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Pointwise Convergence of the Lloyd algorithm in higher

dimension

Gilles Pagès ∗ Jun YU †

December 31, 2013

Abstract

We establish the pointwise convergence of the iterative Lloyd algorithm, also known as k-
means algorithm, when the quadratic quantization error of the starting grid (with size N ≥ 2) is
lower than the minimal quantization error with respect to the input distribution is lower at level
N − 1. Such a protocol is known as the splitting method and allows for convergence even when the
input distribution has an unbounded support. We also show under very light assumption that the
resulting limiting grid still has full sizeN . These results are obtained without continuity assumption
on the input distribution. A variant of the procedure taking advantage of the asymptotic of the
optimal quantizer radius is proposed which always guarantees the boundedness of the iterated grids.

Keywords: Lloyd algorithm ; k-means algorithm ; centroidal Voronoi Tessellation ; optimal vector
quantization ; stationary quantizers ; splitting method ; radius of a quantizer.

1 Introduction

A Centroidal Voronoi Tessellation (CVT) with respect to a probability (or mass) distribution is a
Voronoi tessellation of a set of (generating) points in R

d (centers of mass) such that each generating
point is the centroid of its corresponding Voronoi region with respect to this density function. This
definition can be extended to more general probability measures, typically those assigning no mass to
hyperplanes to avoid ambiguity on the boundaries of the Voronoi regions. CVTs enjoy very natural
optimization properties, especially in connection with vector quantization (see further on) which makes
them very popular in various scientific and engineering applications including art design, astronomy,
clustering, geometric modeling, image and data analysis, resource optimization, quadrature design,
sensor networks, and numerical solution of partial differential equations.

For modern applications of the CVT concept in large-scale scientific and engineering problems,
it is important to develop robust and efficient algorithms for constructing CVTs in various settings.
Historically, a number of algorithms have been studied and widely used. However, the pioneering
contribution is undoubtedly the procedure first developed in the 1960s at Bell Laboratories by S. Lloyd.
It remains so far, in its randomized form, one of the most popular methods due to its effectiveness
and simplicity.

Let us begin with a more detailed description of the CVT. First assume that the probability
distribution, say µ, on (Rd,Bor(Rd)), has a support included in a closed convex set with non empty
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interior denoted U of Rd. Also, note that, up to a reduction of the dimension d, one may always
assume that U has a nonempty interior.

A Voronoi diagram (or partition) of U refers to a Borel partition (Ci(Γ))1≤i≤N of U ⊂ R
d induced

by a set Γ = {xi, 1 ≤ i ≤ N} ⊂ U of N given generating points or Generators (the notation Γ also
refers to the application to numerics where the set of generators is also called a grid). For every
i∈ {1, . . . , N}, the Voronoi region (or cell) Ci(Γ) satisfies

Ci(Γ) ⊂
{
ξ∈ U : |ξ − xi| ≤ min

1≤j≤N
|ξ − xj |

}

where | . | denotes the canonical Euclidean norm on R
d. Then

{
ξ∈ U : |ξ − xi| < min

1≤j≤N
|ξ − xj |

}
=

◦
Ci (Γ) ⊂ Ci(Γ) ⊂ Ci(Γ) =

{
ξ∈ U : |ξ − xi| ≤ min

1≤j≤N
|ξ − xj |

}

so that the Ci(Γ) have convex interiors and closures. The family of closures is also known as Voronoi
tessellation of U induced by Γ and the Ci(Γ), i = 1, . . . , N are called tessels). Furthermore they
have a polyhedral structure, in particular their boundaries are contained in ∪i 6=iHij where Hij ≡
xi+xj

2 +
(

xi−xj

|xi−xj |

)⊥
is the median hyperplane of xi and xj . Of course, a notion of Voronoi regions can

be defined with respect to any norm N on R
d but the above (polyhedral) convexity properties fail (see

e.g. [7], chapter 1) for non Euclidean norms.
We will often assume that µ is strongly continuous in the sense that it assigns no mass to hyper-

planes (so is the case if µ is absolutely continuous i.e. µ(dξ) = ρ(ξ)dξ where ρ is a probability density
function defined on R

d whose support is contained in U). Then the boundaries of the Voronoi regions
are µ-negligible so that we can define in a unique way the centroids x∗i , i = 1, . . . , N of the Voronoi
regions by setting

x∗i =





∫
Ci

ξµ(dξ)

