〉

)2
.

Finally, note that the range (7) is irrelevant in the argument as we may rescale t1 and t2
without affecting the sign of the quadratic form. ✷

2.7 Computational issues

As described in the previous sections, bisector intersections can be studied by checking the
sign of various functions, sometimes defined in a somewhat complicated compact region.

This will be facilitated by the fact that all geometric objects we introduce are defined
over specific number fields. For general computational tools in number fields, see [Coh93].
Throughout this section, we denote by k a number field, and we assume complex hyperbolic
space is given as the set of lines in projective space that are negative with respect to a
Hermitian inner product defined over k.

Definition 2.8 A point p ∈ P2
C will be called k-rational if it can be represented by a vector

in k3. A real geodesic will be called k-rational if it can be parametrized by vectors of the form
v+tw (t ∈ R) with v,w ∈ k3. A bisector will be called k-rational if its real spine is k-rational.

Note that a real geodesic through two k-rational points is automatically k-rational. Indeed,
if v 6= w are two k-rational points in H2

C, then they have lifts to v,w ∈ k3 such that 〈v,w〉 is
real and positive (given any two lifts, multiplyw by 〈v,w〉, which is in k because the Hermitian
form is defined over k). The real geodesic segment from v to w is then parametrized by vectors
of the form v+ t(w−v), t ∈ [0, 1], where v and w are k-rational. In these circumstances, we
will also say that the geodesic segment [v,w] is k-rational.

Note also that a bisector is k-rational if and only if it can be written as B(p, q) for some
k-rational points p, q.

Proposition 2.9 Let [p, q] be a geodesic segment defined by k-rational endpoints. Let B be
a k-rational bisector. The following statements can be checked by performing arithmetic in k:

• p is in B (resp. p is not in B);
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• [p, q] is contained in B;

• [p, q] is in a specific component of H2
C \ B.

• p is in B and [p, q] is tangent to B.

Proof. We parametrize the geodesic segment by vectors zt = v + t(w − v), t ∈ [0, 1]. If
B = B(q0, q1) and q0, q1 ∈ k3 are corresponding lifts, the intersection of the extended real
geodesic with (the extension to P2

C of) B is described by the following equation,

|〈zt,q0〉|2
〈q0,q0〉

=
|〈zt,q1〉|2
〈q1,q1〉

, (9)

which has degree at most two in t.
The geodesic is contained in B if and only if this equation is identically zero; checking

whether this holds amounts to checking whether a = b = c = 0 where

a = |〈w − v,q0〉|2/〈q0,q0〉 − |〈w − v,q1〉|2/〈q1,q1〉
b = ℜ ( 〈v,q0〉〈q0,w − v〉/〈q0,q0〉 − 〈v,q1〉〈q1,w − v〉/〈q1,q1〉 )

c = |〈v,q0〉|2/〈q0,q0〉 − |〈v,q1〉|2/〈q1,q1〉.

This can be decided with arithmetic in k.
In order to check that the segment is on a specific side of B, we need to check that a

strict inequality holds between the two sides of (9). A natural way to do this is to find the
solutions of (9), and to check that they are all negative (resp. positive); the latter requires
extracting square-roots, which is not quite arithmetic in k. Alternatively, one can simply
check that there is no sign change between the endpoints, in conjunction with a computation
of the value of the polynomial at the point where its derivative vanishes.

Suppose p ∈ B and q /∈ B. Then the geodesic is tangent to B if and only if

ℜ{〈w,q0〉〈q0,v〉}/〈q0,q0〉 = ℜ{〈w,q1〉〈q1,v〉)}/〈q1,q1〉.

This condition is checked by arithmetic in k, since the vectors v,w,q0,q1 are rational, and
the Hermitian form is defined over k. ✷

3 Discrete groups and lattices

3.1 Lattices and arithmeticity

A given lattice Γ ⊂ SU(n, 1) can be conjugated in complicated ways, but it is a classical
fact that one can always represent it as a subgroup of some GL(N, k) where k is a number
field (of course one needs to require n > 1 to exclude lattices in SU(1, 1) ≃ SL(2,R)). For a
general result along these lines, see Theorem 7.67 in [Rag72]. The smallest field one can use
is given by the traces in the adjoint representation, see Proposition (12.2.1) of [DM86] and
also Section 8.1.

In this manner, Γ determines a k-form of SU(n, 1), and the k-forms of SU(n, 1) are
known to be obtained as SU(H) for some Hermitian form H on F r, where F is a divi-
sion algebra with involution over a quadratic imaginary extension L of the totally real field k
(see [Wei60], [Tit66]). For dimension reasons, r must divide n+ 1; in fact n+ 1 = rd, where
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d is the degree of F . In particular, if n = 2 then r can only be 1 or 3. This gives two types
of lattices in PU(2, 1), those related to Hermitian forms over number fields (d = 1, hence
r = 3) and those related to division algebras (d = 3, r = 1). These are often referred to as
arithmetic lattices of the first and second type, respectively.

Note that the groups we construct in the present paper are clearly not arithmetic of the
second type, because they contain Fuchsian subgroups. For the relationship between Fuch-
sian subgroups and groups of the second type, see [Rez95], [Sto12] (and also [McR06]). For
lattices preserving a Hermitian form over a number field, there is a fairly simple arithmeticity
criterion, which we now state for future reference. The following result is essentially Mostow’s
Lemma 4.1 of [Mos80] (following Vinberg [Vin68], see also Corollary 12.2.8 of [DM86]). We
refer to this statement as the Mostow–Vinberg arithmeticity criterion.

Proposition 3.1 Let L be a purely imaginary quadratic extension of a totally real field k,
and H a Hermitian form of signature (n, 1) defined over L. Suppose Γ ⊂ SU(H;OL) is a
lattice. Then Γ is arithmetic if and only if for all ϕ ∈ Gal(L) not inducing the identity on k,
the form ϕH is definite.

Note that when Γ is as in Proposition 3.1 and it is not arithmetic, the whole group of integral
matrices SU(H;OL) is non discrete in SU(H), and in particular Γ must have infinite index in
SU(H;OL).

3.2 The Poincaré polyhedron theorem

Various versions of the Poincaré polyhedron theorem for complex hyperbolic space have been
given (see for example [Mos80], [DFP05], [FP06], [Par06]). For the purpose of the present
paper, just as in [Mos80], we need to consider fundamental polyhedra for coset decompositions,
where the polyhedron is invariant under a non-trivial subgroup.

Since the hypotheses as well as the conclusions of the theorem require quite a bit of nota-
tion, we now give a detailed statement of the Poincaré polyhedron theorem. A detailed proof
can be found in [Par]. For simplicity, we only state this theorem for finite-sided polyhedra,
as this is sufficient when considering lattices (for a more general statement that applies to
locally finite polyhedra, see [Par]).

Polyhedra: For the purpose of the present paper, we only consider finite CW complexes
which are regular, in the sense that every attaching map is an embedding. In particular,
the closure of each cell is homeomorphic to a closed ball of the appropriate dimension, with
embedded boundary sphere. A (finite-sided) polyhedron is the geometric realization in
H

n
C of such a complex with a single top-dimensional cell of dimension 2n.
We will refer to closed cells of a polyhedron as facets, and denote by Fk(E) the set of

codimension k facets of E. We give special names to facets of each codimension: facets
of codimension one, two, three and four will be called sides, ridges, edges and vertices,
respectively. Because the focus of the present paper is mainly about lattices, we will assume
E ∩ ∂Hn

C consists of finitely many vertices, which we call ideal vertices.
Given a facet f , we denote by f◦ the relative interior of f (equivalently, f◦ is the set of

points that are on f but not in any other facet of the same codimension). It follows from the
regularity assumption that for each k-cell f , the (k− 2)-cells in ∂f are contained in precisely
two (k− 1)-cells of ∂f . In particular, in the above terminology, a ridge of a polyhedron is on
precisely two sides.
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In the context of complex hyperbolic space, there is no canonical choice of hypersurfaces
that can be used to bound polyhedra. Indeed, as mentioned in Section 2, there are no totally
geodesic real hypersurfaces in Hn

C, n > 2. In fact the polyhedra that appear in this paper
are bounded exclusively by bisectors, and they actually have piecewise smooth boundary
(one can relax this to allow for more general faces, see [Mos80] and [Par] for a specific set of
hypotheses).

Side pairings: A map σ : F1(E) −→ Isom(Hn
C) is called a side pairing for E if it satisfies

the following conditions:

1. For each side s ∈ F1(E) there is another side s− in F1(E) so that S = σ(s) maps s
onto s− preserving the cell structure. Moreover, σ(s−) = S−1. In particular, if s = s−

then S = S−1 and so S is an involution. We call S2 = id a reflection relation. (In
fact s 6= s− in all the cases we consider in this paper.)

2. If s ∈ F1(E) and σ(s) = S then S−1(E) ∩E = s and S−1(E◦) ∩E◦ = ∅.

3. If w ∈ s◦ then there is an open neighborhood U(w) of w contained in E ∪ S−1(E).

We say that S = σ(s) is the side-pairing map associated to the side s ∈ F1(E).
We suppose the polyhedron E is preserved by a finite group Υ < Isom(Hn

C), which acts
by cell-preserving automorphisms. We assume moreover that we have a presentation of Υ in
terms of generators and relations (in the examples treated in this paper, Υ will simply be a
finite cyclic group).

Let Γ < Isom(Hn
C) be the group generated by Υ and the side-pairing maps. In what

follows, we will need to consider Υ-orbits of sides and ridges. We suppose that the side
pairing σ is compatible with Υ in the following sense: for all s ∈ F1(E) and all P ∈ Υ we
have σ(Ps) = Pσ(s)P−1.

Ridge cycles: Consider a ridge ρ1 ∈ F2(E). We know that ρ1 is contained in exactly two
sides of E, so we can write ρ1 = s1 ∩ s′ where s1, s′ ∈ F1(E). Let S1 = σ(s1) be the side
pairing map associated to s1. Then we know that S1(s1) is another side s−1 of E. Since
the side pairing maps are bijections preserving the cell structure, it must be the case that
ρ2 = S1(ρ1) is a ridge contained in s−1 . In other words, there is a side s2 ∈ F1(E) so that
ρ2 = s2 ∩ s−1 . Let S2 = σ(s2) be the side pairing map associated to s2. We repeat the above
process and thereby obtain a sequence of ridges ρi, sides si and side pairing maps Si so that
ρi = si ∩ s−i−1 and Si = σ(si).

If ρ2 = ρ1, we set m = 0; otherwise let m > 0 be the smallest positive integer such that
ρm+1 is in the same Υ-orbit as ρ1 (there must exist such an m, since the set of ridges is finite).

Note that there is then a unique P ∈ Υ such that Pρm+1 = ρ1 (or else there would be
a non-trivial element of Υ fixing ρ1 pointwise and preserving the pair of sides containing it).
We then have ρ1 = s1 ∩ Ps−m, and the other side s′ containing ρ1 must be Ps−m.

We say that (ρ1, . . . , ρm+1) is the ridge cycle of ρ1 and we define the cycle transfor-
mation T = T (ρ1) of ρ1 to be T = P ◦ Sm ◦ · · · ◦ S1. Then T maps ρ1 to itself:

T (ρ1) = P ◦ Sm ◦ · · · ◦ S2 ◦ S1(ρ1) = · · · = P ◦ Sm(ρm) = P (ρm+1) = ρ1.

Note that T may not act as the identity on ρ1 and, even if it does, then it may not be the
identity on the whole of Hn

C. We assume that T has finite order ℓ. The relation T ℓ = id is
called the cycle relation associated to ρ1.
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Note that the sequence ρ1, . . . , ρm is entirely determined by ρ1 and the choice of the
first side s1. Observe that if we had started at another ridge in the cycle, say ρi then,
using our hypothesis that the side pairings are compatible with Υ, we would obtain the ridge
cycle (ρi, ρi+1, . . . , ρm, P

−1ρ1, P
−1ρ2, . . . , P

−1ρi). Because Υ is compatible with the side
pairings, the cycle transformation of ρi is

Ti = P ◦ (P−1Si−1P ) ◦ · · · ◦ (P−1S1P ) ◦ Sm ◦ · · · ◦ S1
= Si−1 ◦ · · · ◦ S1 ◦ P ◦ Sm ◦ · · · ◦ Si.

This is just a cyclic permutation of T . Likewise, if we had started at ρ1 but had chosen the
first side pairing to be the one associated to the other side s′ instead, we would have obtained
(up to elements of Υ) the same sequence of sides in the reverse order, with the side pairing
maps inverted. Furthermore, if Q ∈ Υ then the ridge cycle of Qρ1 is (Qρ1, . . . , Qρm+1) and
the corresponding cycle transformation is QTQ−1. Hence it suffices to consider the cycle
associated to a single ridge in each Υ-orbit of ridge cycles.

Writing out T in terms of P and the Si, we let C = C(ρ1) be the collection of suffix
subwords of T ℓ, that is

C(ρ1) =
{
Si ◦ · · · ◦ S1 ◦ T j : 0 6 i 6 m− 1, 0 6 j 6 ℓ− 1

}

where i = 0 means we write none of the Si (this includes the case where m = 0) and so
i = j = 0 corresponds to the identity map.

For i ∈ {1, . . . , m} we have ρi = si ∩ s−i−1, where s
−
0 = Ps−m. From the side pairing

conditions, si = E ∩ S−1
i (E) and s−i = E ∩ Si−1(E) and so ρi ⊂ E ∩ S−1

i (E) ∩ Si−1(E).
Furthermore, for 2 6 i 6 m we have ρi = Si−1 ◦ · · · ◦ S1(ρ1). Therefore

ρ1 = S−1
1 ◦ · · · ◦ S−1

i−1(ρi)

⊂ S−1
1 ◦ · · · ◦ S−1

i−1

(
S−1
i (E) ∩ E ∩ Si−1(E)

)

=
(
S−1
1 ◦ · · · ◦ S−1

i (E)
)
∩
(
S−1
1 ◦ · · · ◦ S−1

i−1(E)
)
∩
(
S−1
1 ◦ · · · ◦ S−1

i−2(E)
)
.

Hence, ρ1 is contained in S−1
1 ◦ · · · ◦S−1

i−1(E) for all i between 1 and m where, as before, i = 1
corresponds to the identity map. Note that, since P (E) = E we have

T−1(E) = S−1
1 ◦ · · · ◦ S−1

m ◦ P−1(E) = S−1
1 ◦ · · · ◦ S−1

m (E).

Hence we have shown that
ρ1 ⊂

⋂

C∈C(ρ1)
C−1(E).

We say that E and Γ satisfy the cycle condition at ρ1 if this intersection is precisely ρ1 and
all these copies of E tessellate around ρ1. That is:

1.
ρ1 =

⋂

C∈C(ρ1)
C−1(E).

2. If C1, C2 ∈ C(ρ1) with C1 6= C2 then C−1
1 (E◦) ∩ C−1

2 (E◦) = ∅.
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3. For all w ∈ ρ◦1 there exists an open neighborhood U(w) of w so that

U(w) ⊂
⋃

C∈C(ρ1)
C−1(E).

Consistent system of horoballs: When E has cusps, we need an extra hypothesis, related
to metric completeness of the quotient of the polyhedron under the side-pairing maps. Let
ξ1, . . . , ξm be the cusps of E. We will assume the existence of a consistent system of
horoballs, which is a collection {U1, ..., Um}, where each Uj is a horoball based at ξj which
is preserved by the stabilizer of ξj in Γ. By shrinking if necessary, we may suppose that a
consistent system is made up of pairwise disjoint horoballs. The existence of a consistent
system of horoballs can be checked by verifying that all cycle transformations fixing a given
cusp are non-loxodromic (since in that case they automatically preserve every horoball based
at that ideal vertex).

Then the statement of the complex hyperbolic Poincaré polyhedron theorem (see [Mos80]
or [Par]) is the following.

Theorem 3.2 Suppose E is a smoothly embedded finite-sided polyhedron in Hn
C, together with

a side pairing σ : F1(E) −→ Isom(Hn
C). Let Υ < Isom(Hn

C) be a group of automorphisms of
E. Let Γ be the group generated by Υ and the side-pairing maps. Suppose the cycle condition
is satisfied for each ridge in F2(E), and that there is a consistent system of horoballs at the
cusps of E (if it has any).

Then the images of E under the cosets of Υ in Γ tessellate Hn
C. That is

1. ⋃

A∈Γ
A(E) = Hn

C.

2. If A ∈ Γ−Υ then E◦ ∩A(E◦) = ∅.

Moreover, Γ is discrete and a fundamental domain for its action on Hn
C is obtained by inter-

secting E with a fundamental domain for Υ.
Finally, one obtains a presentation for Γ in terms of the generators given by the side

pairing maps together with a generating set for Υ; the relations are given by the reflection
relations, the cycle relations and the relations in a presentation for Υ.

Finite volume: Note that the statement of the Poincaré polyhedron theorem says nothing
about the volume of the quotient Γ \Hn

C, which is also the volume of E. This volume is of
course finite when E is entirely contained in Hn

C, in which case Γ is a cocompact lattice in
PU(n, 1).

Some of the groups we study in this paper are not cocompact (namely, when p = 4, 6).
In that case, E has some ideal vertices, but one easily sees that the volume of E is finite
by studying the structure of the stabilizer of the ideal vertices. Let x be an ideal vertex
with stabilizer Γx. By the existence of a consistent system of horoballs, the ideal point
corresponding to x in the quotient Γ\Hn

C has a neighborhood diffeomorphic to (0,+∞)×Hx,
where Hx is the quotient of any horosphere based at x by the action of Γx. It is well known
that the fact that Γx acts cocompactly on ∂H2

C \ {x} (or equivalently, on horospheres based
at x) implies that cusp neighborhoods in the quotient have finite volume (see for example
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Lemma 5.2 in [HP96]). This is clear for our polyhedra, whose cusp cross-sections are compact
(see Section 7.3, Figure 13 for their explicit description).

Toy model: To illustrate this theorem and to help understand our family of examples, it is
instructive to work through a toy example with n = 1. Consider a triangle in the Poincaré disk
H1

C with vertices qR with angle π/2, qJ with angle π/3 and qP with angle π/7 (see Figure 1).
Let R, J and P be elements of Isom(H1

C), with orders 2, 3 and 7, fixing the respective points
and satisfying P = RJ . Let Γ be the group generated by R, J and P . The usual fundamental
domain D for this group consists of this triangle together with its image under reflection in
the side joining qP and qR. There is a natural P -invariant hyperbolic heptagon E, obtained
as the union of the seven images of D under powers of P . This heptagon is a fundamental
domain for the cosets of Υ = 〈P 〉 in Γ.

qP qR

qJ

RqJ

r

r−

Figure 1: Toy model for fundamental domains for coset decompositions.

The vertices of the heptagon E are of the form P kqJ , where k = 0, . . . , 6, and the
midpoints of its sides are given by the points P kqR. Now let r be the edge from qJ to qR and
let r− be the edge from qR to PqJ = RqJ . Then we define the side pairing map R : r −→ r−,
and extend this to the other sides in a way that is compatible with Υ. Namely, we have side
pairings P kRP−k : P kr −→ P kr−. We obtain two vertex cycles, which we write in terms of
the edges and the vertices.

R r ∩ r− qR
r ∩ r− qR

R r ∩ P−1r− qJ
P−1 Pr ∩ r− RqJ

r ∩ P−1r− qJ

It is easy to check local tessellation around the vertices and so Poincaré’s theorem shows that
the heptagons tile the Poincaré disk.

For r ∩ r−, the cycle transformation is R, and the cycle relation is R2 = id. For r ∩
P−1r−, the cycle transformation is P−1R and the cycle relation is (P−1R)3 = id. Adding the
generator P of Υ and its relation P 7 = id gives the well known presentation

Γ = 〈R, P : R2 = (P−1R)3 = P 7 = id〉.
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Note that a fundamental domain for Γ is obtained by intersecting E with a fundamental
domain for Υ (one example of such a fundamental domain is of course given simply by D).

We can also calculate the orbifold Euler characteristic χ of Γ\H1
C as follows. We consider

each Γ-orbit of facets of E and we weight them by the reciprocal of the order of their stabilizer:

Facet Stabilizer Order

qR 〈R〉 2
qJ 〈P−1R〉 3

r id 1

E 〈P 〉 7

Thus

χ =

(
1

2
+

1

3

)
− 1 +

1

7
=

−1

42
.

We now briefly review standard techniques used to verify the hypotheses on ridge cycles.

Tessellating around Giraud disks. For cycles around Giraud ridges the conditions of
the Poincaré polyhedron theorem are easily checked, as we now recall.

Let G = G (p0, p1, p2) be a Giraud disk. Then G defines three regions Y0, Y1 and Y2 given,
for indices j = 0, 1, 2 taken mod 3, by:

Yj =
{
u ∈ H2

C : d(u, pj) 6 d(u, pj+1), d(u, pj) 6 d(u, pj−1)
}

(10)

Any point inH2
C is contained in (at least) one of these three regions according to the minimum

of d(u, pj) for j = 0, 1, 2. The interior Y ◦
j of Yj is the set of points where d(u, yj) is strictly

smaller than d(u, pj+1) and d(u, pj−1). Clearly the interiors of these three regions are disjoint.

Lemma 3.3 Let E be a polyhedron bounded by bisectors and let ρ = s1∩s2 be a Giraud ridge
of E contained in the sides s1 and s2 of E. Let S1 = σ(s1) and S2 = σ(s2). Let Y0, Y1 and
Y2 be the three regions given in (10), defined by the Giraud disk containing ρ. Suppose the Yj
each contain exactly one of E, S−1

1 (E) and S−1
2 (E) and that S−1

1 (E) ∩ S−1
2 (E) is contained

in the third bisector containing ρ. Then E, S−1
1 (E) and S−1

2 (E) tessellate a neighborhod of
the interior of ρ.

Proof. Without loss of generality, suppose that E ⊂ Y0, S
−1
1 (E) ⊂ Y1 and S−1

2 (E) ⊂ Y2.
Since the Yj have disjoint interiors, it is clear that E◦, S−1

1 (E◦) and S−1
2 (E◦) are disjoint.

We must show that the three copies of E cover a neighborhood of the interior of ρ. Suppose
that w ∈ ρ◦ and U(w) is a neighborhood of w. Then any point in U(w) is in (at least) one of
Y0, Y1, Y2. If the point is sufficiently close to ρ then it is in E, S−1

1 (E) or S−1
2 (E) respectively.

✷

Tessellating around complex lines. Cycles around ridges contained in complex lines can
be more complicated than ridges contained in Giraud disks. However, by looking at complex
lines orthogonal to the intersection, tessellation is reduced to an angle condition resembling
the classical version of the Poincaré polyhedron theorem for the hyperbolic plane.

Let B and B′ be two bisectors that intersect in a complex line C. Suppose E is a
polyhedron contained in the intersection of two half-spaces defined by B and B′ and that
these bisectors contain sides s and s′ of E intersecting in a simply connected ridge ρ in C.
Using Lemma 2.3 any complex line C⊥ orthogonal to C intersects B and B′ along geodesics,
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and C⊥∩E is contained in a wedge bounded by these geodesics, as B and B′ both bound E.
We must keep track of the angle subtended by this wedge. It is important to note that this
angle will depend on the point where C and C⊥ intersect, but that the total angle subtended
over a ridge cycle will remain the same.

In particular, suppose T is the cycle transformation of ρ. By construction, T maps C to
itself. There are two possibilities: either T fixes C pointwise, and so is a complex reflection
in C, or T has a unique fixed point o in C. In the latter case, the point o must lie in ρ as T
is a symmetry of ρ, which is simply connected. In either case, if o is a point of ρ fixed by T
then the complex line C⊥

o through o orthogonal to C is mapped to itself by T .
Suppose the cycle transformation is T = P ◦ Sm ◦ · · · ◦ S1. The definition of a ridge cycle

leads to ridges ρi = si∩s−i−1 where Si = σ(si). The intersection of C⊥
o with S−1

1 ◦· · ·◦S−1
i−1(E)

for 1 6 i 6 m is a wedge, say with angle βi, bounded by the intersection of C⊥
o with the

sides S−1
1 ◦ · · · ◦S−1

i−1(si) and S
−1
1 ◦ · · · ◦S−1

i−1(s
−
i−1). These wedges fit together to give a larger

wedge bounded by the intersection of C⊥
o with a bisector and its image under T . In this

larger wedge, the total angle at o subtended by copies of E under the cycle is β1 + · · ·+ βm.

Lemma 3.4 Let E be a polyhedron bounded by bisectors and let ρ be a ridge of E contained
in a complex line C. Let T be the cycle transformation of ρ and let o be a fixed point of T
in ρ. Suppose that T has order ℓ > 0 and that T acts on C⊥

o as a rotation by angle 2π/ℓ.
Suppose that the total angle at o in C⊥

o subtended by copies of E under the cycle is 2π/ℓ.
Then any point w ∈ ρ◦ has an open neighborhood tessellated by images of E.

Proof. For simplicity, we begin by supposing the ridge cycle has length one and T =
P ◦ S where S is the side-pairing map of s and P ∈ Υ. This means we only have to show
that E, T−1(E), . . . , T−(ℓ−1)(E) tessellate around ρ. (This is the only case we need in the
applications in this paper.)

First consider the action of T on C⊥
o . Let B and B′ = T (B) be the bisectors containing

the sides s and s′ = T (s) of E. Write bo = B ∩ C⊥
o and b′o = B′ ∩ C⊥

o . Since T acts on C⊥
o

as a rotation by 2π/ℓ then b′o = T (bo) and the arcs bo, b
′
0 bound a wedge with angle 2π/ℓ

containing C⊥ ∩ E. Applying powers of T we obtain ℓ wedges containing images of E that
tessellate a neighborhood of o in C⊥

o .
When T is a complex reflection in C, this argument applies to all points of ρ and the

result follows.
We now consider the case where the fixed point o of T is unique. For a general point

u ∈ C ∩E consider C⊥
u , the orthogonal complex line to C at u. Since T does not fix u, we see

that T sends C⊥
u to C⊥

Tu. However, by continuity, the intersection of C⊥
u with E is contained

in some wedge with apex u. The angle may change as u varies but will always be positive
since B ∩ B′ is C. Let k (which divides ℓ) be the smallest positive integer so that T k is the
identity on C. Then the angles of these wedges at all the images of C⊥

u , T (C
⊥
u ), . . . , T k(C⊥

u )
add up to 2kπ/ℓ. Since T k is a complex reflection in C with angle 2kπ/ℓ we see that the
intersection of E, T (E), . . . , T ℓ−1(E) with C⊥

u tessellate a neighborhood of u in C⊥
u .

By carrying out this process for all points of C ∩ E, we see that for any point u in the
(relative) interior of C ∩E there is an open neighborhood of u tessellated by copies of E.

Now consider the general case where the length of the ridge cycle is m > 1 and the cycle
transformation is T = P ◦ Sm ◦ · · · ◦ S1. In this case, we need to keep track of wedges in
T−j ◦ S−1

1 ◦ · · · ◦ S−1
i (C⊥

u ) for 0 6 i 6 m − 1 and 0 6 j 6 ℓ − 1. Nevertheless, the same
argument gives the result. ✷
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4 Sporadic triangle groups

In this section, we recall the description and basic properties of sporadic triangle groups,
and state our main results. For more details on sporadic triangle groups, see Section 4.2,
or [PP09].

4.1 Statement of the main results

It follows from the analysis in [Par08] and [PP09] that given a pair (ψ, τ) ∈ R × C, there is
at most one conjugacy class of pairs of matrices (R1, J) ∈ SU(2, 1) such that

• R1 is a complex reflection with rotation angle ψ, and

• J is regular elliptic of order 3, and

• tr(R1J) = τ .

The pairs (ψ, τ) for which there exist R1, J as above are listed in [PP09].
Given such a pair (R1, J) of isometries, it is natural to define

R2 = JR1J
−1; R3 = J−1R1J.

Observe for future reference that we then have

R1R2R3 = (R1J)
3.

Since RkJ = JRk−1 (where the index k is to be taken modulo 3), we can write any word in
R1 and J as a product of the form JkQ, were k ∈ {0, 1, 2} and Q is a word in R1, R2 and
R3. That is, the group generated by R1, R2 and R3 is normal and of index at most three in
Γ(ψ, τ). (In the groups we study here J will be a word in R1, R2, R3 and so the two groups
are the same.) In particular, possibly up to taking a subgroup of index three, Γ(ψ, τ) is
generated by complex reflections. As such, in analogy with the case of real reflection groups,
one expects this group to be a lattice only when short words in the generators are elliptic;
compare [Sch02].

This motivated us to study groups Γ(ψ, τ) where R1R2 and R1J are both elliptic of finite
order in [PP09] (in fact, we allow R1R2 to be parabolic as well). When this condition holds,
we shall say that Γ(ψ, τ) is doubly elliptic.

In fact this condition turns out to be independent of the rotation angle ψ, and the complete
list of values of τ where it holds was obtained in [Par08], [PP09], by using a result of Conway
and Jones [CJ76] on rational relations between roots of unity. This list comprises two infinite
families together with a list of eighteen isolated solutions, called sporadic values and denoted
σj, σj (j = 1, ..., 9); the corresponding groups are called sporadic triangle groups. If τ
lies in one of the infinite families, then the work of Mostow [Mos80] determines whether or
not Γ(ψ, τ) is discrete (and shows that in that case it is a lattice), see Section 5 of [PP09]. It
remains to consider the finite list of sporadic values of τ .

For each such value, there is still a real 1-parameter family of groups depending on the
rotation angle ψ of R1. We proved in [DPP11] that only finitely many values of ψ can yield
lattices, and gave a short explicit list of values that conjecturally do so. Among these values,

τ = σ4 = −(1 + i
√
7)/2

yields the largest number of candidates, some cocompact and some not. Our main result is
the following:
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Theorem 4.1 Let τ = σ4 = −(1 + i
√
7)/2. Then the group Γ(2π/p, τ) where p ∈ Z is a

lattice if and only if p = 3, 4, 5, 6, 8 or 12. For p = 3, 5, 8, 12 this lattice is cocompact; for
p = 4, 6 the quotient has precisely one cusp.

The case p = 3 is the least interesting one for our purposes, since the corresponding lattice is
arithmetic (see [PP09]). All the others are of great importance, since we have the following
(see [Pau10] and Section 8):

Theorem 4.2 Let τ = σ4 = −(1 + i
√
7)/2. The groups Γ(2π/p, τ) for p = 4, 5, 6, 8, 12

are not arithmetic; they lie in pairwise distinct commensurability classes, and they are not
commensurable to any Deligne-Mostow lattice.

Remark 4.3 The values of p in the theorem may seem mysterious, but one can rephrase the
theorem as an integrality condition, in the vein of the Picard integrality condition (see [DM86]
for instance). Indeed, observe that (R1R2)

2 is a complex reflection with angle 2π/c, and
(R1R2R3R

−1
2 )3 is a reflection with angle 2π/d. Explicit calculation shows that

c = 2p/(p − 4); d = 2p/(p − 6).

The values of p in the theorem are precisely those for which both c and d are integers (or
infinite).

The non-arithmetic character of five of these six groups was proved in [Pau10]. For com-
pleteness, we prove that the five commensurability classes are new and distinct in Section 8,
and recall the proof of non-arithmeticity in Section 8.2; see also [Pau10]. The fact that the
groups are non-discrete for all other integer values of p was proved in [DPP11].

We prove that the above six groups are lattices by constructing explicit fundamental
polyhedra for their respective actions on H2

C, using Theorem 3.2. By this method we obtain
presentations of the lattices:

Theorem 4.4 Let τ = σ4 = −(1 + i
√
7)/2. For p = 3, 4, 5, 6, 8, 12 the group Γ(2π/p, τ) has

the presentation:

〈
R1, R2, R3, J

∣∣∣ Rp
1 = J3 = (R1J)

7 = id, R2 = JR1J
−1, R3 = J−1R1J,

(R1R2)
2 = (R2R1)

2, (R1R2)
4p/(p−4) = (R1R2R3R

−1
2 )6p/(p−6) = id

〉
.

If an exponent is infinite or negative then the relation should be omitted.

Moreover, from the detailed analysis of the polyhedra and the groups, we obtain the orb-
ifold Euler characteristic χ of the quotient orbifolds (hence their complex hyperbolic volume
which is 8π2χ/3):

Theorem 4.5 Let τ = σ4 = −(1+i
√
7)/2. Let χ(2π/p, τ) be the orbifold Euler characteristic

of the orbifold Γ(2π/p, τ)\H2
C. Then χ(2π/p, τ) has the following values

p 3 4 5 6 8 12

χ(2π/p, τ) 2/63 25/224 47/280 25/126 99/448 221/1008
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4.2 Description of the groups

We use the notation of the previous section, and write nj for polar vector to the mirror of
the complex reflection Rj (j = 1, 2, 3). Matrix representatives for Rj in SU(2, 1) will have
eigenvalues a2, a, a where

a = e2πi/3p.

Since Rj+1 = JRjJ
−1 we see that nj+1 = Jnj (with j mod 3). We use {n1,n2,n3} as a

basis for C3. The matrix for J is then simply the permutation matrix:

J =



0 0 1
1 0 0
0 1 0




and the Hermitian form is given by a matrix of the form

H =



α β β

β α β

β β α


 .

It is convenient to choose
α = 4 sin2(π/p) = 2− a3 − a3,

in which case the condition tr(R1J) = τ imposes

β = (a2 − a)τ.

The matrix of the reflection R1 (adjusted to have determinant 1, since we want to work with
SU(2, 1)), is easily seen to be

R1 =



a2 τ −aτ
0 a 0
0 0 a




and R2 = JR1J
−1, R3 = J−1R1J .

The configuration of three complex lines given by the mirrors of R1, R2 and R3 varies with
p. Note that the relative position of the mirrors of R1 and R2 is controlled by the restriction
of the Hermitian form to Span(n1,n2), i.e by the sign of the determinant of the 2× 2 matrix
in the upper left corner of H. Using the specific value τ = −(1 + i

√
7)/2 (in fact all we need

is that |τ |2 = 2), we have

α2 − |β|2 = 8 sin2(π/p)
(
2 sin2(π/p)− 1

)
= −8 sin2(π/p) cos(2π/p).

Hence the mirrors intersect inside complex hyperbolic space only for p = 3, they intersect at
infinity when p = 4, and they are ultraparallel when p > 5 (see Figure 2).

For future reference, we define
P = R1J

and
S1 = P 2R1P

−2R1P
2 (11)
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Figure 2: Relative positions of the mirrors of R1, R2, R3. For p > 5, the dotted lines
correspond to the lines polar to pjk, or in other words the common perpendicular between
the mirrors of Rj and Rk.

which will turn out to be key isometries when constructing our fundamental domains. Since
P = R1J has trace τ = −(1 + i

√
7)/2 = e−2πi/7 + e−4πi/7 + e−8πi/7, we immediately see that

P is a regular elliptic map of order 7, with isolated fixed point

p =



ae−2πi/7

1

ae2πi/7


 . (12)

For completeness, we write out an explicit matrix for S1:

S1 =



−a a τ −1
0 −aτ + a2τ a2τ − a2 − a
0 −1− a3 + a3τ aτ − a2τ


 .

4.3 Word notation

We shall often use word notation and write j for Rj and j̄ for R−1
j , so that a word in R1,

R2, R3 and their inverses is described by a sequence of (possibly overlined) integers. Note
that there is very little confusion possible between R−1

j and the complex conjugate matrix

Rj (which we shall never use in this paper). For example, 232̄ denotes R2R3R
−1
2 , and 13̄231̄

denotes R1R
−1
3 R2R3R

−1
1 .

When an isometry given by a word w in R1, R2, R3 has an isolated fixed point, we denote
this point by pw or qw. In particular, consider two reflections with distinct mirrors that can
be expressed as words u, v. If w = uv is conjugate in Γ to 12 (this is a word, not a number!)
then we denote by pw the intersection point of their mirrors of reflections (or the intersection
of the extension of their mirrors to projective lines, i.e. these points may be in Pn

C rather
than Hn

C). Similarly, if w = uv is conjugate to 1232̄ then we denote the fixed point of w by
qw. The reason for using different letters of the alphabet is that points the of the form pw and
those of the form qw are in different group orbits. We will refer to vertices of our polyhedra
that have the form pw for some word w as p∗-vertices (and similarly for q∗-vertices).

Let nw denote a lift to C3 of the corresponding point pw. Of course, by definition, these
lifts are only determined up to multiplication by a scalar; so we give some explicit formulae
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for future reference.

n232̄ = R2n3 =



0
τ
a


 , n1231̄ = a · R1 n23 =



a6 + a3 − a3τ + τ

a2τ − a
a2τ − a


 ,

n1232̄ =




a2 + aτ
a3 − a3 − τ
a4τ + a


 , n13̄23 =




a2 + aτ
a4τ + a

a3 − a3 − τ


 , n13̄231̄ = a ·R1R

−1
3 n2 =



a2

a
τ


 .

We will also denote by mw the mirror of the complex reflection corresponding to a word
w, so that nw is a polar vector to mw (in other words, mw corresponds to n⊥

w). We will also
extend this notation to group elements that have a complex reflection as a power, so that
(when p > 5) m23 denotes the mirror of (R2R3)

2, and (when p > 8) m1232̄ denotes the mirror
of (R1R2R3R

−1
2 )3.

4.4 Higher braiding

The following result is clear from the analysis in [PP09], but it can also be checked by explicit
computations (see also Section 9.2.1 of [DPP11], and Section 2.2 of [Mos80]). Geometrically,
it corresponds to the relative positions of the mirrors of R1 and R2 described in Section 4.2
and illustrated in Figure 2. When we use the Poincaré polyhedron theorem in Section 7.4,
we will derive these equations from the cycle relations, see Lemma 7.12.

Proposition 4.6 (R1R2)
2 is a complex reflection with angle (p − 4)π/p when p 6= 4, and it

is parabolic when p = 4. For p = 3, (R1R2)
2 is a complex reflection in the point p12 where

the mirrors of R1 and R2 intersect. For p > 5, it is a complex reflection in the common
perpendicular complex line m12 to the mirrors of R1 and R2. Moreover, for any p, we have
the higher braid relation

(R1R2)
2 = (R2R1)

2 (13)

Note that it follows from (13) that R1 and R2 both commute with (R1R2)
2, which implies

the orthogonality statement about their mirrors. More specifically, we have

Proposition 4.7 The group 〈R1, R2〉 is a central extension of a (2, p, p) orientation preserv-
ing triangle group with center 〈(R1R2)

2〉 of order 2p/|p − 4| (which is infinite for p = 4). In
particular, 〈R1, R2〉 has order 8p2/(4− p)2 when p 6 3 and infinite order when p > 4.

Proof. The first statement follows from the fact that R1 and R2 have order p and
(R1R2)

2 is central with order 2p/|p− 4|. The second statement follows from the fact that for
p 6 3 a (2, p, p) triangle group has order 4p/(4− p) and for p > 4 it is infinite. ✷

It is useful to have a formula for the mirror of (R1R2)
2 (when p > 5), which is polar to

n12 =



a2τ − a
a2τ − a
a3 + a3


 .
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The notation is set up to indicate that it is the intersection point of the mirrors of R1 and R2.
When p = 3, 4 the vector n12 projects to p12, which is in H2

C or on its boundary respectively.
The obvious extension of this notation allows to describe the J-orbit of this vector, namely

n23 = Jn12, n13 = Jn23.

Note that the higher braid relation holds of course between any pair of reflections Rj and Rk

with j 6= k, since JRkJ
−1 = Rk+1, so that

(R2R3)
2 = (R3R2)

2, (R3R1)
2 = (R1R3)

2.

The following observation will be useful later.

Proposition 4.8 P 2S1 is a complex reflection, in fact

P 2S1 = R2R
−1
3 R−1

2 . (14)

Proof. Using the identity (11), we see that P 2S1 = R−1
3 R−1

2 R−1
3 R2R3, by repeatedly using

P = R1J and JRkJ
−1 = Rk+1. The equality (14) then follows from the braid relation

(R2R3)
2 = (R3R2)

2. ✷

A similar analysis holds for R1 and R2R3R
−1
2 . In fact, in this case we recover the braid

relation (compare with the calculations in [DFP05] or in Section 2.2 of [Mos80] or Section 6
of [Par06]).