µ(Ci)
if µ(Ci) > 0,

xi if µ(Ci) = 0,

i = 1, . . . , N. (1.1)

Note that, owing to the convexity of the Voronoi cells Ci and the finiteness of the measure µ, one
has x∗i ∈ Ci (closure in U) for every i ∈ {1, . . . , N}. From a more probabilistic point of view, if X
denotes an R

d-valued random vector with distribution P
X

= µ, then (with an obvious convention
when P(X∈ Ci) = 0)

x∗i = E
(
X |X ∈ Ci

)
, i = 1, . . . , N.

This naturally leads to the definition of a CVT which is but a Voronoi tessellation whose generators
xi are the centroids of their respective Voronoi regions. With the notation given above, the Lloyd
algorithm for constructing CVTs can be described more precisely by the following procedure.

The paradigm of Lloyd’s algorithm is to consider the definition of CVT as a fixed point equality
for the so-called Lloyd map Tµ

N
defined on the set of U-valued grids Γ with at most N values by (1.1),

i.e.
Tµ

N
(Γ) = {x∗i , i = 1, . . . , N} if Γ = {xi, i = 1, . . . , N} ⊂ U.

As mentioned above, T (Γ)i∈ Ci(Γ) since the Voronoi tessels are convex and µ is probability distribu-
tion.

Note that, furthermore, if supp(µ) = U or if µ is contain,ious (assigns no mass to hyperplanes) then,

a supporting hyperplane argument shows that T (Γ)i ∈
◦
Ci (Γ) (interior in U) for every i = 1, . . . , N

(see further on Lemma 2.2, see also [7], p.22). In particular, T (Γ) and Γ have the same size N .
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The Lloyd algorithm is simply the formal fixed point search procedure for the Lloyd map T
N

starting from a given grid Γ(0 = {x(0)i , i = 1, . . . , N} of full size N i.e.

Γ(k+1) = Tµ
N
(Γ(k)), k ≥ 0.

Algorithm 1 (Lloyd’s algorithm for computing CVTs):

⊲ Inputs:

• U, the domain of interest;

• µ a probability distribution supported by U;

• Γ(0) = {x(0)i , i = 1, . . . , N} ⊂ U, the initial set of N generators.

⊲ Pseudo-script:

Formally, at the kth iteration, one has to proceed as follows:

1. Construct the Voronoi tessellation {Ci(Γ
(k)), i = 1, . . . , N} of U with the grid of generators

Γ(k) = {x(k)i , i = 1, . . . , N}.

2. Compute the µ-centroids of {Ci(Γ
(k)), i = 1, . . . , N} as the new grid of generators Γ(k+1) =

{x(k+1)
i , i = 1, . . . , N}.

⊲ Repeat the iteration above until some stopping criterion is met to provide a grid of generators as
close as possible of a µ-centroid.

⊲ end.

In 1-dimension, Kieffer has proved in [9] that T
N
is contracting if µ has a log-concave density over a

compact interval so that only one µ-centroid with N points exists for such distribution and the above
procedure converges exponentially fast toward it. See also, more recently a convergence result in [4].

In practice, these two steps become intractable in higher dimension by analytic or even determin-
istic approximation methods, say when d ≥ 3 or 4 (see however the website QHull: www.qhull.org).
So this theoretical procedure has to be replaced for numerical purpose by a randomized version in
which:

– Step 1 is replaced by a systematic nearest neighbour search of simulated random µ-distributed
vectors.

– Step 2 is replaced by a Monte Carlo estimation of both terms of the ratio which define the Lloyd
map.

In the community of data analysis, note that when µ = 1
M

∑M
m=1 δξm is the empirical measure

of a U-valued data set (ξm)m=1,...,M , it is still possible to define and compute the Lloyd map (using
appropriate conventions like e.g. random allocation of points lying on the boundary of (closed) Voronoi
tessels). In such a case the Lloyd procedure is known as the Forgy algorithm or the batch-k-means
procedure. When the data set is so huge that a uniform sampling (of sizeM) of the dataset is necessary
at each iteration, the procedure is known as the k-means procedure.

In this paper we will focus on the converging properties of the theoretical (or batch in the data-
mining community) Lloyd procedure, prior to any randomization or approximation, although we
are aware that in higher dimension for continuous distributions µ, it is a pseudo-algorithm. So far
we have presented the Lloyd procedure in an intrinsic manner. In fact Lloyd’s algorithm is deeply
connected with the theory of Optimal Vector Quantization of probability distribution. This connection
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turns out to provide very powerful tools to investigate its convergence properties. It is also a major
field of application when trying to compute with a sharp accuracy optimal quantizers of simulatable
distribution arising in the design of numerical schemes for solving nonlinear problems (optimal stopping
problems, (possibly Reflected) Backward Stochastic Differential Equations, Stochastic Control, etc,
see [1, 16]).

Quantization is a way to discretize the path space of a random phenomenon: a random vector in
finite dimension (but also stochastic process in infinite dimension viewed as a random variable taking
values in its path space which we will not investigate in this paper). We consider here a random
vector X defined on a probability space (Ω,A,P) taking its values in R

d equipped with its Borel
σ-field Bor(Rd).

It is convenient for what follows to introduce a few notions and results about vector quantization
and its (mean quadratic) optimization. It makes a connection between CVTs and stochastic optimiza-
tion, gives a rigorous meaning to the notion of “goodness” of a CVT. Optimal vector quantization
goes back to the early 1950’s in the Bell laboratories and have been developed for the optimization of
signal transmission.

Let X : (Ω,A,P) → R
d be a square integrable random vector (i.e. E|X|2 < +∞) or equivalently

X∈ L2
Rd(P). Assume that its distribution µ = P

X
is included inU (defined as above). The terminology

N -quantizer (or a quantizer at level N) is assigned to any U-valued subset with cardinality N . When
used in a numerical framework, it is also known as quantization grid.

Γ := {x1, x2, · · · , xN} ⊂ U.

The cardinality of Γ is N . In numerical applications, Γ is also called a (quantization) grid. It is the
set of genrators of its (borel) Voroni regions (Ci(Γ))1≤i≤N . Then can discretize X in pointwise way
by q(X) where q: Rd → Γ is a Borel function. Then we get

∀ω∈ Ω, |X(ω)− q(X(ω))| ≥ dist(X(ω),Γ) = min
1≤i≤N

|X(ω)− xi|

so that the best pointwise approximation of X is provided by considering any (Borel) nearest neighbour
projection q = ProjΓ associated with the Voronoi tessellation (Ci(Γ))1≤i≤N by setting

ProjΓ(ξ) =

N∑

i=1

xi1Ci(Γ)(ξ), ξ∈ R
d.

It is clear that such a projection is in one-to-one correspondence with the Voronoi partitions (or
diagrams) of Rd induced by Γ. These projections only differ on the boundaries of the Voronoi cells
Ci(Γ) so that, as soon as µ = P

X
is strongly contoinuous, these neratest neighbour projections are all

P
X

-a.s. equal. We define a Voronoi N -quantization of X (or at level N) by setting for every ω∈ Ω,

X̂Γ(ω) := ProjΓ(X(ω)) =
N∑

i=1

xi1Ci(Γ)(X(ω)).

Thus for all ω ∈ Ω,
|X(ω)− X̂Γ(ω)| = dist(X(ω),Γ) = min

1≤i≤N
|X(ω)− xi|. (1.2)

We will call X̂Γ a Voronoi Γ-quantization of X or, in short, a quantization of X.
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The mean quadratic quantization error is then defined by

e(Γ, X) = ‖X − X̂Γ‖2 =
√
E

(
min

1≤i≤N
|X − xi|2

)

where ‖ · ‖2 is the norm in L2
Rd(P). The distribution of X̂Γ as a random vector is given by the N -tuple

(P(X ∈ Ci(Γ)))1≤i≤N . This distribution clearly depends on the choice of the Voronoi partition.