Proposition 4.9 (R1R2R3R
−1
2 )3 is a complex reflection with angle (p − 6)π/p when p 6= 6,

and it is parabolic when p = 6. For p 6 5, (R1R2R3R
−1
2 )3 is a complex reflection in the point

q1232̄. For p > 7, it is a complex reflection in the complex line m1232̄ perpendicular to the
mirrors of R1 and R2R3R

−1
2 . Moreover, for any p ∈ N∗, we have the braid relation

R1(R2R3R
−1
2 )R1 = (R2R3R

−1
2 )R1(R2R3R

−1
2 ). (15)

Proposition 4.10 The group 〈R1, R2R3R
−1
2 〉 is a central extension of a (2, 3, p) orientation

preserving triangle group with center 〈(R1R2R3R
−1
2 )3〉 of order 2p/|p − 6| (which is infinite

for p = 6). In particular, 〈R1, R2R3R
−1
2 〉 has order 24p2/(6 − p)2 when p 6 5 and infinite

order when p > 6.

Proof. Since R1 has order p and (R1R2R3R
−1
2 R1)

2 = (R1R2R3R
−1
2 )3 is central with

order 2p/|p− 6|, we obtain the first statement. The second statement follows since a (2, 3, p)
triangle group has order 12p/(6 − p) for p 6 5 and is infinite for p > 6. ✷

5 Definition of E

Inspired by the detailed analysis of fundamental domains given in [Par06] and [Tho10] (see
also [Sch03]), we have a natural way to associate a set of bisectors to the group Γ, which we
refer to as the set of bounding bisectors (see section 5.1). It turns out to be quite painful to
determine the precise combinatorics of the polyhedron F bounded by the bounding bisectors;
in fact it is not even obvious that F is connected.
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As a consequence, we define E to be the connected component of F containing the fixed
point p of P = R1J . We will show that E is a piecewise smooth polyhedron (see Section 3.2
for the meaning of that word), and in parallel we determine its precise combinatorics. This
allows us to show that E is a fundamental domain for the action of the cosets of Υ = StabΓ(E)
in Γ.

In fact one could prove that E = F (which would then give a description of the com-
binatorial structure of F ) but this is not needed in order to prove our main theorem. The
main reason for working with E rather than F is that it significantly reduces the number of
computer calculations.

5.1 Bounding bisectors

The basic building blocks of E will be four bisectors, denoted by R1, R
−
1 , S1 and S

−
1 . There

are several ways to describe a bisector, for instance by describing it as the equidistance locus
of a specific pair of points, or by giving its real spine (see Section 2.3 for basic definitions).

Definition 5.1 1. R1 is the bisector whose extended real spine contains n1 and n23;

2. R
−
1 is the image of R1 under R1;

3. S1 is the bisector whose extended real spine contains n232̄ and n13̄23;

4. S
−
1 is the image of S1 under S1.

Recall from section 4.2 that we denote by p the isolated fixed point of P .

Definition 5.2 Let F be the intersection of the 28 half-spaces containing p bounded by the
bisectors P kR

±
1 and P kS

±
1 (k = 0,±1,±2,±3). The region E is the connected component

of F containing p.

We will refer to the 28 bisectors of the form P kR
±
1 and P kS

±
1 as the bounding bisectors.

Note that (at least for p > 4) our domain E has much simpler combinatorics than the Dirichlet
domains that were used in [DPP11]. As a slight drawback of not using Dirichlet domains, it
is unclear whether E is star-shaped with respect to p, and hence it is not convenient to use
geodesic cone arguments (rather we use fundamental domains for coset decompositions).

It will be useful to distinguish between sides of E and the bisector that contains them, so
we will use the following notation:

Definition 5.3 The intersection of E with a given bounding bisector is called a bounding
side. The 28 bounding sides will be denoted by

P kr±1 = E ∩ P k
R

±
1 ; P ks±1 = E ∩ P k

S
±
1 ,

for k = 0,±1,±2,±3.

The combinatorial structure of the bounding sides P kr±1 and P ks±1 is described in detail
in Section 6.2. Note that for a polyhedron E bounded by bisectors in H2

C, it is by no means
obvious how to determine the combinatorics of E from the knowledge of its vertices, which
explains the length of the sections stating and proving the combinatorics.
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5.2 Symmetry

The polyhedron E is by definition P -invariant. Our notation for bisectors is set up so that the
P -orbits can be conveniently read off their labels. For vertices (and mirrors of reflections), it
is a bit more tedious but completely straighforward to study these orbits. For concreteness
we treat a couple of examples in detail.

The basic point is that P = R1J , and JRkJ
−1 = Rk+1, i.e. conjugation by J raises

indices by one (mod 3). The P -image of the mirror of R1, which corresponds to the complex
line polar to m1, is polar to Pm1 = m121̄, since

P1P−1 = 1J1J−11̄ = 121̄.

The P -image of p23 is simply p13, since it is fixed by P23P−1 = 1J23J−11̄ = 1311̄ = 13.
Similarly, Pp13 = p12. Applying P often yields slightly more complicated results, for instance
the P -image of p12 is given by pP12P−1 = p1231̄, since

P12P−1 = 1J12J−11̄ = 1231̄.

It will be important in the sequel to observe that E also has an anitholomorphic involutive
symmetry, which we now explain. The antiholomorphic map

ι23 :



z1
z2
z3


 7−→



z1
z3
z2


 . (16)

clearly induces an isometry of H2
C, since 〈ι23v, ι23w〉 = 〈v,w〉. It is easy to verify that the

antiholomorphic map ι given by
ι = R1ι23 (17)

is an involution as well, and this will be useful several times throughout the paper.

Proposition 5.4 The involution ι preserves E, sending r1 to r−1 and s1 to s−1 .

Proof. It is easy to see that ι23 conjugates J into J−1 and R1 into R−1
1 . From this and the

fact that P = R1J , it follows easily that ι conjugates R1 into R−1
1 , and P into P−1 (beware

that ι23 does not conjugate P into P−1). In particular, ι fixes p.
The fact that ι conjugates S1 into S−1

1 follows from the fact that S1 can be expressed as
a palindromic word in R1 and P , namely S1 = P 2R1P

−2R1P
2.

Hence ι sends the half-space containing p bounded by P kR
±
1 (respectively P kS

±
1 ) to

the half-space containing p bounded by P−kR
∓
1 (respectively P−kS

∓
1 ). This show that ι

preserves F , and this implies that it preserves E (which is the connected component of F
containing p). ✷

We now work out some examples that illustrate how to read off the ι action on various
vertices using the word notation (see Section 4.3). For instance, we have

ι(p12) = R1ι23(p12) = R1(p13) = p13
ι(p23) = R1ι23(p23) = R1(p23) = p1231̄,

(18)

and
ι(q1232̄) = R1(q1̄3̄2̄3) = q3̄2̄31̄ = q13̄23 (19)
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Observe that Pp13 = p12 implies P 3p12 = P−3p13. Since p3̄2̄3123 = R−1
3 R−1

2 R−1
1 p13 = P−3p13

and ι(p3̄2̄3123 = R1(p232̄1̄3̄2̄) = R1R2R3p12 = P 3p12, we get

ι(p3̄2̄3123) = p3̄2̄3123. (20)

5.3 Alternative descriptions

Since the bounding bisectors R
±
1 , S

±
1 are central to the construction of the fundamental

domain, it will be useful to have alternative descriptions. In Table 1 we write the bounding
bisectors as equidistant from a pair of points and we also give some information that is useful
for computational purposes; see also Section 6.6.2. We label vectors that appear in the table
following the conventions from Section 4.3 (see also the next few paragraphs for the meaning
of y0). In the table, we list two vectors w,v with real inner products, so that the extended

Bisector Equidistant R-spine Polar Reflections

R1 B(y0, R
−1
1 y0) SpanR(n1, n23) f1 = [0, τ , aτ ] 1, (23)2

R
−
1 B(y0, R1y0) SpanR(a

2 · n1, a · n1231̄) f2 = f1 1, 1(23)21̄

S1 B(y0, S
−1
1 y0) SpanR(a · n232̄, n13̄23) f3 = [a2τ ,−a,−τ ] 232̄, (13̄23)3

S
−
1 B(y0, S1y0) SpanR(a · n13̄231̄, n1232̄) f4 = [a2τ , aτ, 1] 13̄231̄, (1232̄)3

Table 1: Descriptions of the bisectors R
±
1 and S

±
1 as equidistant hypersurfaces, and in terms

of vectors spanning their extended real spines. We also give polar vectors for their complex
spines and reflections whose mirrors are contained in each bisector (the mirror is either a
complex line or a point, depending on the value of p).

real spine is obtained by taking real linear combinations of these two vectors (the real spine
corresponds to such vectors with negative square norm). For convenience, we also give a polar
vector to the complex spine, i.e. a nonzero vector f with 〈w, f〉 = 〈v, f〉 = 0, as well as specific
reflections whose mirrors are slices of these bisectors.

Proposition 5.5 The bisectors R1, R
−
1 , S1 and S

−
1 are all coequidistant from a point in

H2
C, which we denote by y0. More specifically, R

±
1 = B(y0, R

∓1
1 y0) and S

±
1 = B(y0, S

∓
1 y0).

Proof. From a pair of vectors w,v spanning the real spine of a bisector, one easily finds a
vector orthogonal to both of them, since this amounts to finding a vector f that satisfies

w∗Hf = v∗Hf = 0

which is a linear system in f . This allows us to get formulae for the four vectors fj. Note that
R1 and R

−
1 are cospinal, i.e. they have the same complex spine.

From the fj, one can easily find the intersection between two of the complex spines,
again by solving a linear system. The vector y0 can obtained in this way, being the unique
intersection point of the complex spines of R1 and S1. For future reference, we give explicit
coordinates:

y0 =




−a3(a2τ + a)2

(a2τ + aτ)(a2τ − a)
(a2τ + aτ)(a2τ − a)


 , (21)
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One easily checks that 〈y0, fj〉 = 0 for all j = 1, 2, 3, 4, so that all four bisectors R
±
1 , S

±
1 are

equidistant from y0. A further simple check shows that 〈y0,y0〉 < 0 and so y0 corresponds
to a point y0 ∈ H2

C.
We now show that R1 = B(y0, R

−1
1 y0). From Table 1 we see that the spine of R1 is the

real span of n1 and n23. These vectors are both fixed by the involution ι23 defined in (16),
and so it also fixes any vector on the real spine of R1. Applying ι23 to y0 and simplifying, we
see that ι23 y0 = ā2R−1

1 y0. Therefore, if s is any vector in the real spine of R1 we have:

〈y0, s〉 = 〈ι23 y0, ι23 s〉 = a2〈R−1
1 y0, s〉.

Therefore, any point of R1 is equidistant from y0 and R−1
1 y0. Applying R1 we see that R

−
1

is equidistant from R1y0 and y0.
Similarly, the involution 3̄2̄31̄3̄ι12 fixes a · n232̄ and n13̄23 and so fixes the spine of S1

pointwise. We calculate that 3̄2̄31̄3̄ι12y0 = ā2S−1
1 y0. Hence S1 = B(y0, S

−1
1 y0). Applying

S1, we find that S
−
1 = B(S1y0, y0). ✷

Later, in Table 3 we describe R
±
1 , S

±
1 and their images under powers of P as equidistant

hypersurfaces with respect to some other points.

6 Combinatorics of E

In this section we describe the combinatorics of E and show that it is a topological ball with
piecewise smooth boundary, each piece being contained in one of the bounding bisectors. The
proof of the precise combinatorics of E is difficult, but necessary to apply the Poincaré poly-
hedron theorem. In fact it is delicate even to give a detailed description of the combinatorics
(this will be done in Section 6.1). Indeed, for a general polyhedron bounded by bisectors in
H2

C, it is not sufficient to give the vertices, as there can be for instance distinct 1-cells joining
two given vertices (see [DFP05]).

In order to prove the combinatorics, we first construct a combinatorial model Ê for E.

We then describe its geometric realization, which is a map φ from Ê into H
2
C, sending each

3-cell into one of the bounding bisectors (see Definition 5.1), and we prove that φ(Ê) = E.
This simultaneously proves the statement of the combinatorics of E, and shows that E is a
polyhedron in the sense of Section 3.2.

Our combinatorial model is somewhat similar to the one used by Schwartz in Section 6
of [Sch03]. However, our geometric realization of Ê uses bisectors whereas Schwartz uses
affine cells.

6.1 Statement of the combinatorics of E

We state the combinatorics in the form of pictures of the 3-cells, with incidence information
along each piece of the skeleton. Recall from Section 5 that E only has two isometry classes
of faces (by applying ι and powers of P ), so we need only draw pictures for r1 and s1.

Figures 3 to 5 give a concise, efficient description of the combinatorics. For each 3-face, we
give two different pictures (top and bottom), one listing bisectors containing each facet, one
listing vertices. At first glance, the pictures may seem a little cryptic, so we briefly explain
how the incidence relations can be read off.
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Figure 3: Adjacency relations of r1 and s1 with other faces of Ê, for p = 3, 4. Larger font is
used to label ridges, and smaller fonts to label lower-dimensional facets.
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Figure 4: Adjacency relations of r1 and s1 with other faces of Ê, for p = 5, 6. We draw curved
lines when two neighboring edges lie on the same intersection of three bisectors.
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Figure 5: Adjacency relations of r1 and s1 with other faces of Ê, for p = 8, 12.
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As an example, we obtain the list of all bounding sides containing the vertex labelled p12
on part (c) of Figure 3. Obviously it is contained in r1. The picture in (a) suggests that
it is on three 2-cells of r1, whose labels indicate that p12 is also on r−1 , P

−1r−1 , and P 2s1.
Similarly, from the 1-cells of r1 containing p12, we see that it is also on Pr1, P

−3s−1 and P 2r1.
Finally, the labels near that vertex in part (a) of the Figure indicate that it is on Pr−1 , P

−3s1
and P−1s−1 .

More generally, given any facet f of E, a similar process allows us to obtain the list
of all bounding bisectors that contain f . Note that the pictures for P kr1 and P ks1 are
obtained simply by applying P k, whereas those for P kr−1 and P kr−1 one also needs to apply
the antiholomorphic involution ι from Section 5.2. Recall that ι conjugates R1 into R−1

1 , S1
into S−1

1 , and P into P−1, so the image of the figures in part (a) and (b) under ι are obtained
simply by changing signs. For the figures in parts (c) and (d), one needs to use the description
of the action of ι on vertices according to their labels (see Section 5.2).

Remark 6.1 • The vector n23 is a negative vector when p = 3 and a null vector when
p = 4. The corresponding point p23 is therefore in H2

C and on ∂H2
C respectively. Hence,

for p = 3 and p = 4, the combinatorics of the polyhedra E are only the same when
viewed in H2

C ∪ ∂H2
C, some vertices being on the ideal boundary for p = 4 (see also the

discussion around Figure 2). A similar remark is in order for p = 5 and p = 6, since for
p = 6 the polyhedron E has vertices on the ideal boundary ∂H2

C.

• The vector n23 is a positive vector when p > 5. Therefore the vertex p23 of r1 is
replaced with a ridge in m23, the complex line polar to n23. We refer to this process
as truncation. In s1, the vertex p23 is only replaced with an edge in m23 since it
only intersects two complex lines orthogonal to m23, namely m232̄ and m3̄23. Similarly,
the vertices p12, p13 of r1 and the vertex p3̄2̄3123 of s1 are replaced with edges in the
corresponding complex lines. A second truncation process occurs for the q∗ vertices for
p > 8.

6.2 The combinatorial model Ê

In this section, we build a combinatorial model Ê for E. To keep the notation reasonable,
we do not introduce new symbols for the facets of Ê, and simply label them the same as the
corresponding facets of E.

In order to define Ê, we first define its 3-skeleton Ê3. This is made up of 28 cells, attached
according to the adjacency relations indicated in Figures 3 to 5.

Note that each 2-cell is on precisely two 3-cells, which makes it obvious which combinato-
rial 2-cells get identified. The gluing is then uniquely determined by matching labels of the
vertices. The identifications for 0 and 1-cells are most conveniently read off parts (c), (d) of
the figures. Indeed the action of ι and P on the vertices can easily be read off the labels; see
Section 6.1 and also Tables 16 to 19 in the appendix (Section 9).

It is easy to see that all k-cells of the 3-skeleton Ê3 are homeomorphic to embedded closed
balls, and in particular for each k-cell f of Ê3, ∂f is an embedded (k−1)-sphere (see Figures 3
through 5).

We will also prove the following, which is much less obvious (see Section 6.3).

Theorem 6.2 Ê3 is homeomorphic to S3.
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This allows us to define Ê, which is obtained by attaching a single 4-cell to Ê3 in the obvious
manner.

We now describe a piecewise smooth geometric realization φ : Ê → H
2
C, i.e. we describe

a specific k-ball in H
2
C for each k-cell of Ê. Naturally, the realization is uniquely determined

by the requirement that each 3-cell be mapped into the appropriate bisector (or rather its

closure in H
2
C, since for p = 4 or 6 some vertices of E lie on the ideal boundary).

We define φ inductively on dimension, starting from vertices, then extending it successively
to the 1-skeleton, then to the 2-skeleton, and so forth. When realizing the k-faces, we will
check the following conditions on the restriction of φ to the k-skeleton Êk:

• (Consistency) For each k-face f , φ(f) is contained in all the bisectors indicated by the
labels in Figures 3 through 5;

• (Correct side) φ(Êk) is entirely contained in F ;

• (Embeddedness) φ gives an embedding of Êk.

The consistency condition is obvious for 2 and 3-faces, but it requires some calculations for
vertices and edges (note that these lie on more bisectors than their codimension).

The fact that φ(Êk) lies inside F amounts to showing that for each bounding bisector B,
φ(Êk) is on the same side of B as p. We will do this by analyzing, for each k-face f , the
intersection f ∩ B with every bounding bisector B. Because the intersection patterns of F
are governed by the intersection of bisectors, the “correct side” condition actually implies the
embeddedness.

Note that φ(Ê) is connected, so φ(Ê) ⊂ F actually implies φ(Ê) ⊂ E (recall that E is
the connected component of F containing p), provided we can connect p to a single point
in φ(Ê) within F . This is contained in the following result, which is easily proved by giving
explicit parametrizations for the relevant geodesic segments (see Section 6.5), and checking
that p is on the correct side of the 28 bounding bisectors.

Lemma 6.3 For p = 3, 4 (respectively p = 5, 6, 8, 12) the geodesic segment [p, p12] (resp.
[p, p112]) intersects the 28 bounding bisectors at most at the endpoint p12 (resp. p112). It is
contained in F , whereas the complementary geodesic ray, from p12 (resp. from p112) to ∂H2

C

is entirely outside F .

We now sketch the general scheme that allows us to construct the geometric realization
φ. For vertices, the labels in the bottom part of Figures 3 through 5 determine an embedding
of the 0-skeleton of Ê (each vertex is the fixed point of a specific isometry in the group). The
embedding part of this statement corresponds simply to the fact that all vertices in the list
are distinct. The consistency condition will be checked in Section 6.4, and the correct side
condition then amounts to checking a small set of (strict) inequalities, which can easily be
done with a computer.

Now let k > 1, and suppose φ is already known to give an embedding of the (k−1)-skeleton.
In order to extend φ across a k-cell f of Ê, we exhibit a specific closed k-dimensional ball

Dk in H
2
C containing the (k − 1)-skeleton of f , which is in fact forced by the consistency

condition. More specifically, for k = 1, each ball is simply the (unique) real geodesic segment
between the two vertices realizing the 0-skeleton of f . For k = 2 or 3, the k-ball is given by
the intersection of 4− k (closures of) bisectors. The specific set of bisectors is obtained from

the labels in Figures 3 to 5. Finally, for k = 4, the ball is of course the whole of H
2
C.
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Since we assume φ induces an embedding of the (k − 1) skeleton, φ(∂f) is a piecewise
smoothly embedded (k − 1)-sphere in Dk (with finitely many points on ∂H2

C). This gives a
well-defined k-ball that realizes f . Implicit in the above description is the assumption that the
relevant pairs of bisectors intersect in disks, which will be proved in Sections 6.6.1 and 6.6.2.
We postpone the proof of consistency and embeddedness of the 0, 1, 2 and 3-skeletons, which
will be discussed in Sections 6.4 through 6.8 (for clarity, we collect all results about each
dimension in a separate section). Among all the consistency, correct side and embeddedness
conditions, the most difficult one is correct side condition for the 2-skeleton. This relies on
difficult computations, explained in detail in Section 6.7.

Assuming these results, we obtain a realization of all Ê, by mapping the single 4-cell to
the 4-ball bounded by φ(Ê3) (this is a piecewise smoothly embedded copy of S3 so it bounds
a well-defined closed ball). Note that this ball component contains the fixed point p of P , by
Lemma 6.3. As a summary, we get the following:

Theorem 6.4 φ defines an embedding of Ê, with image contained in F .

The following result then follows from elementary topology.

Corollary 6.5 The realization of Ê is equal to E. In particular, E is a polyhedron in the
sense of Section 3.2.

Proof. (of Corollary 6.5) By Theorem 6.4, φ(Ê) ⊂ E. We now show E ⊂ φ(Ê). No
point of E◦ is contained in any of the 28 bounding bisectors, hence E◦ has empty intersection
with φ(Ê3). Since E◦ is connected and contains p, which is contained in φ(Ê), we get that
E ⊂ φ(Ê) as required. ✷

6.3 Ê3 is homeomorphic to S3
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Figure 6: The combinatorics of the intersection T r ∩ T s, for p = 3, 4. This intersection is
a torus, and accordingly the top and bottom sides (resp. left and right sides) are identified
by translation. The bold lines describe a splitting of these tori into annuli, corresponding to
splitting of the solid tori into pairs of cylinders.
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Figure 7: The combinatorics of the intersection T r ∩ T s, for p = 5, 6.
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Figure 8: The combinatorics of the intersection T r ∩ T s, for p = 8, 12. The torus is now not
embedded, the white squares correspond to pinch points, i.e. they come in pairs that get
identified in H2

C.
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This section contains a proof of Theorem 6.2. We will exhibit Ê3 as the union of two solid
tori with common boundary, and check that the intersection number of the boundary of both
meridians is equal to one.

In order to do this, consider the following two unions of 3-cells:

T r =

3⋃

k=−3

P k(r1 ∪ r−1 ) and T s =

3⋃

k=−3

P k(s1 ∪ s−1 ).

Note that these are clearly P -invariant (hence their intersection is P -invariant as well).
For p 6 6, these will turn out to give a solid torus decomposition. For p = 8, 12, the solid

tori are obtained from these by an adequate local surgery, to be discussed later in the proof
(see Lemma 6.9).

The combinatorial pattern of the intersection of T r and T s is depicted in Figures 6, 7
and 8 for various values of p (compare this to Figure 6.2 of [Sch03]). These pictures can
be obtained by somewhat painful bookkeeping from Figures 3 through 5 and their obvious
variations, i.e. images under powers of P and/or the antiholomorphic symmetry ι.

A few remarks are in order for the pictures to be read properly. First note that we cannot
draw a Euclidean plane figure, since hexagonal faces of S are often glued along two consecutive
sides. For instance, we represent hexagons by triangles, thinking of the midpoint of the edge
of the triangle as a vertex of the hexagon (see Figure 8).

Secondly, the pictures are embedded in Ê3 only for p = 3, 4, 5 and 6; for p = 8 or 12, the
intersection T r ∩ T s is obtained from the torus in Figure 8 by identifying 7 pairs of points,
indicated in the figure by square vertices. We will refer to these 7 points as pinch points.

We first treat the case p 6 6.

Lemma 6.6 If p 6 6 then T r and T s are both solid tori, with union homeomorphic to S3.

Note that it would suffice to prove that π1(T
r) = π1(T

s) = Z. It would then follow from
Seifert-Van Kampen that π1(Ê3) = π1(T

r ∪ T s) = 1, which implies that Ê3 is homeomorphic
to S3 (this argument requires checking that Ê3 is a manifold, which follows from the detailed
study of the links of its vertices). Using the solution of the Poincaré conjecture seems like
overkill, so we now give a bare hands proof.

We prove Lemma 6.6 by constructing disjoint closed disks Dr
1 and Dr

2 in T r whose com-
plements are balls (and similarly Ds

1 and D
s
2 in T

s), and check that the intersection number of
Dr

1 and D
s
1 is equal to one. The boundary of each of these disks is depicted in Figures 6 and 7;

the bold horizontal line is ∂Dr
1, the top (or bottom) horizontal line is ∂Dr

2, and similarly for
vertical lines and ∂Ds

j .
Specifically,

Ds
1 = P−2s1 ∩ s−1 ,

Ds
2 = P−1s1 ∩ Ps−1 ,

Dr
1 = (P 3r1 ∩ P 3r−1 ) ∪ (P−2r1 ∩ P 2r−1 ) ∪ (P−3r1 ∩ P−3r−1 ) ∪ (P−3r1 ∩ P 3r−1 ),

Dr
2 = (Pr1 ∩ P−1r−1 ) ∪ (Pr1 ∩ P−2r−1 ) ∪ (r1 ∩ r−1 ) ∪ (P 2r1 ∩ P−1r−1 ).

(22)

The fact that these are indeed disks is readily checked by using the description of the combi-
natorics and adjacency relations between the 3-cells given in Figures 3 to 4. The following is
clear from those pictures:
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P
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1

P −3
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1
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2
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1
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P
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s
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− 1
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1

Pr1 ∩ P−1r−1

Pr1 ∩ P−2r−1

r1 ∩ r−1

P 2r1 ∩ P−1r−1
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1
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1 , P

s
1

P
r
−1
1

, P
−1 s

−
1

P −
1
r
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P
r
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1
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−1 s

−
1

P
3 s 1

, P
3 s
−
1

P −
3
s
1 , P −

3
s −
1
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1 , P −

2
s −
1

r 1
, P
2 s 1

P−2r−1 , P
−2s−1
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s
1
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− 1

r 1
,r

− 1

r 1
, P
−2 r

−
1

r −
1 , P 2

r
1

(b) Dr

2

Figure 9: The combinatorics of the disks Dr
1 and Dr

2, for p = 5, 6.

Proposition 6.7 The intersection number of ∂Dr
1 and ∂Ds

1 is equal to one.

For completeness, we give the combinatorial structure of the disks Dr
1 and Dr

2 in Figure 9.
We write T r = U r ∪ V r (resp. T s = U s ∪ V s) for the decompositions corresponding to

splitting along these disks, which are given in terms of 3-cells of Ê3 by the following:

U s = Ps1 ∪ Ps−1 ∪ P 3s1 ∪ P 3s−1 ∪ P−2s1 ∪ P−2s−1 ,

V s = s1 ∪ s−1 ∪ P 2s1 ∪ P 2s−1 ∪ P−3s1 ∪ P−3s−1 ∪ P−1s1 ∪ P−1s−1 ,

U r = r1 ∪ P−1r1 ∪ P−1r−1 ∪ P−2r1 ∪ P−2r−1 ∪ P 3r−1 ∪ P−3r−1 ,

V r = r−1 ∪ Pr1 ∪ Pr−1 ∪ P 2r1 ∪ P 2r−1 ∪ P 3r1 ∪ P−3r1.

(23)

In order to prove Lemma 6.6, it is enough to prove the following.

Lemma 6.8 U s and V s are homeomorphic to balls, and intersect precisely in the two disks
Ds

1, D
s
2. Likewise, U r and V r are homeomorphic to balls, and intersect precisely in the two

disks Dr
1, D

r
2.

Proof. This follows from a careful study of the gluings, using the fact that each 3-cell of Ê3

is a 3-ball. This is easiest for U s and V s, since F = s1∪ s−1 is a ball, F ∩P±2F are both disks
and F ∩ P 4F is empty; note that

V s = F ∪ P 2F ∪ P 4F ∪ P 6F and U s = PF ∪ P 3F ∪ P 5F.

For the r-splitting, we write each of U r and V r as an increasing union, gluing a ball along
a single closed disk at each stage. More specifically, given a subcomplex Z (which is either
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U r or V r), we give an explicit sequence Cn of subcomplexes with C0 = F0 a 3-cell,

Cn = Cn−1 ∪ Fn

for a single 3-cell Fn of Ê3, and which terminates with CN = Z. The point is to choose the
3-cells Fn so that Fn ∩ Cn−1 is homeomorphic to a disk.

To be specific, we give an explicit such sequence for V r that works for all values of p:

P−3r1, P
2r−1 , P

3r1, P r
−
1 , P

2r1, r
−
1 , P r1.

At each stage, we check that Cn−1 ∩ Fn is indeed a disk by using the description of the
combinatorics given in Figures 3 to 5 (and obvious variations, obtained by applying the
suitable power of P and/or the symmetry ι).

The corresponding sequence for U r is easily deduced from the one for V r by applying the
antiholomorphic involution ι. This finishes the proof of Lemma 6.8, hence also the proof of
Lemma 6.6. ✷

We now consider the case p > 8. What remains true from the statement of Lemma 6.6 is
the following:

Lemma 6.9 For p = 8 and 12, T r ∪ T s is homeomorphic to S3.

However, T r and T s are now singular handlebodies, with complementary singularities as we
now explain.

A lot of the description of T r and T s for p 6 6 goes through. In particular, we use the same
definition for Dr

1, D
r
2, D

s
1, D

s
2, see equation (22), and for U r, V r, U s, V s, see equation (23).

The picture in Figure 8 makes it clear that U r and V r are cylinders, whereas U s and V s are
both singular. We state this more precisely in Lemmas 6.10 and 6.11.

Lemma 6.10 Let p = 8 or 12. Then Dr
1 and Dr

2 are disjoint embedded closed disks, U r and
V r are both homeomorphic to 3-balls. The intersection U r ∩V r is given by the disjoint union
of Dr

1, D
r
2 and seven isolated points. The interior of T r is an open solid torus.

The seven isolated points are given by q232̄
1232̄

(which is the single intersection point of the
3-cells r1 and P 2r−1 ), and the six other points in its P -orbit. These are indicated by square
vertices in Figure 8. As mentioned earlier, we refer to these as pinch points.

The corresponding result for T s is the following. By a bowtie, we mean the result of
gluing two triangles along a single vertex, which we call the apex of the bowtie.

Lemma 6.11 Let p = 8 or 12. Then Ds
1, D

s
2 are disjoint bowties, with apex at a pinch point.

U s contains 3 pinch points, V s contains 4 pinch points, and the interior of T s is an open
handlebody of genus 8.

We now analyze the local structure around any of the seven pinch points, say q232̄
1232̄

. It lies

on precisely six 3-cells of Ê3 (see Figure 5), namely r1, P
2r−1 , s1, P

2s1, s
−
1 and P 2s−1 , and

appears as the intersection of two different pairs of hexagons on the boundary torus,

r1 ∩ s1, r1 ∩ P 2s1
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on the one hand, and
P 2r−1 ∩ s−1 , P 2r−1 ∩ P 2s1,

see Figure 8.
The link of that vertex is shown in Figure 10. Note that it is homeomorphic to a sphere,

so even though both pieces T r and T s are singular, the union T r ∪ T s is a 3-manifold.

P 2s1

s 1P
2s

−
1

s−1

P
2 r

−
1

r 1

Figure 10: Link of q232̄
1232̄

, for p = 8 or 12.

We construct a non-singular solid torus T̃ r (resp. T̃ s) from T r (resp. T s) by performing
an obvious surgery in a small ball near each pinch point, using the picture of the link given
in Figure 10 as a guide.

T r

T s

˜
T r

˜
T s

q232̄
1232̄

Figure 11: We draw vertical sections of a rotationally symmetric local model (think of T r near
the pinch point as a circular cone). After surgery near the pinch points, the white bowties
become disks.

After surgery, the two bowties (shown in white in Figure 11) become disjoint disks, D̃s
1

and D̃s
2, which exhibits T̃ s as a solid torus (union of two cylinders). The disk Dr

1 is unaffected

by the surgery, and it clearly intersects D̃s
1 in a single point, since the intersection point of

the bold lines in Figure 8 occurs away from the pinch points. ✷

6.4 Realization of the vertices of Ê

In this section, we describe in detail the 0-skeleton of Ê, depending on the parameter p. We
describe the geometric realization φ on the level of the 0-skeleton, check the consistency of
this realization with the labels in Figures 3 through 5, as well as the embeddedness of the
realization (see Section 6.2 for the explanation of this terminology).

Consistency is checked by finding the complete list of bounding bisectors (see Section 5)
that contain the realization of each vertex. This will be done case by case in Proposi-
tions 6.13, 6.15 and 6.17. Checking embeddedness then requires no further verifications,
since the vertices turn out to be uniquely determined by the set of bounding bisectors that
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contain them. The correct side condition for vertices amounts to proving a small number of
strict inequalities, which is easily done with a computer (the point is that the relevant vertices
and bisectors are k-rational, where k = Q(a, τ), see the discussion in Section 2.7).

As mentioned in Section 6.2, the realization of the vertices of Ê is determined by Figures 3
through 5, where vertices are described as fixed point sets of the isometry given in word
notation by their labels (see Section 4.3). The figures only list the vertices of r1 and s1, but
the other ones are obtained from those by applying ι and/or a power of P . For completeness,
we list the P -orbits of these vertices, depending on the value of p. There are two types of
vertices, which we call p∗-vertices and q∗-vertices (see Section 4.3).

Case p = 3 or 4: In this case there are two P -orbits of vertices, so that Ê has 14 vertices.
There is one P -orbit of p∗-vertices and one P -orbit of q∗-vertices.

1. The realization of the vertex pw is the unique fixed point in H
2
C of the element of Γ

represented by the word w. The seven p∗-vertices are realized by ideal vertices when
p = 4.

2. The realization of the vertex qw is the unique fixed point in H2
C of the map w ∈ Γ.

A representative of the P -orbit of p∗-vertices is p12, realized as the unique fixed point of R1R2.
A representative of the q∗-vertices is q1232̄, realized by the unique fixed point of R1R2R3R

−1
2 .

The P -orbits are easy to compute from the fact that P = R1J (and P 7 = Id), for instance

P1P̄ = 1J1J̄ 1̄ = 121̄,

P232̄P̄ = 1J232̄J̄ 1̄ = 1313̄1̄ = 3̄13,

where the last equality follows from the higher braid relation (31)2 = (13)2. These two
equalities give Pq1232̄ = q121̄3̄13. The vertices are given in Tables 16 and 18 in the appendix
(Section 9). From the preceding discussion, we obtain a realization of the 0-skeleton of Ê into

H
2
C, i.e. a definition of φ on the level of the 0-skeleton; we now check the consistency of this

embedding with the labels of Figures 3 to 5.
First, let us show that φ sends the vertices of r1 and s1 to points in the bisectors R1 and

S1 respectively.

Lemma 6.12 1. The bisector R1 contains p12, p13, p23, q1232̄ and q13̄23.

2. The bisector S1 contains p23, p3̄2̄3123, q1232̄ and q13̄23.

Proof. By construction, n23 lies on the real spine of R1. This vector projects to p23, the

unique fixed point in H
2
C of 23. Likewise, the complex line m1 fixed by R1 is a slice of R1.

The fixed points of 12, 13, 1232̄ and 13̄23 all lie on m1 and so are contained in R1. This
proves part (1). For part (2), begin by observing that the braid relation (see Proposition 4.9)
implies 3̄2̄3123 = 13̄231̄232̄ and so its fixed point lies on m232̄ and m13̄231̄. The rest of the
proof follows as in part (1). ✷

To finish the consistency verification, we list the bounding bisectors containing p12 and
q1232̄ (the list of bisectors containing any vertex is then obtained by applying suitable powers
of P ).

Proposition 6.13 Let p = 3 or 4. Then among the 28 bounding bisectors:
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1. The vertex p12 is on R1, R
−
1 , PR1, P

−1R
−
1 , P

2R1, P
2S1, P

−3S1, P
−3S

−
1 , PR

−
1 ,

P−1S
−
1 ;

2. The vertex q1232̄ is on R1, R
−
1 , S1, S

−
1 , P 2R1, P

2R
−
1 , P

2S1, P
2S

−
1 .

Proof. This follows from Lemma 6.12 and Tables 16, 18 in Section 9 (see also the action
of ι on the vertices described in Section 6.1). We only treat a couple of cases. For instance,
p12 ∈ P−1R

−
1 is equivalent to Pp12 = p1231̄ ∈ R

−
1 . Applying ι, this is equivalent to p23 ∈ R1,

which was proved in Lemma 6.12.
The fact that p12 is on P−3S

−
1 translates into P 3p12 = p3̄2̄3123 ∈ S

−
1 , or equivalently by

applying ι, P−3p13 ∈ S1. Since Pp13 = p12 and P 7 = id, we have P−3p13 = P 3p12. ✷

Case p = 5 or 6: For p > 5 the word (R1R2)
2 is a complex reflection fixing the complex line

m12. In that case, we replace the vertex p12 with four vertices p112, p
2
12, p

2̄12
12 and p121̄12 , that are

given by the intersections of m12 with m1, m2, m2̄12, and m121̄ respectively. The q∗-vertices
are unchanged. Thus, there are five P -orbits of vertices, so that Ê has 35 vertices.

1. The realization of the vertex pvw is the intersection of the complex lines mv and mw,
fixed by v and w2 respectively.

2. The realization of the vertex qw is the unique fixed point of w. The seven q∗ vertices
map to ideal points when p = 6.

The cycles of q∗-vertices are the same as for p = 3, 4 (see the second row of Table 18). The
four orbits of p∗-vertices are listed in Table 17.

Lemma 6.14 1. The bisector R1 contains the vertices p212, p
1
12, p

1
13, p

3
13, p

3
23, p

2
23, p

232̄
23 ,

p3̄2323 , q1232̄ and q13̄23.

2. The bisector S1 contains the vertices p3̄2323 , p232̄23 , p232̄3̄2̄3123, p
13̄231̄
3̄2̄3123, q1232̄ and q13̄23.

Proof. For R1, the statement is obvious for eight of the ten vertices, since vertices of the
form p1∗ and p∗23 lie on m1 and m23 respectively, and these are complex slices of R1. The last
two are handled using Lemma 2.3. We treat the case of p212 in detail, p313 is entirely similar.

Note that m12 is orthogonal to m1, since R1 and (R1R2)
2 commute. Similary, m2 is

orthogonal to m23. Lemma 2.3 implies that R1 intersects each of the complex lines m2 and
m12 in a real geodesic, and by definition p212 is the intersection point of these two geodesics.
This proves part (1). Part (2) is proved similarly. ✷

The analogue of Proposition 6.13 is the following:

Proposition 6.15 Let p = 5 or 6. Then among the 28 bounding bisectors:

1. the vertex p112 is on R1, R
−
1 , PR1, P

2R1, P
2S1, P

−1R
−
1 ;

2. the vertex p212 is on R1, P
2R1, P

2S1, P
−3S1, P

−3S
−
1 , P−1R

−
1 ;

3. the vertex p223 is on R1, P
2S1, P

2S
−
1 , P−3R

−
1 , P

−3S
−
1 , P−1R

−
1 ;

4. the vertex p323 is on R1, P
−3R

−
1 , P

−3S
−
1 , P−2R

−
1 , P

−1R1, P
−1R

−
1 ;
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5. the vertex q1232̄ is on R1, R
−
1 , S1, S

−
1 , P 2R1, P

2R
−
1 , P

2S1 and P 2S
−
1 .

Case p = 8 or 12: In this case there are seven P -orbits of vertices (so that Ê has 49 vertices).
The cycles of p∗-vertices are the same as for p = 5, 6 (there are four of them, see Table 17),
and there are three orbits of q∗-vertices, listed in Table 19. Since (R1R2R3R

−1
2 )3 is a complex

reflection fixing the complex line m1232̄, we replace the vertex q1232̄ with three vertices lying
in this complex line.

1. The realization of the vertex pvw is the intersection of the complex lines mv and mw,
fixed by v and w2 respectively.

2. The realization of the vertex qvw is the intersection of the complex lines mv and mw,
fixed by v and w3 respectively.

The following lemma is proved as before.

Lemma 6.16 1. The bisector R1 contains the vertices p212, p
1
12, p

1
13, p

3
13, p

3
23, p

2
23, p

232̄
23 ,

p3̄2323 , q232̄
1232̄

, q1
1232̄

, q1
3̄23

and q3̄23
13̄23

.

2. The bisector S1 contains the vertices p3̄2323 , p232̄23 , p232̄
3̄2̄3123

, p13̄231̄
3̄2̄3123

, q232̄
1232̄

, q1
1232̄

, q1
13̄23

, q3̄23
13̄23

and q13̄231̄13̄23 .