We naturally wonder whether it is possible to design some optimally fitted grids to a given distri-
bution µ = PX i.e. which induces the lowest possible mean quadratic quantization error among all
grids of size at most N . This optimization problem, known as the optimal quantization problem at
level N , reads as follows:

eN (X) := inf
Γ⊂Rd,Card(Γ)≤N

e(Γ, X)

By introducing the energy function or distortion value function

G :
(
R
d
)N −→ R+

x = (x1, x2, · · · , xN ) 7−→ E

(
min

1≤i≤N
|X − xi|2

)

the optimization problem also reads

eN (X) = inf
x∈(Rd)N

√
G(x)

since the value of G at an N -tuple x = (x1, x2, · · · , xN ) ∈ (Rd)N only depends on its value grid
Γ = Γx = {x1, . . . , xN} of size at most N of the N -tuple (in particular G is a symmetric function).
We will make occasionally the abuse of notation consisting in denoting G(Γ) instead of G(x).

One proves (see e.g. [2, 7, 12]) that there always exists at least one optimal N -point grid Γ∗
N

=

{x∗1, x∗2, · · · , x∗N} ⊂ R
d with cardinal N such that eN (X) =

√
G(Γ∗

N
). If the support of P

X
has at least

N + 1 elements (e.g. because it is infinite), then Γ∗
N

has full size N . Furthermore, Γ∗
N
⊂ U; this last

claim strongly relies on the Euclidean feature of the norm on R
d: if Γ∗

N
/⊂ U, then the projection of the

elements of Γ∗
N

on the closed (nonempty) convex U strictly reduces the mean quadratic quantization
error (see e.g. [12, 7, 10]). Note that this existence result does not require µ = PX to be strongly
continuous. In fact, even if µ has an atomic component, it is shown in [7] (see Theorem 4.2, p.38) that
µ
(
∪i ∂Ci(Γ

∗
N
)
)
= 0.

Furthermore, the function G is differentiable on (Rd)N at every N -tuple x = (x1, . . . , xN
) such that

xi 6= xj , i 6= j and P
(
X∈ ∪1≤i≤N∂Ci(x)

)
= 0 and its gradient is given by

∇G(x) = 1

2
E
(
1{X∈Ci(x)}(xi −X)

)
(1.3)

where (Ci(x))1≤i≤N denotes any Voronoi diagram of {x1, . . . , xN
} (or x with, once again, an obvious

abuse of notation). In particular, if x∗ = (x∗1, . . . , x
∗
N
) is an optimal quadratic quantizer, one shows

(see [7], Theorem 4.2 p.38) that P
(
X∈ ∪i∂Ci(x

∗)
)
= 0 even if P

X
assigns mass to (at most countably

many) hyperplanes. As a consequence,

∇G(x∗) = 0 or equivalently T
P
X

N (x∗) = x∗

where T
P
X

N stands for the Lloyd map related to the distribution µ = P
X
of the random vector X. The

equivalence is a straightforward consequence of (1.3)). Hence any optimal quantizer induces a CVT
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for the distribution of X. In reference to the fact that such an N -quantizer is a zero of a gradient,
this property is also known as stationarity for the N -tuple x∗ itself.

Unfortunately, the converse is not true since G may have many local minima, various types of
saddle points (and a “pin” behaviour on affine manifolds induced by clusters of stuck components).
This phenomenon becomes more and more intense as d grows. However, it makes a strong connection
between search for optimal quantizers and Lloyd’s algorithm as described above. And there is no
doubt that what practitioners are interested in are the optimal quantizers rather than any “saddle”
stationary quantizers. One can also derive a stochastic gradient algorithm from the representation of
∇G as an expectation of a computable function of the quantizer x and the random vector X. This
second approach leads to a stochastic optimization procedure, a stochastic gradient descent to be
more precise, known as the Competitive learning vector Quantization algorithm (CLV Q) which has
also been extensively investigated (see among others [12]).