Proposition 6.17 Let p = 8 or 12. The p∗-vertices are on the same bounding bisectors as
in the case p = 5, 6, and the q∗-vertices are on the following bounding bisectors:

1. the vertex q113̄23 is on R1, R
−
1 , S1, S

−
1 , P−2R

−
1 and P−2S

−
1 ;

2. the vertex q3̄23
13̄23

is on R1, S1, P
−2R1, P

−2R
−
1 , P

−2S1 and P−2S
−
1 ;

3. the vertex q232̄
1232̄

is on R1, S1, S
−
1 , P 2R

−
1 , P

2S1 and P 2S
−
1 .

6.5 Realizing edges of Ê

In this section, we check the consistency and the embeddedness condition for the realization
of the 1-skeleton. Each 1-cell is realized as a geodesic segment joining the realization of its
two endpoints. According to the description of Ê, each 1-cell is on four 3-cells, so we need
to check that the geodesic segment realizing each 1-cell is contained in the appropriate set of
four bisectors (the set of bisectors is indicated by the labels of Figures 3 to 5). Recall from
Section 2.4 that in order to check that a geodesic segment [v0, v1] is on a bisector B, it is not
enough to check that its endpoints v0 and v1 are on B.

Proposition 6.18 The realization of the 1-skeleton of Ê is consistent.

Proof. This follows from repeated use of Lemmas 2.2 or 2.3. We illustrate this in a
couple of specific cases. First, suppose p = 3 or 4, and consider the geodesic through p12 and
p13. According to Proposition 6.13, it should be contained in

R1, R
−
1 , PR1, P−1

R
−
1 .
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By definition of the points p12 and p13, they are both in the mirror of R1, which is a common
complex slice of R1 and R

−
1 . Moreover, p13 (resp. p12) is on the real spine of PR1 (resp.

P−1R
−
1 ), so the geodesic is contained in PR1 (resp. P−1R

−
1 ).

Now suppose p > 5, and consider the geodesic α through p113 and p
1
12. These two points are

on m1, which is a common slice of R1 and R
−
1 . Moreover, m1 is by construction orthogonal

to the complex line m12, which is a complex slice of P−1R
−
1 , so Lemma 2.3 implies that α is

contained in P−1R
−
1 . Similarly, m1 is orthogonal to the slice of PR1 given by n⊥

13, so α is
contained in PR1.

In some cases, one needs to use both Lemmas 2.2 and 2.3. For instance, for p = 5 or 6,
p112 and q1232̄ are contained in m1, so clearly the geodesic joining them is in R1 and R

−
1 . The

fact that it is contained in P 2R1 follows from Lemma 2.3 (and the fact that 〈n1,n12〉 = 0),
whereas the fact that it is contained in P 2S1 follows from Lemma 2.2 (and the fact that q1232̄
is on the real spine of P 2S1).

In some cases, the application of Lemma 2.3 is not completely obvious, since the orthog-
onality check can be a bit more involved. For instance, consider the geodesic through p13̄231̄

3̄2̄3123
and q13̄23. Clearly these two points are on m13̄231̄, so the geodesic is contained in S

−
1 and

P−2S1. It is contained in S1 simply because q13̄23 is a point of its real spine, but in order
to check that it is contained in P−2R1, one needs to check that 〈n13̄231̄,n3̄2̄3123〉 = 0. Since
n13̄231̄ = P 3n2 and n3̄2̄3123 = P 3n12 the result follows from 〈n2,n12〉 = 0. ✷

Remark 6.19 Lemma 2.3 shows a bit more than the relevant inclusions of geodesics in
bisectors. It also implies that the geodesic is in a real slice of certain bisectors - when two
adjacent edges are contained in real slices of the same bisector (and their intersection is not
on the real spine of that bisector), the two real slices must actually coincide.

Proposition 6.20 The realization of the 1-skeleton of Ê is embedded and contained in F .

Proof. Let f be a 1-cell of Ê. We have just proved that its realization φ(f) is on (at
least) four bounding bisectors. For each other bounding bisector B, we check that φ(f) is
on the correct half-space bounded by B. Since the endpoints of φ(f) are k-rational (with
k = Q(a, τ)), this can be done using arithmetic in k, see Section 2.7.

Note that the situation where some 1-cells are tangent to some of the bounding bisectors,
alluded to in Section 2.7, really does occur. Specifically, it occurs when an endpoint of the
1-face is a cusp, which happens at certain specific vertices when p = 4 and p = 6.

Note that because of the symmetry given by P and ι, it is enough to study the tangencies
that appear in (the intersection of φ(Ê) with)

R1∩R
−
1 , R1∩S1, R1∩P−3

R
−
1 , R1∩P−2

R
−
1 , R1∩P−1∩R

−
1 , S1∩P 2

S
−
1 , S1∩P−2

S
−
1 .

(24)
Although not technically needed for the proof, it can be instructive to draw figures of these
Giraud disks and their intersection with all bounding bisectors. This is done in Figure 12 for
R1 ∩ S1, where it should be apparent that tangencies only occur for p = 4 and p = 6 (see
parts (b) and (d) of the figure). In order for the figure to be read properly, notice that the
labels on curves in the graph correspond to the index of the bisectors given in Table 2.

We treat these two tangencies in Proposition 6.21. The other ones are similar.
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Bisector P kR1 P kR
−
1 P kS1 P kS

−
1

Index notation B1+4k B2+4k B3+4k B4+4k

Table 2: Numbering of the bounding bisectors according to P -symmetry, for k = 0, . . . , 6.

Proposition 6.21 1. For p = 4, the real geodesic through p23 and q13̄23 intersects P−1R1

only at the ideal vertex p23.

2. For p = 6, the real geodesic through p232̄23 and q1232̄ intersects P 2R
−
1 only at the ideal

vertex q1232̄.

3. For p = 6, the real geodesic through p3̄2323 and q13̄23 intersects P−2S1 only at the ideal
vertex q13̄23.

4. For p = 6, the real geodesic through q1232̄ and q13̄23 intersects P 2R1 only at the ideal
vertex q1232̄.

Proof. First let p = 4. The geodesic arc from p23 to q13̄23 is a side of r1 ∩ s1. We check that
it only intersects P−1R1 at p23. Apart from q13̄23, the extended real geodesic is parametrized
by vectors of the form a+ tb with

a = n23, b = 〈n23,n13̄23〉n13̄23,

and t ∈ R (there are further restrictions on t, but this will be irrelevant in what follows). The
corresponding point is on P−1R1 (or rather its extension to projective space) if and only if

|〈a+ tb, P−1y0〉|2 = |〈a+ tb, P−1R−1
1 y0〉|2.

Using τ = −(1 + i
√
7)/2, then a = e2πi/12 = (

√
3 + i)/2, we compute

|〈a+ tb, P−1y0〉|2 − |〈a+ tb, P−1R−1
1 y0〉|2 = −(196156 + 74140

√
7) t2,

the latter vanishing precisely at t = 0.
For p = 6 and a = q1232̄, b = p232̄23 , one gets

|〈a+ tb, P 2y0〉|2 − |〈a+ tb, P 2R1y0〉|2 = −(2525 + 551
√
7
√
3) t2.

For p = 6 and a = q1232̄, b = q13̄23, one gets

|〈a+ tb, P 2y0〉|2 − |〈a+ tb, P 2R−1
1 y0〉|2 = −(161797 + 35307

√
7
√
3)t2/2.

For p = 6 and a = q13̄23, b = p3̄2323 , one gets

|〈a+ tb, P−2y0〉|2 − |〈a+ tb, P−2S−1
1 y0〉|2 = −(3524 + 769

√
7
√
3) t2.

✷

6.6 Realizing ridges of Ê - consistency

The goal of this section is to show the consistency result for the 2-skeleton of Ê. Recall that
we want to realize each 2-face f by using the realization of ∂f , which is a piecewise smooth
circle (possibly with some ideal vertices) in the intersection of two of the bounding bisectors.
We now need to show that the intersection of these two bisectors is a disk. We split the
discussion in two cases, depending on the geometry of the intersection (see Section 2.3).
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6.6.1 Complex ridges

We first list the ridges of Ê that get realized in complex lines, calling them simply “complex
ridges”. The detailed list is given in the appendix (see Table 15).

For p = 3, 4 there are 14 complex lines containing complex ridges, namely the P -orbits of
m1 and m2. For p > 5 the point p12 is replaced with a ridge in the complex line m12 and so
there are 21 complex ridges. The P -orbits of m12 may be found from Table 16 by replacing
pw with mw (these are closely related, in fact they are polar to each other). For p = 8, 12 we
similarly replace q1232̄ with a ridge in m1232̄, and its P -orbit may be read of from the same
table by replacing qw with mw in Table 18; this gives a total of 28 complex ridges.

We only analyze the ridges that appear on r1 and s1, see the bottom and top 2-cells of
Figures 3 to 5 (the top 2-cell reduces to a point for small values of p). We have already shown
that, for each such 2-face f , the vertices and edges in φ(∂f) are contained in a complex line,
which is the mirror of a certain complex reflection in the group (see Section 6.5). Moreover,
the adjacency pictures suggest that we should realize the 2-face in the intersection of two
specific bisectors.

The consistency verification amounts to the verification that these two specific bisectors
intersect precisely along the complex line mentioned above. We state this in the following.

Proposition 6.22 1. R1 ∩ R
−
1 is a complex line, which is m1.

2. For p > 5, R1 ∩ P−3R
−
1 is a complex line, which is m23.

3. S1 ∩ P 2S
−
1 is a complex line, which is m232̄.

4. For p > 8, S1 ∩ P−2S
−
1 is a complex line, which is m13̄23.

Proof. Parts 1 and 3 are relatively easy, since the corresponding pairs of bisectors are not
only cotranchal, they are in fact cospinal. This is obvious for R1 ∩ R

−
1 , since the complex

spine of R1 is by construction orthogonal to the mirror of R1, so R1 and R
−
1 = R1(R1) have

the same complex spine.
The case of S1 ∩P 2S

−
1 is just a little bit more complicated. By construction P 2S1 maps

S1 to P
2S

−
1 , and Proposition 4.8 implies that P 2S1 is a complex reflection fixing n232̄, hence

it preserves the complex spine of S1.
For parts 2 and 4, we first prove that the corresponding pair of bisectors is cotranchal,

i.e. that the mirror of the relevant complex reflection is indeed contained in the bisector
intersection. Then we prove that the intersection really consists only of that common complex
slice, by using Proposition 2.7.

Part 2: In this case we need to verify the criterion from Proposition 2.7. That is, we must
find the intersection of the real spine σ(R1) of R1 with m23 and lift it to a point v1 so that
σ(R1) is given by real linear combinations of n23 and v1. We know that σ(R1) is the real
span of n1 and n23 and that 〈n1,n23〉 is real. Hence we take

v1 = n1 −
〈n1,n23〉
〈n23,n23〉

n23 =
1

a3 + ā3




0
−a2τ̄ + ā
−ā2τ + a


 .
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Now P−3R
−
1 = (R2R3)

−1R1 and ā2 · (R2R3)
−1 fixes n23 and so we take

v2 = ā2(R2R3)
−1v1 =

1

a3 + ā3




0
ā4τ̄ + ā

−ā2τ − ā5


 .

Then

〈v1,v1〉 = 〈v2,v2〉 = (a3 − 1)
(
(1− τ)− ā3(1− τ̄)

)
/(a3 + ā3),

〈v2,v1〉 = −(a3 − 1)
(
(1− τ̄)ā3 + (1− τ)ā6

)
/(a3 + ā3).

Thus

(a3 + ā)2

(2− a3 − ā3)

(
4〈v1,v1〉〈v2,v2〉 −

(
〈v1,v2〉+ 〈v2,v1〉

)2)

= (a3 + ā3)
(
2|1 − τ |2 − a3(1− τ̄)2 − ā3(1− τ)2

)
+ 2(a3 − ā3)

(
a3(1− τ̄)2 − ā3(1− τ)2

)
.

Both terms are positive for all p > 4.

Part 4: We argue as in Part 2. The real spine σ(S1) of S1 is the real span of a · n232̄ and
n13̄23. Its image under a2 ·13̄23 is the real span of −a ·n131̄ and n13̄23. Therefore we construct:

v1 = a · n232̄ −
〈a · n232̄,n13̄23〉
〈n13̄23,n13̄23〉

n13̄23 =
1

a3 + ā3 − 1




−a2 − āτ̄
aτ̄ + ā2τ

−1 + τ + 2ā3


 ,

v2 = −a · n131̄ −
〈−a · n131̄,n13̄23〉
〈n13̄23,n13̄23〉

n13̄23 =
1

a3 + ā3 − 1



a5τ̄ + a2τ̄
−a4τ − a
−2a3 − τ̄


 .

We have

〈v1,v1〉 = 〈v2,v2〉 = (a3 − 1)
(
(2− τ)− ā3(2− τ̄)

)
/(a3 + ā3 − 1),

〈v2,v1〉 = (a3 − 1)(2 − τ̄)a3/(a3 + ā3 − 1).

Then

(a3 + ā3 − 1)2

(2− a3 − ā3)

(
4〈v1,v1〉〈v2,v2〉 −

(
〈v1,v2〉+ 〈v2,v1〉

)2)

= 6|2 − τ |2 − (4a3 + ā6)(2 − τ)2 − (4ā3 + a6)(2 − τ̄)2.

This is positive for all p > 6.
This completes the proof of Proposition 6.22. ✷

6.6.2 Generic ridges

In Section 6.6.1, we checked the consistency of the embedding of complex ridges. We now
prove the analogous statement for all the other ridges, which will be realized inside Giraud
disks. Recall that given a 2-cell f of Ê, Figures 3 to 5 suggest a pair B,B′ of bounding
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Bisector Equidistant Bisector Equidistant

R1 B(y0, R
−1
1 y0) R

−
1 B(y0, R1y0)

S1 B(y0, S
−1
1 y0) S

−
1 B(y0, S1y0)

R1 B(y1, R
−1
1 Py1) P−1R

−
1 B(y1, P

−1R1y1)

R1 B(y2, R
−1
1 P 2y2) P−2R

−
1 B(y2, P

−2R1y2)

P 2S1 B(y2, P
2S−1

1 P−3y2) P 3S
−
1 B(y2, P

3S1P
−2y2)

Table 3: Description of bounding bisectors in terms of y0, y1 and y2

Intersection Giraud disk

R1 ∩ S1 G (y0, R
−1
1 y0, S

−1
1 y0)

R
−
1 ∩ S

−
1 G (y0, R1y0, S1y0)

S1 ∩ S
−
1 G (y0, S

−1
1 y0, S1y0)

R1 ∩ P−1R
−
1 G (y1, R

−1
1 Py1, P

−1R1y1)

R1 ∩ P 2S1 G (y2, R
−1
1 P 2y2, P

2S−1
1 P−3y2)

R1 ∩ P−2R
−
1 G (y2, R

−1
1 P 2y2, P

−2R1y2)
P−2R

−
1 ∩ P 3S

−
1 G (y2, P

−2R1y2, P
3S1P

−2y2)

Table 4: Giraud intersections among bounding bisectors.

bisectors that should contain the realization the realization φ(f). We have already defined
the realization on the level of the 1-skeleton, and shown that φ(∂f) lies inside B ∩ B′ (or
possibly its union with finitely many ideal vertices).

The corresponding consistency verification is almost automatic, we simply verify that all
the corresponding intersections B ∩ B′ are indeed disks, hence φ(∂f) bounds a well defined
disk, which we use as the realization φ(f). In order to get these disks, we simply prove that
the corresponding pairs of bisectors are coequidistant (see Section 2.3).

Let y0, y1, y2 be given by the following formulae:

y0 =




−a3(ā2τ̄ + a)2

(a2τ̄ + āτ)(a2τ̄ − ā)
(a2τ̄ + āτ)(ā2τ − a)


 , y1 =




a(1− a3τ̄)2

(1− a3τ̄)(a3 − τ)
ā(a3 − τ)2


 y2 =




(a3 − τ)(ā3 + τ)
ā(1− a3τ̄)(1 + ā3τ̄)
a(1− ā3τ)(1 + ā3τ̄)


 . (25)

Note that 〈yj ,yj〉 < 0 and so yj corresponds to a point yj of H2
C. Indeed, the following

lemma, which is verified by direct computation, implies that all three points are in E.

Lemma 6.23 Let y0, y1, y2 be the points in H2
C corresponding to the vectors given in (25).

If B is any of the 28 bounding bisectors, then the half-space determined by B that contains
the fixed point of P also contains y0, y1 and y2.

We have already seen in Proposition 5.5 that R1, R
−
1 , S1 and S

−
1 are coequidistant from

y0. Since y0 does not lie on any of their real spines, their pairwise intersections are Giraud
disks (apart from R1∩R

−
1 , since these two bisectors have the same complex spine). Using the

points y1 and y2 we can describe some of the other intersections between bounding bisectors
in a similar way.
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Proposition 6.24 Let y0, y1 and y2 be the points in H2
C corresponding to the vectors y0, y1,

y2 given in (25). The intersections among bounding bisectors listed in Table 4 are contained
in Giraud disks defined by y0, y1 and y2.

Proof. We must first prove that certain bounding bisectors are coequidistant from y0, y1
and y2 listed in Table 3. This was proved for y0 in Proposition 5.5. We use a similar method
to show equidistance from y1 and y2. Namely, consider two of the bisectors B and B′. We
first show that the complex spines of B and B′ intersect in yj, for j = 1 or 2. We can find
vectors spanning the real spine of B by applying a suitable power of P to the vectors listed
in Table 1. Using ι,we find an antiholomorphic isometry fixing the spines of B. From this we
can then find an image of yj so that B is coequidistant from yj and this second point.

To be specific, the real spine of R1 is invariant under the involution ι23 defined in (16).
We see that ι23 y1 = ā6 · J y1 and ι23 y2 = a2 · R−1

1 P 2 y2. Therefore, using J = R−1
1 P we

see that R1 = B(y1, R
−1
1 P y1) = B(y2, R

−1
1 P 2 y2). Similarly, the spine of P 2S1 is the real

span of n2 = −P 2 n232̄ and n1232̄ = P 2ān13̄23. These two vectors are fixed by ā2R2 ι13,
where ι13 is defined analogously to ι23. We find that ā2R2ι13 y2 = a2P 2S−1

1 P−3y2. Therefore
P 2S1 = B(y2, P

2S−1
1 P−3y2).

The claims in Table 4 follow at once from those in Table 3. ✷

6.7 Realizing ridges of Ê - embedding

From the results in Section 6.6, we get that φ gives a well defined realization of each 2-face f
of Ê, inside the intersection of two specific bounding bisectors.

For every other bounding bisector B, we now prove that φ(f) is on the correct side of B.
In particular, we will show that φ(f◦) does not intersect B, and B intersects φ(f) precisely
as predicted from the labels in Figures 3 to 5. From this, it follows that φ is an embedding
on the level of Ê2.

First, observe that when φ(f) is in a complex line, no further verifications are needed, due
to the following.

Lemma 6.25 Let Q be a polygon contained in a complex line C, and let B be a bisector. If
∂Q is entirely on one side of B, then so is Q.

Proof. The restriction to C of the orthogonal projection onto the complex spine of B is
an open map (because it is holomorphic). Recall that a set is entirely on one side of B if
and only if its orthogonal projection onto the complex spine is in the corresponding half disk
bounded by the real spine. ✷

Orthogonal projections restricted to Giraud disks are, in general, not open. Hence the
cases where φ(f) lies in a Giraud disk are considerably more complicated. They will occupy
us for the remainder of this section.

Let us start with a Giraud polygon T in a Giraud disk G (i.e. a disk bounded by a
piecewise geodesic simple closed curve) and a bisector B not containing G . We describe a
general method to prove that T is entirely on one side of B.

Let B = B(x0, x1), and assume that x0, x1 are lifts of x0, x1 with 〈x0,x0〉 = 〈x1,x1〉.
Using the parametrization given in Section 2.5 (5), we may write an equation for the trace of
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B on G as

g(t1, t2) = 0, where g(t1, t2) = |〈V (t1, t2),x0〉|2 − |〈V (t1, t2),x1〉|2. (26)

Since V (t1, t2) is affine in each variable, equation (26) is quadratic in each variable.
If we claim that B∩T is empty, we need to prove that g does not vanish on T , for instance

that g > 0 (switch x0 and x1 if needed). In order to do this, we

1. check that g > 0 on the boundary of T (see Section 2.7).

2. find the critical points of g. If they are in T , check the sign of the corresponding values
of g.

This strategy works well in most cases, because of the following.

Proposition 6.26 The coefficients of g lie in the field Q(a, τ). The fact that g only has
non-degenerate critical points can be proved using computations in that number field, and the
critical points can then be computed with arbitrary precision.