The paper is organized as follows: in Section 2 we establish the convergence of the Lloyd procedure
at level N under some natural assumptions on the probability distribution (at least for numerical prob-
ability purpose) but assuming that the starting quantizer (or generators) induces a lower quantization
error than the lowest quantization error at level N − 1. In Section 3, we propose a modified Lloyd’s
procedure, inspired by recent results on the asymptotics of the “radius” of optimal quantizers at level
N as N → +∞, to overcome partially this constraint on the starting grid.

Notations: • supp(µ) denotes the support of the Borel probability measure µ on R
d. λd denotes the

Lebesgue measure on R
d.

• (. , .) denotes the canonical inner product on R
d. B(x, r), r∈ R+, denotes the canonical Euclidean

ball centered at x∈ R
d with radius r > 0.

• |A| denotes the cardinality of set A.

2 Convergence analysis of Lloyd’s algorithm with unbounded inputs

2.1 The main result

Owing to both simplicity and efficiency of of practical implementations of Lloyd’s algorithm in various
fields of applications, it is important to study its convergence as it has been carried out, at least
partially, in [12] for its “counterpart” in the world of Stochastic Approximation, the recursive stochastic
gradient descent attached to the above gradient of the distortion function G. This procedure is also
known as CLV Q (for Competitive Learning Vector Quantization algorithm). In fact, as concerns the
convergence properties of Lloyd’s algorithm, many investigations have already been carried out . Thus,
as mentioned in the introduction, true convergence for log-concave densities has been established in [9]
whereas global “weak” convergence has been proved in a one dimensional setting (see [4]). However,
there are not many general mathematical results on the convergence analysis for distributions on
multi-dimensional spaces, especially when the support of the distribution µ of interest is not bounded.

It is convenient to rewrite the iterations of the Lloyd algorithm in a more probabilistic form, using

quantization formalism (with a generic notation for the grids: Γ(k) =
{
x
(k)
1 , . . . , x(k)

N

}
, k ≥ 0). Let

Γ(0) ⊂ R
d. For every k ≥ 0,





(I)Centroid updating : X̃(k+1) = E
(
X | X̂Γ(k))

, Γ(k+1) = X̃(k+1)(Ω)

=





E

(
1

{X̂Γ(k)
=x

(k)
i

}
X
)

P(X̂Γ(k)
=x

(k)
i )

, i = 1, . . . , N





(II)Voronoi cells re-allocation : X̂Γ(k+1) ← X̃(k+1).
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with the following degeneracy convention:

if P(X̂Γ(k)
= x

(k)
i ) = P(X∈ Ci(Γ

(k))) = 0 then X̂Γ(k+1)
= x

(k)
i .

We need now to formalize in a more precise way what can be a consistent connection between the
sequence of iterated grids (Γ(k))k≥0 in the Lloyd procedure and the N -tuples that can be associated
to their values.

Definition 2.1. Let (Γ(k))k≥0 be a sequence of iterates of the Lloyd procedure where |Γ(0)| = N . A
sequence of N -tuples (x(k))k≤0 is a consistent representation of the sequence Γ(k) if

(i) Γ(k) = {x(k)i , i = 1, . . . , N},

(ii) For every integer k ≥ 0 and every i∈ {1, . . . , N}, x(k+1)
i is the centroid of the cell of x

(k)
i i.e.

x
(k+1)
i = E

(
X |X∈ Ci(Γ

(k))
)
=

E
(
1
{X̂Γ(k)

=x
(k)
i }

X
)

P(X̂Γ(k)
= x

(k)
i )

(still with the above degeneracy convention).

There are clearly N ! consistent representations of a sequence of Lloyd iterates, corresponding to
the possible numbering of Γ(0). But then this numbering is frozen as k increases. It is also clear
that roundedness, convergence (in (Rd)N ) of such consistent representations does not depend on the
selected representation. So is true for a possible limit x(∞) of such sequences since Γ(∞) will not
depend on the selected representation. However on may have |Γ(∞)| < N in case of an asymptotic
merging of some of the components of the representation. One checks that under the assumptions we
make (µ continuous, or convex support or splitting assumption on Γ(0)) no merging occurs at finite
range.