Since the key to these computations is to be able to compute critical points of g, we
expand a little on how this can be done in practice. We write g as

g(t1, t2) = a0 + a1t1 + a2t2 + a11t
2
1 + a12t1t2 + a22t

2
2 + a112t

2
1t2 + a122t1t

2
2 + a1122t

2
1t

2
2,

where all coefficients are real, and depend explicitly on the vectors vj ,wj (and are known in
exact form, see Proposition 6.26). The partial derivatives of this function are given by

{
∂g
∂t1

(t1, t2) = (a1 + a12t2 + a122t
2
2) + 2t1(a11 + a112t2 + a1122t

2
2) = P2(t2) + t1Q2(t2)

∂g
∂t2

(t1, t2) = (a2 + a12t1 + a112t
2
1) + 2t2(a22 + a122t1 + a1122t

2
1) = P1(t1) + t2Q1(t1)

where the polynomials Pj, Qj have degree at most two. Coordinates of the critical points

must be solutions of a polynomial of degree five, obtained as the resultant of ∂g
∂t1

and ∂g
∂t2

(with respect to, say t1).

Explicitly, if (t1, t2) is a critical point, then t2 is a root of

5∑

k=0

bkx
k where

b0 = a21a112 + 4a2a
2
11 − 2a12a11a1

b1 = −4a122a11a1 + 2a21a1122 + 8a22a
2
11 − 2a212a11 + 8a2a11a112

b2 = 8a2a11a1122 + 2a1a1122a12 − 2a1a112a122 − 6a12a11a122

+4a2a
2
112 − a212a112 + 16a22a11a112

b3 = 8a2a112a1122 + 8a22a
2
112 − 4a12a112a122 − 4a2122a11 + 16a22a11a1122

b4 = −3a2122a112 − 2a122a1122a12 + 4a2a
2
1122 + 16a22a112a1122

b5 = −2a2122a1122 + 8a22a
2
1122

The real roots of this polynomial can be computed with arbitrary precision, most easily when
it only has simple roots (in that case the Sturm algorithm suffices). In particular, we can
count critical points and locate them.
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There are situations where the resultant has multiple roots, but there is an easy way to
work around these, which turns out to work for all verifications needed in our paper. The
point is that there is a simple reason why the resultant can have multiple roots, namely that
the intersection G ∩ B contains a horizontal or a vertical segment.

Each time this happens, we can factor out a linear expression in one of the two variables
(or in some cases one factor for each variable), and in fact we will be able to do this exactly
(i.e. no numerical approximation is involved).

More specifically, suppose the line t1 = α is contained in the graph (the situation is
obviously entirely similar for horizontal lines). Then we write the function in the form

g(t1, t2) = p0(t1) + p1(t1)t2 + p2(t1)t
2
2,

where the pj are polynomials of degree at most two. Then the coefficients p0, p1 and p2 must
have α as a common root, and these roots are easily computed.

Lemma 6.27 The vertical lines in the graph of g(t1, t2) = 0 are given by the equations t1 = α
where α is a common root of the polynomials pj, j = 0, 1, 2.

It can easily be guessed using numerical computations whether or not these three poly-
nomials have a common root; when they do not, these numerical computations constitute a
proof (possibly after adjusting the precision). When they seem to have a common root, we
need to verify this by exact calculations. We will work out the details of these verifications
for some explicit examples below.

Note that when {t1 = α} is indeed contained in the graph, it is of course easy to extract
a factor (t1 − α) from g(t1, t2). Explicitly, we write

g(t1, t2) = q0(t2) + q1(t2)t1 + q2(t2)t
2
1 = (t1 − α)h(t1, t2) (27)

and equate the coefficients of degree 0 and 2 in t1, to get

h(t1, t2) = q2(t2)t1 + q1(t2) + αq2(t2).

Remark 6.28 When we do this factorization, it is convenient to adjust the sign of h so that
it has the same sign as g on the open ridge we are studying. Depending on whether the side
lies to the left or right of the line t1 = α, we factor either (t1 − α) or (α− t1).

The point of this remark is that in order to verify g > 0 on a Giraud polygon T , it is
enough to verify that h > 0 on T , and we will do this by computing the critical points of
h. Note that the critical points of h are of course not the same as those of g, but they are
easier to handle computationally (the relevant resultants will have simple roots, see the above
discussion).

We now work out the details of the above computations in some specific cases. In order to
allow for the reader to verify the numerical figures given below, we specify explicit coordinates
for the relevant Giraud disks, giving specific choices of vectors vj and wj defining spinal
coordinates as in (5).

It is convenient to adjust the Giraud disk to be bounded in these coordinates, hence we
choose the wj to be negative vectors. For instance, for R1 one can choose v = n1 and

w = 〈n1,n1〉n23 − 〈n23,n1〉n1,
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(a) p = 3 (b) p = 4 (c) p = 5

(d) p = 6 (e) p = 8 (f) p = 12

Figure 12: Intersection pattern of all the bounding sides with the Giraud disk R1 ∩ S1,
according to the values of p.
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which corresponds to the intersection of the real spine of R1 with the mirror of R1. For S1,
one can choose v = n232̄ and

w = 〈n232̄,n13̄23〉{〈n232̄,n232̄〉n13̄23 − 〈n13̄23,n232̄〉n232̄}.

There is then a well-defined parametrization for every Giraud intersection of bounding bisec-
tors, obtained from the above vectors by applying R1, S1 and/or powers of P .

We give the verifications for one situation, namely G = R1 ∩ S1 = B1 ∩ B3 (see Table 2
on page 44 for an explanation of the labelling of the sides). For concreteness, we start by
assuming p = 3 (for other values of p and other ridges, the computations are only longer, but
not more complicated). In this case T is a triangle.

The intersection G ∩B2 is particularly easy, since R1 ∩R
−
1 is a complex line, namely the

mirror of R1 (see Section 6.6.1). If we take x0 = y0, x1 = R1y0 (see Section 6.6.2), and write
an equation for G ∩ B2, we get

g(t1, t2) = 81(582 + 127
√
21)(−14 + 3

√
21 + 3t2 − 18t22)t1,

where the degree 2 polynomial in t2 never vanishes, so the intersection is given by the t2-axis.
When B = S

−
1 = B4, we take x0 = y0, x1 = S1x. In that case, we already know that

the t2-axis is part of G ∩ S
−
1 (see Section 6.5), so we must have a0 = a2 = a22 = 0, but in

fact no other coefficient vanishes. The reduced equation g = f/t1 is given by

h(t1, t2) = 81(6741 + 1471
√
21)(36 − 8

√
21− 15t1 + 3t1

√
21− 3t2

√
21 + 9t2 + 18t1t2)/4.

Here the partial derivatives are both functions of one variable only, which immediately gives
a critical point with coordinates

(
(−3 +

√
21)/6, (5 −

√
21)/6

)
≈ (0.26376261 . . . , 0.06957071 . . . ).

It is easy to verify that this is outside T .
The case B = PR1 = B5 is in a sense generic; there are no horizontal or vertical lines,

and the resultant of ∂f/∂t1 and ∂f/∂t2 with respect to t2 is given by

−223205130784873566 − 48707352729720306
√
21

+(1289075326223152230 + 281299298043708180
√
21)t1

−(1960742086219144494 + 427869001351675404
√
21)t21

+(2269952366448531240 + 495344216342598840
√
21)t31

−(1166845194031834926 + 254626496473636566
√
21)t41

+(259717950970322292 + 56675103317162172
√
21)t51.

This polynomial has precisely one real root, which is a simple root, given approximately by
t1 = 0.23860554 . . . . Substituting this value into the partial derivatives yields a polynomial
of degree 1 and a polynomial of degree 2; solving the degree one equation gives one value for
t2, and we get precisely one critical point with coordinates (0.23860554 . . . , 0.01603880 . . . ).
This point is outside T .

From now on, we do not write down all the calculations, but simply mention some of the
possible phenomena.
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p B2 B4 B11 B12 B18

3 t1 = 0 t1 = 0 t1 = (21 +
√
21)/42 t1 = (−3 +

√
21)/6

t2 = (7−
√
21)/21 t2 = 0 t2 = 0

4 t1 = 0 t1 = 0 t1 = (−7 + 5
√
7)/14 t1 = (3−

√
7)/2

t2 = 1− 5
√
7/14 t2 = 0 t2 = 0

5 t1 = 0 t1 = 0 t1 = 0.44786394 . . . t1 = 0.18371174 . . .
t2 = 0.05801393 . . . t2 = 0 t2 = 0

6 t1 = 0 t1 = 0 t1 = (−7 + 3
√
21)/14 t1 = (5−

√
21)/2

t2 = 4− 6
√
21/7 t2 = 0 t2 = 0

8 t1 = 0 t1 = 0 t1 = 0.57827900 . . . t1 = 0.27949078 . . .
t2 = 0.11986937 . . . t2 = 0 t2 = 0

12 t1 = 0 t1 = 0 t1 = 0.80219658 . . . t1 = (
√
3−

√
7)/2

t2 = 0.28759793 . . . t2 = 0 t2 = 0

p B21 B22 B24 B26

3 t1 = (−3 +
√
21)/6 t1 = 1/2 +

√
21/42 t1 = 1/2 +

√
21/42

t2 = (7−
√
21)/21 t2 = (5−

√
21)/6 t2 = (5−

√
21)/6

4 t1 = (3−
√
7)/2 t1 = −1/2 + 5

√
7/14 t1 = −1/2 + 5

√
7/14

t2 = 1− 5
√
7/14 t2 = 4− 3

√
7/2 t2 = 4− 3

√
7/2

5 t1 = 0.18371174 . . . t1 = 0.44786394 . . . t1 = 0.44786394 . . .
t2 = 0.05801393 . . . t2 = 0.03375000 . . . t2 = 0.03375000 . . .

6 t1 = (5−
√
21)/2 t1 = −1/2 + 3

√
21/14 t1 = −1/2 + 3

√
21/14

t2 = 4− 6
√
21/7 t2 = (23 − 5

√
21)/2 t2 = (23 − 5

√
21)/2

8 t1 = 0.27949078 . . . t1 = 0.57827900 . . . t1 = 0.57827900 . . .
t2 = 0.11986937 . . . t2 = 0.07811509 . . . t2 = 0.07811509 . . .

12 t1 = 0.45685025 . . . t1 = 0.80219658 . . . t1 = 0.80219658 . . .

t2 = 0.28759793 . . . t2 = 0.20871215 . . . t2 = (5−
√
21)/2

Table 5: Lines parallel to coordinate axes contained in the graphs, for B1 ∩ B3.

p Side Coordinates Function value

8 B9 (0.22347669. . . , 0.06214532. . . ) 11.44128654. . .

12 B9 (0.38008133. . . , 0.18112900. . . ) 0.23597323. . .
B10 (0.38823985. . . , 0.13852442. . . ) 0.18097266. . .

Table 6: Critical points inside the ridge for B1 ∩ B3.
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Consider the intersection of G with PS
−
1 = B11, for instance. In that case g is given by

27(6741+1471
√
21)(−15t1+3t1

√
21+36−8

√
21+18t1t2−3t2

√
21+9t2)(21−42t1+

√
21)t2/56.

Clearly there are both a horizontal and a vertical line in this intersection, in which case we
factor out two linear factors, one linear in t1 and the other linear in t2. The reduced equation
is given by the function

81(6741 + 1471
√
21)(−15t1 + 3t1

√
21 + 36− 8

√
21 + 18t1t2 − 3t2

√
21 + 9t2)/4.

The latter has one critical point given by

(
(−3 +

√
21)/6, (5 −

√
21)/6

)
≈ (0.26376261 . . . , 0.06957071 . . . )

and this point is outside T .
In fact for p 6 6, all critical points turn out to be outside the Giraud polygon, whereas

this is not quite true for p = 8 or 12 (see Table 6). For higher values of p, the computations
are a bit longer and more tedious than for p = 3, since the coefficients of the equations live
in slightly larger number fields, but they are not more difficult in any essential way.

For the convenience of the skeptic reader (who may be willing to check our claims), we
list all horizontal and vertical lines for curves on B1 ∩ B3, see Table 5. These are needed
to reduce to the case of resultants with only simple root. The numbers given as decimal
expansions are written in this manner simply to avoid writing huge formulae, one can easily
get explicit algebraic expressions instead.

In Table 6, we list the critical points that lie inside the ridge B1 ∩ B3 (there are critical
points inside only for p = 8 and p = 12). For each of them, we need to check that the
corresponding value of the function h is strictly positive (recall that h is equal to the equation
of the intersection in most cases, it is obtained by dividing by appropriate linear factors in
one variable).

For future reference we mention the following consequence of the above arguments.

Proposition 6.29 Let ρ be a ridge of Ê, and let D be the (Giraud or complex) disk containing
φ(ρ). Then there is an open neighborhood U of φ(ρ) in D such that U ∩ E = φ(ρ).

In particular, even though we did not prove that φ(ρ) = D ∩ F , we know that φ(ρ) is a
connected component of D ∩ F .

6.8 Realizing sides of Ê

As mentioned early in Section 6, no consistency verifications are needed for 3-cells. We do
need to check embeddedness. More specifically, we check the following.

Proposition 6.30 For each 3-cell f of Ê and every bounding bisector B, φ(f) is on the
correct side of B. In particular, φ(f) is contained in F .

This will follow from the following result, which is of general independent interest.

Lemma 6.31 Let f be one of the bounding sides and let B be any bisector. If B intersects
the interior f◦, then it intersects its boundary ∂f as well.
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Proof. (of Lemma 6.31) We may assume that B does not contain f , and we denote by
Bf the bisector containing f . By Lemma 9.1.5 in [Gol99], B ∩Bf is either empty or a union
of properly embedded disks. If B intersects the interior of f , then by properness it must also

intersect its boundary (in H
2
C). ✷

Proof. (of Proposition 6.30) Recall that for each 3-cell f of Ê, ∂f is a 2-sphere, and we
have checked in Section 6.7 that φ embeds that 2-sphere inside one of the bounding bisectors
Bf (as well as inside E). Now if B is any other bounding bisector, B cannot intersect φ(f◦).
For this we argue by contradiction; if it did, then by Lemma 6.31, it would also intersect
φ(∂f). But this cannot happen, since the closed set φ(f) ∩ B ∩ Bf has a neighborhood in
B ∩ Bf which does not intersect φ(f◦) (see Proposition 6.29). ✷

For completeness, we mention the following consequence of Proposition 6.30.

Proposition 6.32 Let B be one of the bounding bisectors, and f the side of Ê such that
φ(f) ⊂ B. Then B ∩E = φ(f).

Note that we have not proved that φ(f) can also be described as B ∩ F , but once again this
is not needed in order to apply the Poincaré polyhedron theorem (see the discussion at the
beginning of Section 5).

7 Applying the Poincaré polyhedron theorem

We proved in Section 6 that E is a polyhedron. In this section we verify the remaining
hypotheses of the Poincaré polyhedron theorem (Sections 7.2 and 7.3). Using the theorem,
we obtain a presentation for Γ and we calculate the orbifold Euler characteristic of the quotient
orbifold.

Along with the verification of the hypotheses, we will determine local stabilizers of every
facet f of E. By local stabilizer, we mean the group obtained from the side-pairing maps
by following all possible cycles involving f . The description of local stabilizers for cusps will
imply the existence of a consistent system of horoballs.

Note that the local stabilizer of a facet f is always a subgroup of the full stabilizer of f
in Γ. It will follow from the Poincaré polyhedron that local stabilizers are actually equal to
the corresponding full stabilizer. We will determine local stabilizers of ridges in Section 7.2,
then for vertices and edges in Section 7.3.

7.1 Hypotheses - side pairing

In this section, we describe a side pairing for E (in the sense of Section 3.2). For each side
s, we define an isometry S = σ(s) that pairs two sides s and s− of E. We also show that
E ∩ S(E) is given precisely by s−.

Lemma 7.1 The map R1 sends r1 = R1 ∩ E to r−1 = R
−
1 ∩ E preserving the cell structure.

The map S1 sends s1 = S1 ∩ E to s−1 = S
−
1 ∩ E preserving the cell structure.

Proof. Using the description of the bisectors given in Table 1 it is clear that R1 maps
R1 to R

−
1 . Moreover, R1 maps the complex lines containing ridges of r1 to the complex
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lines containing ridges of r−1 . Specifically, R1 sends m1 = R1 ∩ R
−
1 to itself and maps

m23 = R1 ∩ P−3R
−
1 to m1231̄ = R

−
1 ∩ P 3R1.

We claim that the Giraud disks containing ridges of R1 are mapped to Giraud disks
containing ridges of R

−
1 . For a list of these Giraud disks, see Table 4. We give the details for

one such Giraud disk, namely R1 ∩ P 2S1, the other arguments are entirely similar. Recall
that the two corresponding bisectors have the following description in terms of the point y2:

R1 = B(y2, R
−1
1 P 2y2), P 2

S1 = B(y2, P
2S−1

1 P−3y2).

Applying R1 to these bisectors, we obtain

R
−
1 = R1R1 = B(R1y2, P

2y2), R1P
2
S1 = B(R1y2, P

2R−1
1 P 2y2).

Here we have used S1 = P 2R1P
−2R1P

2 and P−5 = P 2 to write R1P
2S−1

1 P−3 = P 2R−1
1 P 2.

The third bisector containing this Giraud disk is

B(P 2y2, P
2R−1

1 P 2y2) = P 2
B(y2, R

−1
1 P 2y2) = P 2

R1.

Therefore the Giraud disk R1 ∩ P 2S1 is sent by R1 to the Giraud disk R
−
1 ∩ P 2R1.

This shows that the complex lines and Giraud disks containing the ridges of r1 are sent to
complex lines and Giraud disks containing ridges of r−1 . The corresponding statement about
vertices (resp. edges) follows from the one about ridges, since the vertices (resp. edges) can
be described as intersections of ridges. This shows that R1 maps r1 = R1∩E to r−1 = R

−
1 ∩E,

preserving the cell structure. ✷

We now define the side pairing used in our application of the Poincaré polyhedron theorem.

Proposition 7.2 The following map σ defines a side pairing on the sides of E:

σ(P kr±1 ) = P kR±1
1 P−k, σ(P ks±1 ) = P kS±1

1 P−k,

where k = −3, . . . , 3. Moreover, this side pairing is compatible with Υ = 〈P 〉.

Proof. We only give the argument for r1 = R1 ∩ E. Applying powers of P and the
symmetry ι gives the result for the other faces P kr±1 , and the faces P ks±1 are similar.

In Lemma 7.1 we showed that R1 sends r1 to r−1 preserving the cell structure. Moreover,
the interior of E is contained in the half-space closer to y0 than to R1y0, where y0 is given
in Lemma (6.23). Hence, the interior of R−1

1 E is contained in the half-space closer to R−1
1 y0

than to y0. Thus E and R−1
1 E intersect in R1 ∩ E = r1 (see Proposition 6.32) and their

interiors are disjoint. Furthermore, any point in the interior of r1 has an open neighborhood
contained in E ∪R−1

1 E. ✷

7.2 Hypotheses - local tessellation

We now study the ridge cycles of E, as explained in Section 3.2.
For p = 3 and p = 4 we obtain the ridge cycles given in Table 7. The second column

lists the successive ridges in the cycle, given as the intersection of two sides, whereas in the
third column we list the corresponding vertices (with ordering coherent with the successive
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R1 r1 ∩ r−1 p12 p13 q13̄23 q1232̄
r1 ∩ r−1 p12 p13 q13̄23 q1232̄

R1 r1 ∩ P−1r−1 p12 p13 p23
P−1 Pr1 ∩ r−1 p12 p13 p1231̄

r1 ∩ P−1r1 p13 p23 p12
R1 r1 ∩ P 2s1 p23 p12 q1232̄

P 2R1P
−2 P 2r1 ∩ r−1 p1231̄ p12 q1232̄

S−1
1 s−1 ∩ P 2r−1 p1231̄ p3̄ 2̄3123 q1232̄
P 2 P−2r1 ∩ s1 p3̄ 2̄3123 p23 q13̄23

r1 ∩ P 2s1 p23 p12 q1232̄
R1 r1 ∩ s1 p23 q13̄23 q1232̄
S−1
1 s−1 ∩ r−1 p1231̄ q13̄23 q1232̄
S−1
1 s−1 ∩ s1 p3̄ 2̄3123 q1232̄ q13̄23

r1 ∩ s1 p23 q13̄23 q1232̄
S1 s1 ∩ P 2s−1 p23 p3̄ 2̄3123 q1232̄
P 2 P−2s1 ∩ s−1 p3̄ 2̄123 p1231̄ q13̄23

s1 ∩ P 2s−1 p23 p3̄ 2̄3123 q1232̄

Table 7: The ridge cycles for p = 3, 4. For higher values of p the cycles are the same, but
additional vertices appear in the right and column.

side pairing maps). Applying the side pairing map in the first column (which corresponds to
the first side in the second column) gives the line below. The product of these side pairing
maps gives the cycle transformation.

This cycle transformation may not be the identity on H2
C, or even on the ridge. However,

we can find a power that is the identity, which gives the cycle relation. For example, R1 maps
r1 ∩ r−1 to itself and acts as the identity on this ridge (which can be seen from the vertices in
the third column). The cycle relation is Rp

1 = id. On the other hand, for r1∩P−1r−1 we obtain
the cycle transformation P−1R1. This maps r1 ∩ P−1r−1 to itself but cyclically permutes the
vertices. Therefore the cycle relation is (P−1R1)

3 = id.
As a last example, we work out the cycle for the ridge r1 ∩ P 2s1. It is mapped by R1 to

P 2r1∩r−1 (see the proof of Proposition 7.2), which is then mapped by P 2R1P
−2 to s−1 ∩P 2r−1 ,

which is then mapped by S−1
1 to P−2r1 ∩ s1. This is clearly in the image of the original ridge

under a power of P , and the corresponding cycle transformation is

P 2 · S−1
1 · P 2R1P

−2 ·R1.

This isometry is in fact the identity (see its expression in terms of the vertices in the last
column of Table 7), which corresponds to our definition of S1 (see Section 4.2).

For p = 5, 6, 8 and 12, the ridge cycles from p = 3, 4 persist, even though the corresponding
polygons have extra vertices corresponding to the truncations. We also have an extra ridge
cycle associated to r1 ∩ P−3r−1 given in Table 8. Note that P−3R1 maps r1 ∩ P−3r−1 to itself
but does not act as the identity on this ridge; (P−3R1)

2 acts as the identity on r1 ∩ P−3r−1
but not on H2

C and (P−3R1)
4p/(p−4) = id. When p = 8 and p = 12 we also have the ridge

cycle associated to s1 ∩ P−2s−1 given in Table 8.
As a summary, thanks to the action of powers of P and the freedom to choose the initial

ridge inside a given ridge cycle (which does not affect the cycle relation, see Section 3.2), it is
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p > 5 R1 r1 ∩ P−3r−1 p223 p232̄23 p3̄2323 p323
P−3 P 3r1 ∩ r−1 p121̄

1231̄
p1232̄ 1̄
1231̄

p13̄231̄
1231̄

p131̄23

r1 ∩ P−3r−1 p3̄2323 p323 p223 p232̄23

p > 8 S1 s1 ∩ P−2s−1 q1
13̄23

q3̄23
13̄23

q13̄231̄
13̄23

P−2 P 2 ∩ s−1 q1
1232̄

q232̄
1232̄

q1232̄ 1̄
1232̄

s1 ∩ P−2s−1 q3̄23
13̄23

q13̄231̄
13̄23

q1
13̄23

Table 8: Additional ridge cycles for higher values of p.

enough to consider the ridges r1 ∩ r−1 , r1 ∩ P−1r−1 , r1 ∩ P 2s1, r1 ∩ s1, s1 ∩ P 2s−1 , r1 ∩ P−3r−1
and s1 ∩ P−2s−1 . In the penultimate case we only need consider p = 5, 6, 8 and 12 and for
the last case, we only need consider p = 8 and 12. We now show local tiling around each of
these ridges.

Recall that the ridges of E are of two very different types, depending on whether they are
contained in complex lines (see Section 6.6.1) or in Giraud disks (see Section 6.6.2).

We first consider the complex ridges (see Proposition 6.22 and Section 6.7), and show that
the local images of E tessellate around those.

Lemma 7.3 The images of E tessellate a neighborhood of r1 ∩ r−1 , r1 ∩ P−3r−1 , s1 ∩ P 2s−1
and s1 ∩ P−2s−1 for the appropriate values of p. Specifically:

1. Rk
1E for k = 0, 1 . . . , p− 1 cover a neighborhood of the interior of r1 ∩ r−1 ;

2. if p = 5, 6, 8, 12 then (R2R3)
kE for k = 0, 1 . . . , 2c − 1 = 4p/(p − 4) − 1 cover a

neighborhood of the interior of r1 ∩ P−3r−1 ;

3. (R2R3R
−1
2 )kE for k = 0, 1 . . . , p− 1 cover a neighborhood of the interior of s1 ∩P 2s−1 ;

4. if p = 8, 12 then (R1R
−1
3 R2R3)

kE for k = 0, 1 . . . , 3d − 1 = 6p/(p − 6) − 1 cover a
neighborhood of the interior of s1 ∩ P−2s−1 .

Proof. Using Lemma 3.4 it suffices to consider a fixed point o in each of these ridges and
to show that on the orthogonal complex line C⊥

o the cycle transformation acts as a rotation
through angle 2π/ℓ.

For Parts 1 and 3 this is straightforward since R1 and R2R3R
−1
2 are complex reflections

with angle 2π/p fixing r1 ∩ r−1 and s1 ∩ P 2s−1 respectively. For Parts 2 and 4 we find the
rotation angle by finding eigenvalues associated to the complex line and the fixed point.

For p > 5, the complex line m23 and the fixed point o23 of R2R3 contained in m23

correspond to the eigenvectors n23 and o23 of R2R3 given by:

n23 =



a3 + a3

a2τ − a
a2τ − a


 , o23 =




0
aτ
1− i


 .

(Note that 〈o23,o23〉 < 0 for p ≥ 5.) One easily checks that the eigenvalues are ā2 and −ia
respectively. Hence the rotation angle is (−4π/3) − (2π/3p − π/2) = (p− 4)π/2p = 2π/2c.
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For p > 8, the complex line m13̄23 and the fixed point o13̄23 of R1R
−1
3 R2R3 correspond to

eigenvectors n13̄23 and o13̄23 given by:

n13̄23 =




a2 + āτ̄
a4τ + a

a3 − ā3 − τ


 , o13̄23 =



−a2ω̄
a
τ̄




where ω = e2πi/3. One easily checks that the eigenvalues are ā2 and −aω respectively and so
the rotation angle is (−4π/3) − (2π/3p − π/3) = (p − 6)π/3p = 2π/3d. ✷

We now consider the Giraud ridges (see Table 4 for a list of the relevant Giraud intersec-
tions, and Section 6.7 for the fact that these are indeed ridges of E).

Lemma 7.4 The images of E tessellate a neighborhood of r1∩P−1r−1 , r1∩P 2s1 and r1∩ s1.
Specifically:

1. E, R−1
1 E and P−1R1E cover a neighborhood of the interior of r1 ∩ P−1r−1 ;

2. E, R−1
1 E and P 2S−1

1 E cover a neighborhood of the interior of r1 ∩ P 2s1;

3. E, R−1
1 E and S−1

1 E cover a neighborhood of the interior of r1 ∩ s1.

Proof. Using Lemma 3.3, this follows from the fact that these three ridges are contained
in the Giraud disks given in Table 4. The bounding bisectors defining these Giraud disks are
coequidistant from one of y0, y1 or y2, as indicated in Table 3. These bisectors divide H2

C into
three regions as in Lemma 3.3. We know by Lemma 6.23 that E is contained in the region
containing yj. By applying the side pairing maps in the ridge cycle we obtain copies of E
contained in the other two regions. ✷

This proves that the side pairings of the polyhedron E satisfy the cycle conditions of the
Poincaré polyhedron theorem.

7.3 Hypotheses - consistent horoballs

In order to prove the existence of a consistent system of horoballs (see Corollary 7.6 and
Corollary 7.9), we need to study local stabilizers of cusps.

In fact we will determine local stabilizers of all vertices (cusps or not), as well as edges.
The techniques are similar to those in Section 18.2 of [Mos80]. The order of these stabilizers
will be used when we calculate the orbifold Euler characteristic, see Section 7.5.

Proposition 7.5 When p = 3 or 4 there is a single-orbit of p∗-vertices. A representative
is p12 and its stabilizer is 〈R1, R2〉. Moreover, there is a single orbit of (p∗, p∗) edges. A
representative is (p13, p12) and its stabilizer is 〈R1〉.

Proof. Since p23 = P−2p12, p13 = P−1p12, p1231̄ = Pp12 and p3̄ 2̄3123 = P 3p12 it is clear
that all p∗-vertices lie in the same orbit.

The action of the side pairing maps on the p∗-vertices may be expressed in terms of p12
as follows. We can write such a vertex as pa = P ip12. The side pairing R maps pa to pb and
we can write pb = P jp12. This corresponds to an element P jRP−i of the stabilizer of p12.
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We list the side pairing, the vertex, its image and the corresponding word in the stabilizer of
p12 in terms of R1 and R2. Taking the inverse of a side pairing map (resp. conjugating it by
a power of P ) gives the inverse word (resp. a conjugate word).

Vertex Image Word

R1 p12 p12 R1

R1 p13 = P−1p12 p13 = P−1p12 PR1P
−1 = R1R2R

−1
1

R1 p23 = P−2p12 p1231̄ = Pp12 P−1R1P
−2 = R−1

2 R−1
1

S1 p23 = P−2p12 p3̄ 2̄3123 = P 3p12 P−3S1P
−2 = R−1

2

S1 p3̄ 2̄3123 = P 3p12 p1231̄ = Pp12 P−1S1P
3 = R−1

2 R−1
1 R2

To show that the stabilizer of (p13, p12) is generated by R1 we argue in the same way as we
did for vertex stabilizers. All edges joining two p∗-vertices are the images under a power of
P of either the edge (p13, p12) or the edge (p12, p23) = R−1

1 P (p13, p12). We describe each edge
(p∗, p∗) and its image under the side pairing in this way and so obtain an element of the
stabilizer of (p13, p12). We do this for the three (p∗, p∗) edges in r1 and the single (p∗, p∗) edge
in s1. The others follow by applying powers of P .

Edge Image Word

R1 (p13, p12) (p13, p12) R1

R1 (p12, p23) = R−1
1 P (p13, p12) (p12, p1231̄) = P (p13, p12) id

R1 (p23, p12) = P−1(p13, p12) (p1231̄, p13) = PR−1
1 P (p13, p12) R−1

1

S1 (p23, p3̄2̄3123) = P−2R−1
1 P (p13, p12) (p3̄2̄3123, p1231̄) = P 3R−1

1 P (p13, p12)) R−1
1

In fact no group element interchanges p12 and p13, and so the stabilizer of the edge (p13, p12)
is the intersection of the vertex stabilizers, namely 〈R1〉. ✷

In Proposition 4.7 we found the structure of 〈R1, R2〉. In particular, for p = 3 it is finite.
When p = 4, the point p12 lies on ∂H2

C and we have just verified the conjectural stabilizer
given in [DPP11]. Since there is a single orbit of cusps, a consistent system of horoballs
comprises a single horoball at p12 and all its images under the local stabilizer. Since the local
stabilizer of p12 is generated by complex reflections, any cycle of side pairing maps or elements
of Υ that maps p12 to itself also maps any horoball at p12 to itself. Thus, we immediately
have the following corollary:

Corollary 7.6 When p = 4, the (local) stabilizer in Γ of p12 ∈ ∂H2
C contains no loxodromic

maps. In particular, there is a consistent system of horoballs.

Proposition 7.7 When p > 5 there are two orbits of p∗-vertices. Representatives are p112
and p113 with stabilizers 〈R1, (R1R2)

2〉 and 〈R1, (R1R3)
2〉 respectively. There are two orbits of

(p∗, p∗) edges. Representatives are (p113, p
1
12) and (p112, p

2
12) with stabilizers 〈R1〉 and 〈(R1R2)

2〉
respectively.
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Proof. The Γ-orbit of p112 in E comprises P -orbits of p112 and p2̄1212 = R−1
2 p112.

Vertex Image Word

R1 p112 p112 R1

R1 p313 = P−1p112 p131̄13 = P−1R−1
2 p112 R2PR1P

−1 = (R1R2)
2R−2

1

R1 p223 = P−2R−1
2 p112 p121̄

1231̄
= Pp112 P−1R1P

−2R−1
2 = R1(R1R2)

−2

R1 p3̄2323 = P−2p112 p13̄231̄
1231̄

= PR−1
2 p112 R2P

−1R1P
−2 = R−1

1

S1 p3̄2323 = P−2p112 p232̄
3̄ 2̄3123

= P 3R−1
2 p112 R2P

−3S1P
−2 = id

S1 p232̄3̄ 2̄3123 = P 3R−1
2 p112 p13̄231̄1231̄ = PR−1

2 p112 R2P
−1S1P

3R−1
2 = R−1

1

Finding the stabilizer of p113 is done in a similar way.
The orbit and stabilizer of the edge (p113, p

1
12) follow as before. A similar argument shows

that no element of the group interchanges p112 and p212. Therefore the stabilizer of (p112, p
2
12)

is the intersection of the vertex stabilizers. ✷

Note that, since the stabilizer of p112 is generated by the commuting complex reflections
R1 and (R1R2)

3, its order is simply 2p2/(p − 4) which is the product of the orders of these
reflections.

Proposition 7.8 When p 6 6 there is a single orbit of q∗-vertices. A representative is q1232̄
with stabilizer 〈R1, R2R3R

−1
2 〉. There is a single orbit of (q∗, q∗) edges. A representative is

(q13̄23, q1232̄) with stabilizer 〈S1〉.

Proof. This is similar to the constructions of the stabilizers of the p∗-vertices.

Vertex Image Word

R1 q1232̄ q1232̄ R1

R1 q13̄23 = P−2q1232̄ q13̄23 = P−2q1232̄ P 2R1P
−2 = R1(R2R3R

−1
2 )R−1

1

S1 q1232̄ q13̄23 = P−2q1232̄ P 2S1 = (R2R3R
−1
2 )−1

S1 q13̄23 = P−2q1232̄ q1232̄ S1P
−2 = R1(R2R3R

−1
2 )

There is one P -orbit of (q∗, q∗) edges. Since S1 interchanges q13̄23 and q1232̄ we see that the
intersection of the vertex stabilizers, namely 〈R1〉, has index two in the stabilizer of the edge
(q13̄23, q1232̄), which is 〈S1〉. This is clear since R1 = S2

1 . ✷

When p 6 5, the stabilizer of q1232̄ has order 24p2/(6 − p) by Proposition 4.10. When
p = 6 the point q1232̄ lies on ∂H2

C. Once again its stabilizer agrees with that conjectured in
[DPP11] and we have:

Corollary 7.9 When p = 6, the (local) stabilizer in Γ of q1232̄ ∈ ∂H2
C contains no loxodromic

maps. In particular, there is a consistent system of horoballs.

A similar argument gives the following result.

Proposition 7.10 When p = 8, 12 there is a single orbit of q∗-vertices. A representative is
q1
1232̄

with stabilizer 〈R1, (R1R2R3R
−1
2 )3〉. There are two orbits of (q∗, q∗) edges. Representa-

tives are (q1
13̄23

, q1
1232̄

) and (q1
1232̄

, q232̄
1232̄

) with stabilizers 〈S1〉 and 〈R1R2R3R
−1
2 R1〉 respectively.

61



Observe that the stabilizer of q11232̄ is generated by the commuting complex reflections R1

and (R1R2R3R
−1
2 )3. Its order is 2p2/(p − 6), the product of the orders of these reflections.

Proposition 7.11 For all values of p there are two orbits of (p∗, q∗) edges. Representa-
tives are (p112, q

1
1232̄

) and (p113, q
1
13̄23

), both with stabilizer 〈R1〉. (For low values of p omit the
superscript 1 as appropriate.)

Proof. Since the vertices of such an edge are in different orbits, the stabilizer of an the
edge must be the intersection of the vertex stabilizers. The only thing to check is that these
two edges are in distinct orbits. This may be checked easily as before. ✷

For completeness, we end this section with a description of the links of ideal vertices, which
describe the structure of cusp neighborhoods (see Figure 13). Note that these are compact,
so even for p = 4 and p = 6, our polyhedron E has finite volume (see Section 3.2).

r−1

r1

P 2s1

P−3s−1

P−3s1

P−1s−1

Pr−1

Pr1

P−1r−1

P 2r1

(a) Link of p12 (p = 4)

s1

r1
P2s−1

P2r−1
r−1

P2r1

s−1

P2s1

(b) Link q1232̄ (p = 6)

Figure 13: Combinatorics of the links of ideal vertices.

7.4 Conclusion - presentation for Γ

In Section 7.2 we verified that images of E under the cosets of Υ in Γ satisfied the local
tessellation hypotheses of the Poincaré polyhedron theorem. In Corollaries 7.6 and 7.9 above,
we showed that when p = 4 and p = 6 there are consistent horoballs at the cusps. Note
that E has no cusps for the other values of p. Thus we have verified the hypotheses of the
Poincaré polyhedron theorem. Hence we have proved that Γ is discrete and E is a fundamental
polyhedron for the cosets of Υ in Γ.

We may read off a presentation for Γ directly from the Poincaré polyhedron theorem;
compare Section 20 of [Mos80]. The generators of Γ are the side pairing maps R1 and S1 of
E together with the generator P of Υ. The relations come from the cycle transformations
associated to the ridges and the relation from Υ (there are no reflection relations in this case).
For all values of p we obtain the cycle transformations from Table 7:

id = Rp
1 = (P−1R1)

3 = P 2S−1
1 P 2R1P

−2R1 = S−2
1 R1 = (P 2S1)

p.

In addition, for p = 5, 6, 8 and 12, from Table 8, we obtain id = (P−3R1)
4p/(p−4) and for

p = 8, 12 we obtain id = (P−2S1)
6p/(p−6). Finally, we obtain the relation id = P 7 from the
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stabilizer of 〈P 〉 of E. Thus, the Poincaré theorem gives the presentation:

〈
R1, S1, P :

id = Rp
1 = P 7 = (P−1R1)

3 = P 2S−1
1 P 2R1P

−2R1

id = S−2
1 R1 = (P 2S1)

p = (P−3R1)
4p(p−4) = (P−2S1)

6p/(p−6)

〉
(28)

where we omit the last two relations when the exponent is infinite or negative. Note that for
the values of p where these exponents are negative the two relations still hold and follow from
the other relations (compare Corollary 5.6 of [Par06] and Section 2.2 of [Mos80]).

We now simplify the relations and change generators in order to recover the presentation
of Theorem 4.4. In particular, we recover the relations found in Section 4.4 only using the
cycle relations.

The relation id = P 2S−1
1 P 2R1P

−2R1 clearly implies that S1 = P 2R1P
−2R1P

2; see (11).
Also, Proposition 4.8 implies that P 2S1 is conjugate to R

−1
1 . Hence the relation id = (P 2S1)

p

is equivalent to id = Rp
1, and so may be omitted. We now show that the relation S2

1 = R1,
which also implies S1R1 = R1S1, recovers both the generalized braid relation (R1R2)

2 =
(R2R1)

2 and the braid relation R1(R2R3R
−1
2 )R1 = (R2R3R

−1
2 )R1(R2R3R

−1
2 ), which were

discussed in Section 4.4.

Lemma 7.12 Assume that P has order 7 and that J = P−1R1 has order 3. Suppose that
S1, R2 and R3 are defined by

S1 = P 2R1P
−2R1P

2, R2 = JR1J
−1 = R−1

1 PR1P
−1R1, R3 = J−1R1J = P−1R1P.

Then, the relation S2
1 = R1 is equivalent to (R1R2)

2 = (R2R1)
2. Also, the relation S1R1 =

R1S1 is equivalent to R1(R2R3R
−1
2 )R1 = (R2R3R

−1
2 )R1(R2R3R

−1
2 ).

Proof. Using P 4 = P−3, R1P
−1R1 = PR−1

1 P and PR1P
−1 = R1R2R

−1
1 , we have:

S2
1R

−1
1 = P 2R1P

−1(P−1R1P
−1)P−1(P−1R1P

−1)P−1R1P (PR
−1
1 )

= P (PR1P
−1)(R−1

1 PR−1
1 P−1)(R−1

1 PR−1
1 P−1)R1(PR1P

−1)R1P
−1

= P
(
R1R2(R2R1)

−2R1R2

)
P−1.