Throughout the paper (x(k))k≥0 will always denote a consistent representation of the sequence of
iterates Γ(k))k≥0. These remark lead naturally to the following definition

Definition 2.2 (Convergence of iterated grids). We will say that Γ(k) → Γ(∞) (converges) as k →
+∞ if there exists a constant representation (x(k))k≥0 converging in (Rd)N toward x(∞) such that

Γ(∞) = {x(k)i , i = 1, . . . , N}.

Several specific results established in what follows are known in the literature, but we chose to
provide all proofs for self-completeness of the paper and reader’s convenience.

Let us first recall a basic fact which is at the origin of the efficiency of the Lloyd algorithm.

Lemma 2.1. The iteration of Lloyd’s algorithm makes the quantization error decrease.

e(Γ(k+1), X) ≤ e(Γ(k), X).

Furthermore, e(Γ(k+1), X) < e(Γ(k), X) as long as X̂Γ(k) 6= E(X|X̂Γ(k)
) with positive P-probability.

Conversely, if X̂Γ(k0) = E(X|X̂Γ(k0)) P-a.s. for an integer k0∈ N, then X̂Γ(k)
= X̂Γ(k0)

P-a.s. for every
k ≥ k0.

Proof : By its very definition, X̃(k+1) is the best approximation of X among the σ(X̂Γ(k)
)-measurable

functions, including X̂Γ(k)
itself. Thus

‖X − X̃(k+1)‖2 = ‖X − E(X|X̂Γ(k)
)‖2 ≤ ‖X − X̂Γ(k)‖2 = e(Γ(k), X) (2.4)
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with equality if and only if X̂Γ(k)
= E(X|X̂Γ(k)

). Note that, if so is the case, Γ(k+1) = Γ(k) since

X̃(k+1) = X̂Γ(k)
. On the other hand, by (1.2), X̂Γ(k+1)

is the best approximation of X among all
Γ(k+1)-valued random vectors since

e(Γ(k+1), X) = ‖X − X̂Γ(k+1)‖2 = ‖dist(X,Γ(k+1))‖2 ≤ ‖X − X̃(k+1)‖2
and if Γ(k+1) = Γ(k), this inequality holds as an equality. �

This seminal property of Lloyd’s algorithm is striking not only by its simplicity. It is also at
the origin of its success. Morally speaking, it suggests a convergence toward a stationary – and
hopefully optimal or at least locally optimal – quantizer of the distribution µ of X. In fact, things are
less straightforward, at least from a theoretical point of view since this property provides absolutely
no information on the boundedness of the sequence of grids (Γ(k))k≥0 generated by the procedure,
although it is a crucial property the way toward convergence.

The main result of this paper is the following theorem.

Theorem 2.1. Let X : (Ω,A,P) → R
d be a square integrable random vector with a distribution µ

having a convex support U assigning no mass to hyperplanes. Let Γ(0) ⊂ U with size |Γ(0)| = N .

Then, all the iterates Γ(k) = {x(k)i , i = 1, . . . , N} have full size N and are U-valued.

(a) If the sequence
(
Γ(k)

)
k≥1

is bounded (or equivalently kits consistent representations (x(k))k≥0),
then

lim inf
k

min
1≤i,j≤N

|x(k)i − x
(k)
j | > 0

and there exists ℓ∞∈
[
0, eN (Γ(0)(X))

)
and a connected component Cℓ∞,U of Λ∞ :=

{
x∈ UN , eN

(
{xi, i =

1, . . . , N}, X
)
= ℓ∞, G(x) = 0

}
such that

dist
(
x
(k)
i , Cℓ∞,U

)
→ 0 as k → +∞.

In particular, if Λ∞ is locally finite (i.e is reduced to finitely many points on each compact set), then
Γ(k) → Γ(∞)∈ Λ∞.