Secondly, one easily checks R2R3R
−1
2 = R−1

1 P 2R1P
−2R1. Therefore

S1R
−1
1 S−1

1 R1 = P 2R1P
−2R1P

2R−1
1 P−2R−1

1 P 2R−1
1 P−2R1

= R1(R2R3R
−1
2 )R1(R2R

−1
3 R−1

2 )R−1
1 (R2R

−1
3 R−1

2 ).

✷

Substituting for P−1R1 = J , R2 = JR1J
−1 = R−1

1 PR1P
−1R1 and R3 = P−1R1P =

J−1R1J , we obtain the presentation given in Theorem 4.4, which agrees with the conjectural
presentation given in [DPP11].

7.5 Conclusion - orbifold Euler characteristics

In this section we prove Theorem 4.5 which gives the orbifold Euler characteristic of the
quotient of H2

C by Γ. We write χ(2π/p, σ4) for the Euler characteristic χ
(
Γ(2π/p, σ4)\H2

C

)

where τ = σ4 = −(1 + i
√
7)/2.
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Facet Stabilizer Order

Vertices p12 〈R1, R2〉 8p2/(4− p)2

q1232̄ 〈R1, R2R3R
−1
2 〉 24p2/(6 − p)2

Edges (p12, p13) 〈R1〉 p
(p12, q2312̄) 〈R1〉 p
(p13, q13̄23) 〈R1〉 p
(q1232̄, q13̄23) 〈S1〉 2p

Ridges r1 ∩ r−1 〈R1〉 p
r1 ∩ P−1r−1 〈P−1R1〉 3
r1 ∩ P 2s1 id 1
r1 ∩ s1 id 1

s1 ∩ P 2s−1 〈R2R3R
−1
2 〉 p

Sides r1 id 1
s1 id 1

Polyhedron E 〈P 〉 7

Table 9: The Euler characteristic calculation for p = 3, 4.

We begin by calculating the orbifold Euler characteristic when p = 3 and p = 4. We
choose one representative from each Γ-orbit of facets and give its stabilizer. The stabilizers
of vertices and edges, and their orders, were found in Section 7.3. The orders of some vertex
stabilizers had also been given in Section 4.4. The ridge cycles described in Section 7.2 give
the stabilizers of the ridges. A representative of each orbit of facets and its stabilizer, together
with the order of the stabilizer, is given in Table 9. Using these values, the orbifold Euler
characteristic is

χ(2π/p, σ4) =

(
(4− p)2

8p2
+

(6− p)2

24p2

)
−

(
3

p
+

1

2p

)
+

(
2

p
+

1

3
+ 2

)
− 2 +

1

7

=
49 − 42p + 9p2

14p2

Putting in p = 3 and p = 4 we obtain χ(2π/3, σ4) = 2/63 and χ(2π/4, σ4) = 25/224.
We now do the same thing for p = 5 and p = 6. The main difference is that the vertex p12

has become a complex ridge and we introduce several more vertices. The facets, stabilizers
and orders in Table 10 imply that the orbifold Euler characteristic is

χ(2π/p, σ4) =

(
2(p − 4)

2p2
+

(6− p)2

24p2

)
−

(
3

p
+
p− 4

2p
+

1

2p

)

+

(
2

p
+

1

3
+ 2 +

p− 4

4p

)
− 2 +

1

7

=
15p2 − 140

56p2
.

Putting in p = 5 and p = 6 we obtain χ(2π/5, σ4) = 47/280 and χ(2π/6, σ4) = 25/126.
Finally, we consider the cases p = 8 and p = 12. The facets, stabilizers and orders are

given in Table 11, and show that the orbifold Euler characteristic is
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Facet Stabilizer Order

Vertices p112 〈R1, (R1R2)
2〉 2p2/(p − 4)

p113 〈R1, (R1R3)
2〉 2p2/(p − 4)

q1231̄ 〈R1, R2R3R
−1
2 〉 24p2/(6 − p)2

Edges (p112, p
1
13) 〈R1〉 p

(p112, p
2
12) 〈(R1R2)

2〉 2p/(p − 4)
(p112, q1232̄) 〈R1〉 p
(p113, q13̄23) 〈R1〉 p
(q1232̄, q13̄23) 〈S1〉 2p

Ridges r1 ∩ r−1 〈R1〉 p
r1 ∩ P−1r−1 〈P−1R1〉 3
r1 ∩ P 2s1 id 1
r1 ∩ s1 id 1

s1 ∩ P 2s−1 〈R2R3R
−1
2 〉 p

r1 ∩ P−3r−1 〈R2R3〉 4p/(p − 4)

Sides r1 id 1
s1 id 1

Polyhedron E 〈P 〉 7

Table 10: The Euler characteristic calculation for p = 5, 6.

Orbit Stabilizer Order

Vertices p112 〈R1, (R1R2)
2〉 2p2/(p− 4)

p113 〈R1, (R1R3)
2〉 2p2/(p− 4)

q1
1232̄

〈R1, (R1R2R3R
−1
2 )3〉 2p2/(p− 6)

Edges (p112, p
1
13) 〈R1〉 p

(p112, p
2
12) 〈(R1R2)

2〉 2p/(p − 4)
(p112, q

1
1232̄

) 〈R1〉 p
(p113, q

1
13̄23

) 〈R1〉 p
(q1

1232̄
, q1

13̄23
) 〈S1〉 2p

(q1
1232̄

, q232̄
1232̄

) 〈R1R2R3R
−1
2 R1〉 4p/(p − 6)

Ridges r1 ∩ r−1 〈R1〉 p
r1 ∩ P−1r−1 〈P−1R1〉 3
r1 ∩ P 2s1 id 1
r1 ∩ s1 id 1

s1 ∩ P 2s−1 〈R2R3R
−1
2 〉 p

r1 ∩ P−3r−1 〈R2R3〉 4p/(p − 4)

s1 ∩ P−2s−1 〈R1R
−1
3 R2R3〉 6p/(p − 6)

Sides r1 id 1
s1 id 1

Polyhedron E 〈P 〉 7

Table 11: The Euler characteristic calculation for p = 8, 12.
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χ(2π/p, σ4) =

(
2(p− 4)

2p2
+

(6− p)2

24p2

)
−

(
3

p
+
p− 4

2p
+

1

2p
+
p− 6

4p

)

+

(
2

p
+

1

3
+ 2 +

p− 4

4p
+
p− 6

6p

)
− 2 +

1

7

=
−98 + 21p+ 2p2

14p2
.

Putting in p = 8 and p = 12 gives χ(2π/8, σ4) = 99/448 and χ(2π/12, σ4) = 221/1008.

8 Arithmeticity and Galois theory

8.1 Trace fields and commensurability

Recall from [PP09] that we can adjust the generators R1, J and the Hermitian form H so
that their entries lie in

L = Q(τ, e2πi/p).

Note that after making this adjustment, R1 no longer has unit determinant.
In this section, we consider the adjoint trace field k = Q(tr AdΓ) for the relevant sporadic

triangle groups, i.e. the ones with τ = σ4 = −(1+ i
√
7)/2, and p = 3, 4, 5, 6 , 8 or 12. Recall

from [DM86], [Mos80] and [Pau10] that:

Lemma 8.1 The field Q(trAdΓ) is a commensurability invariant of subgroups Γ < U(n, 1),
where trAd(γ) = |tr(γ)|2 for γ ∈ U(n, 1).

Since we have arranged for R1 and J (as well as the matrix of the Hermitian form H) to
have entries in L = Q(τ, e2πi/p), the adjoint trace field is contained in R ∩Q(τ, e2πi/p).

In fact it is easy to see by computing the trace of a handful of group elements that k
contains Q(cos 2π

p ,
√
7 sin 2π

p ). Note that the adjustment indicated above changes the trace of
elements of Γ, but the absolute values of these traces remain the same. In fact the following
two traces suffice:

∣∣tr(R1)
∣∣2 = |e4iπ/3p + 2e−2iπ/3p|2

= 5 + 4 cos(2π/p),
∣∣tr(JR1JR

−1
1 )

∣∣2 = |e−2πi/3p − τe4iπ/3p|2

= 3− 2ℜ(τe2πi/p)
= 3 + cos(2π/p) +

√
7 sin(2π/p).

Now clearly we can go from k to L simply by adjoining
√
−7, so L has degree 2 over k.

This shows that k is equal to R ∩ L, and

k = Q
(
cos(2π/p),

√
7 sin(2π/p)

)
.

More specifically, for the relevant values of p, we find the fields given in Table 12. This shows
that the corresponding six lattices are in different commensurability classes; indeed there
is only one pair having the same adjoint trace field, but Γ(2π/3, σ4) is cocompact whereas
Γ(2π/6, σ4) is not. For completeness, we also recall (see [Pau10])

66



p k Degree

3 Q(
√
21) 2

4 Q(
√
7) 2

5 Q(
√
14
√

5 +
√
5) 4

6 Q(
√
21) 2

8 Q(
√
2,
√
7) 4

12 Q(
√
3,
√
7) 4

Table 12: The list of the adjoint trace fields of the lattices Γ(2π/p, σ4) shows that these 6
lattices lie in different commensurability classes.

Theorem 8.2 None of the six lattices Γ(2π/p, σ4) is commensurable to any Deligne-Mostow
lattice.

Indeed, the adjoint trace fields of the lattices in [DM86] are all of the form R ∩ Q(ζn) =
Q(cos 2π

n ), and only certain values of n actually appear in that list. More specifically, each
Deligne-Mostow group in PU(2, 1) is described by a 5-tuple of rational numbers, and n is
simply the least common denominator of these rational numbers (see [DM86], Section 12).
Note that if n = 2k where k is odd, then Q(ζn) = Q(ζk).

Given the degrees that appear in Table 12, it is enough to check the cyclotomic fields of
degree 4 or 8. The relevant values of n are listed in Table 13. Since all groups except the one
with p = 3 are non-arithmetic, we only look at the non-arithmetic Deligne-Mostow groups in
PU(2, 1). We list the corresponding adjoint trace fields in Table 13. This proves Theorem 8.2.

n Q(ζn) ∩ R Degree

5 or 10 Q(
√
5) 2

8 Q(
√
2) 2

12 Q(
√
3) 2

15 or 30 Q(
√
3

√
5+

√
5

2 ) 4

16 Q(
√
2 +

√
2) 4

20 Q(

√
5+

√
5

2 ) 4

24 Q(
√
2,
√
3) 4

Table 13: The list of cyclotomic fields whose totally real field has degree 2 or 4.

8.2 Arithmeticity

In this section we apply the Mostow–Vinberg arithmeticity criterion (Proposition 3.1) to
study arithmeticity. The result (Proposition 8.4) follows form Theorem 4.1 of [Pau10], but
for completeness we provide details for this special case. In the coordinates used in the
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previous section H is the following

H =



α β γ

β α β

γ β α




where α = 2 − e2πi/p − e−2πi/p, β = (e−2πi/p − 1)τ and γ = (1 − e−2πi/p)τ . In particular, all

entries of H lie in L = Q(τ, e2πi/p). Observe also that τ = ζ7+ ζ
2
7+ ζ

4
7 for ζ7 = e2πi/7, so that

L ⊂ Q(ζ7, ζp) = Q(ζ7p), where the last equality follows from the fact that 7 is coprime to p.
Let k ∈ N. By the Chinese remainder theorem, there exists l ∈ N such that l ≡ 1(mod 7)

and l ≡ k(mod p). In particular, if k is coprime to p, ζ7p 7→ ζ l7p induces an automorphism of

Q(ζ7p) which fixes ζ7 and sends ζp to ζkp ; hence L = Q(τ, e2πi/p) has an automorphism fixing

τ and sending ζp to ζkp . Similarly, there is an automorphism of L fixing ζp and sending τ to
τ .

Note that all these automorphisms clearly commute with complex conjugation, so that
for any σ ∈ Gal(L/Q), Hσ is a Hermitian form. Although H has signature (2, 1), its Galois
conjugates Hσ may have various signatures for different σ’s. With the current notation,
Proposition 3.1 translates into the following.

Proposition 8.3 The lattice Γ(2π/p, τ) is arithmetic if and only if for any σ ∈ Gal(L/Q)
not inducing the identity on k = R ∩ L, the form Hσ is definite.

Since the diagonal elements of Hσ are all positive, it is indefinite (i.e it has signature (1, 2)
or (2, 1)) precisely when det(Hσ) < 0. We list values of det(H) and all σ with det(Hσ) < 0
in Table 14. Note that for p = 5 there are two non-trivial Galois automorphisms for which
det(Hσ) < 0. We list both of them.

p τσ, ζσp Γσ det(H) det(Hσ)

3 −1
2(9 + 3

√
21)

4 τ , ζ4 Γ(2π/4, σ4) −6− 2
√
7 −6 + 2

√
7

5 τ , ζ5 Γ(2π/5, σ4) −
√
5
4

(
5 +

√
5 +

√
14

√
5−

√
5
)

−
√
5
4

(
5 +

√
5−

√
14

√
5−

√
5
)

τ, ζ25 Γ(4π/5, σ4)
√
5
4

(
5−

√
5 +

√
14

√
5 +

√
5
)

6 τ , ζ6 Γ(2π/6, σ4) −1
2(5 +

√
21) −1

2(5−
√
21)

8 τ, ζ38 Γ(6π/8, σ4) −1 +
√
7−

√
14 −1−

√
7−

√
14

12 τ, ζ512 Γ(10π/12, σ4)
3
2 −

√
3−

√
7 + 1

2

√
21 3

2 +
√
3−

√
7− 1

2

√
21

Table 14: Computation of det(H) for various values of p; when there is one, we list an
automorphism σ such that Hσ is indefinite.

Proposition 8.4 Consider the groups Γ(2π/p, σ4), p = 3, 4, 5, 6, 8 and 12. Then Γ(2π/p, σ4)
is arithmetic if and only if p = 3.
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9 Appendix: combinatorial data

In this section we gather together the data about the facets of E and their orbits under P .

m1
P7−→ m121̄

P7−→ m1232̄1̄
P7−→ m12313̄2̄1̄

P7−→ m3̄2̄123
P7−→ m3̄23

P7−→ m3
P7−→ m1

m2
P7−→ m131̄

P7−→ m2̄12
P7−→ m13̄231̄

P7−→ m3̄121̄3
P7−→ m232̄

P7−→ m3̄13
P7−→ m2

Table 15: P -orbits of mirrors of R1 and R2.

Suppose that u and v are words so that uv is conjugate to 12. If the mirrors of mu and

mv intersect in H
2
C then their intersection point is denoted pw. The relationship between u,

v and w is slightly subtle. The easiest situation is when uv = w, such as m1 ∩ m2 = p12.
However, any mirror in the group generated by u and v also passes through this point. So,
for example, m1 ∩m121̄ = m121̄ ∩m2̄12 = p12.

p12
P7−→ p1231̄

P7−→ p12312̄1̄
P7−→ p3̄2̄3123

P7−→ p3̄123
P7−→ p23

P7−→ p13
P7−→ p12

Table 16: P -orbits of p∗ vertices, for p = 3 or 4.

If mu and mv are ultraparallel then we denote their common perpendicular by mw where
u, v and w are related as above. In this case the P -orbit of mw may be found using the same
subscripts as appear in the P -orbit of pw in the Table 16. In this case, mu and mw intersect
in puw. The P -orbits of these points are given in Table 17.

p112
P7−→ p121̄

1231̄

P7−→ p1232̄ 1̄
12312̄ 1̄

P7−→ p12313̄ 2̄ 1̄
3̄ 2̄3123

P7−→ p3̄ 2̄123
3̄123

P7−→ p3̄2323
P7−→ p313

P7−→ p112

p212
P7−→ p131̄1231̄

P7−→ p2̄1212312̄ 1̄

P7−→ p13̄231̄3̄ 2̄3123

P7−→ p3̄121̄33̄123
P7−→ p232̄23

P7−→ p3̄1313
P7−→ p212

p2̄1212
P7−→ p13̄231̄1231̄

P7−→ p3̄121̄312312̄ 1̄

P7−→ p232̄3̄ 2̄3123

P7−→ p3̄133̄123
P7−→ p223

P7−→ p131̄13
P7−→ p2̄1212 ,

p121̄12
P7−→ p1232̄ 1̄1231̄

P7−→ p12313̄ 2̄ 1̄12312̄ 1̄

P7−→ p3̄ 2̄1233̄ 2̄3123

P7−→ p3̄233̄123
P7−→ p323

P7−→ p113
P7−→ p121̄12 .

Table 17: For p = 5 or 6, there are four P -orbits of p∗ vertices.

Similarly, suppose u and v are words in Γ so that uv is conjugate to 1232̄. If mu and mv

intersect in H
2
C then we denote their intersection point by qw, where u, v and w where w is

conjugate in the group generated by u and v to uv. These vertices are listed in Table 18.
If mu and mv are ultraparallel then we denote their common perpendicular by mw, where

u, v, w are related as before. The intersection point of mu andmw is denoted quw; see Table 19.
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q1232̄
P7−→ q121̄3̄13

P7−→ q23̄2̄123
P7−→ q131̄3̄23

P7−→ q2̄123
P7−→ q13̄23

P7−→ q121̄3
P7−→ q1232̄

Table 18: P -orbits of q∗ vertices, for 3 6 p 6 6.

q1
13̄23

P7−→ q121̄
121̄3

P7−→ q1232̄ 1̄
1232̄

P7−→ q12313̄ 2̄ 1̄
121̄ 3̄13

P7−→ q3̄ 2̄123
23̄ 2̄123

P7−→ q3̄23
131̄ 3̄23

P7−→ q3
2̄123

P7−→ q1
13̄23

q3̄23
13̄23

P7−→ q3
121̄3

P7−→ q1
1232̄

P7−→ q121̄
121̄ 3̄13

P7−→ q1232̄ 1̄
23̄ 2̄123

P7−→ q12313̄ 2̄ 1̄131̄ 3̄23

P7−→ q3̄ 2̄1232̄123

P7−→ q3̄2313̄23

q13̄231̄
13̄23

P7−→ q3̄121̄3
121̄3

P7−→ q232̄
1232̄

P7−→ q3̄13
121̄ 3̄13

P7−→ q2
23̄ 2̄123

P7−→ q131̄131̄ 3̄23

P7−→ q2̄122̄123

P7−→ q13̄231̄13̄23

Table 19: For p = 8 or 12, there are three P -orbits of q∗ vertices.
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[KM12] A. Kappes and M. Möller. Lyapunov spectrum of ball quotients with applications
to commensurability questions. Preprint, arXiv:1207.5433, 2012.

[Kon00] S. Kondo. A complex hyperbolic structure for the moduli space of curves of genus
three. J. Reine Angew. Math., 525:219–232, 2000.

[Mar75] G. A. Margulis. Discrete groups of motions of manifolds of nonpositive curvature.
In Proceedings of the International Congress of Mathematicians (Vancouver, B.C.,
1974), Vol. 2, pages 21–34. Canad. Math. Congress, Montreal, Que., 1975.

[Mar91] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin, 1991.

[McM13] C. T. McMullen. The Gauss-Bonnet theorem for cone manifolds and volumes of
moduli spaces. Preprint, 2013.

[McR06] D. B. McReynolds. Finite subgroups of arithmetic lattices in U(2, 1). Geom. Dedi-
cata, 122:135–144, 2006.

71



[Mos80] G. D. Mostow. On a remarkable class of polyhedra in complex hyperbolic space.
Pacific J. Math., 86:171–276, 1980.

[Par06] J. R. Parker. Cone metrics on the sphere and Livne’s lattices. Acta Math., 196:1–64,
2006.

[Par08] J. R. Parker. Unfaithful complex hyperbolic triangle groups I: Involutions. Pacific
J. Math., 238:145–169, 2008.

[Par] J. R. Parker. Complex Hyperbolic Kleinian Groups. Cambridge University Press,
To appear.

[Pau10] J. Paupert. Unfaithful complex hyperbolic triangle groups III: arithmeticity and
commensurability. Pacific J. Math., 245:359–372, 2010.

[Pic81] E. Picard. Sur une extension aux fonctions de deux variables du problème de
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deraux@ujf-grenoble.fr

John R. Parker

Department of Mathematical Sciences, Durham University

j.r.parker@durham.ac.uk

Julien Paupert

School of Mathematical and Statistical Sciences, Arizona State University

paupert@asu.edu

73