(b) Splitting method: If furthermore e(Γ(0), X) ∈ (eN (X), eN−1(X)], then the sequence
(
Γ(k)

)
k≥1

is

always P-a.s. bounded and ℓ∞∈ [eN (X), eN−1(X)).

Remarks. • The result in claim (a) does not depend on the original numbering of Γ(0) i.e. on the
selected order (among N !) selected to define x(0) and the then the sequence (x(k)). In particular in
case of true convergence of the sequence x(k), all its permutations do converge as well toward the
corresponding permutations of x(∞) so that one can, by an abuse of notion write that Γ(k) → Γ(∞). A
direct approach based on a formal notion of set convergence is also possible but would be of no help
in practice.

• Nothing ensures that the limiting grid Γ(∞) is optimal or even a local minimum. We refer to the
Appendix for a brief discussion and an closed formula for the Hessian of G.

The first claim of this theorem relies on a boundedness assumption for the sequence
(
Γ(k)

)
k≥0

.
This condition is of course satisfied if the support of the distribution µ of X is compactly supported
and U = H(supp(µ)) (closed convex hull of the support of µ) since we assume that Γ(0) ⊂ U: then,
for every k∈ N, so will be the case for Γ(k) as emphasized in the description of the procedure.

Claim (b) emphasizes that, by an appropriate choice of (the quadratic quantization error) Γ(0)

may imply the boundedness of the whole sequence of iterates (Γ(k))k≥0. This approach known by
practitioners as the splitting method is investigated in the next subsection.

We will prove this theorem step by step, establishing intermediary results, often under less stringent
assumptions than the above theorem, which may have their own interest.

8



2.2 Possibly unbounded inputs: the splitting method

In practical computations, if one aims at computing (hopefully) optimal quantization grids (or CV T )
of X on a wide range of levels N (see e.g. the website www.quantize.maths-fi.com), the so-called
splitting method appears as an extremely efficient “level-by-level” procedure. The principle is to
compute the grids in a telescopic manner based on their size N : assume we have access to an optimal
grid of size N . Imagine we add to this grid an (N + 1)th U-valued component e.g. sampled randomly
from the distribution of X (or any U-supported distribution). Doing so, we make up a grid which
has for sure a lower quadratic mean quantization error than any grid with N points. This grid of
size N + 1 is likely to lie in the attracting basin of the optimal quadratic quantizer (or CV T ) at
level N + 1. This is often observed in practice and, even if not optimal, it provides at least very
good quantizers. Its main the trade-off is that it requires a systematic, hence heavily time consuming,
simulation. Many variants or potential improvements can be implemented (like adding an optimal
quantizer of size N0 ≥ 2 at each new initialization to directly obtain (hopefully) optimal quantizers of
size N +N0 (see e.g. [13]).

Splitting Assumption (on the starting grid): Let N ≥ 1 be such that card(suppµ) > N (where
µ = P

X
). Let Γ∗

N−1 = {x∗i , i = 1, . . . , n} ⊂ U be an optimal grid of size N − 1 for P
X

and let

x
(0)
N ∈ supp(µ) \ Γ∗

N−1. The Lloyd algorithm is initialized as follows:

Γ(0) = Γ∗
N−1 ∪ {x(0)N } =

{
x∗1, x

∗
2, · · · , x∗N−1, x

(0)
N

}
. (2.5)

One natural way to generate the additional element x(0)
N

is in practice to simulate randomly a copy
of X (in fact one can also simulate a copy of a random vector whose distribution is equivalent to that
of X, see the remark below).

Remark. If µ has a density ρ, it is more efficient to simulate according to the distribution whose

probability density is proportional to ρ
d

d+2 (one checks that this function is integrable if X∈ L2+η(P)

for an η > 0, see e.g. [7]). The reason is that the resulting distribution µd = κdρ
d

d+2 .λd provides
the best random N -quantizers of µ = ρ.λd for every N ≥ 1 in the following sense: the asymptotic
minimization problem

inf
{
lim sup
N→+∞

N
2
dE

(
min

1≤i≤N
|X − Yi|2

)
, Y1, . . . , YN

i.i.d., ⊥⊥ X, Y1 ∼ ν
}

has ν = µd as a solution (⊥⊥ denotes here independence).

If the Splitting Assumption on the initialization of the procedure is satisfied, the grids of the iter-
ations in the Lloyd algorithm share an interesting property (which implies their global boundedness).
The arguments developed in the proof below are close to those used in the proof of the existence of
an optimal quantizer at level N (see e.g. [12, 7]).

Proposition 2.1. Assume the Splitting Assumption (2.5).

(a) The quantization error induced by the grid Γ(0) defined by (2.5) is strictly smaller than eN−1(X)
(i.e. that of the optimal (N − 1)-quantizer Γ∗

N−1
) so that |Γ(k)| = N and

e(Γ(k), X) =
∥∥X − X̂Γ(k)∥∥

2
≤ e(Γ(0), X) < eN−1(X).

(b) The sequence of iterated grids (Γ(k))k≥0 is bounded in R
d i.e. there exists a compact set K ⊂ R

d

such that
∀ k∈ N, Γ(k) ⊂ K.

9
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(c) All the limiting values of the sequence of consistent representations (x(k))k≥0 have N pairwise
distinct components (i.e. the the sequence of grids (Γ(k))k≥0 has asymptotically full size full size N).

Proof : (a) The (squared) quadratic means quantization error (or “distortion value”) induced by Γ(0)

satisfies:
e(Γ(0), X)2 = G(x∗1, x∗2, · · · , x∗(N−1), x

(0)
N ) = E

(
min

1≤i≤N
|X − x

(0)
i |2

)
.

where x
(0)
j = x∗j , 1 ≤ j ≤ N − 1. Let ε = 1

3 min1≤i≤N−1 |x∗i − x
(0)
N |. For every ξ∈ B(x

(0)
N , ε),

|ξ − x
(0)
i | ≥ |x∗i − x(0)

N
| − |ξ − x(0)

N
| ≥ 3ε− ε = 2ε > |ξ − x(0)

N
|2.

Consequently, on the event Aε = {X∈ B(x
(0)
N , ε)}, we have

min
1≤i≤N

|X(ω)− x
(0)
i |22 = |X(ω)− x

(0)
N |22 > min

1≤i≤N−1
|X(ω)− x

(0)
i |2

whereas we always have that min1≤i≤N |X(ω) − x
(0)
i |2 ≤ min1≤i≤N−1 |X(ω) − x

(0)
i |2. On the other

hand we know that x(0)
N
∈ supp(PX) so that P(Aε) > 0 which implies in turn that

e(Γ(0), X)2 < eN−1(X)2.

One concludes by noting that Lloyd’s algorithm makes the sequence of (squared) quadratic quantiza-
tion error induced by the iterated grids non-increasing.

(b) Suppose that there exists a subsequence (ϕ(k)) and a component i0 such that |x(ϕ(k))i0
| → +∞ as

k → +∞. Then, by re-extracting finitely many subsequences, we can split the set {1, · · · , N} into two
disjoint non empty subsets I and Ic and find a subsequence (still denoted (ϕ(k))k≥0 for convenience)
such that

I =
{
j∈ {1 . . . , N} such that

∣∣x(ϕ(k))j

∣∣→ +∞
}
6= ∅

and
Ic =

{
j∈ {1 . . . , N} such that x

(ϕ(k))
j → x∞j ∈ R

d
}
.

It is clear that

∀ ξ∈ R
d, lim

k→+∞
min

1≤i≤N

∣∣ξ − x
(ϕ(k))
i

∣∣2 = lim
k→∞

min
j∈Ic

∣∣ξ − x
(ϕ(k))
j

∣∣2 = min
j∈Ic
|ξ − x∞j |2.

Therefore, it follows from Fatou’s Lemma that

lim inf
k→∞

G(Γ(ϕ(k))) = lim inf
k→∞

E

(
min

1≤i≤N

∣∣x− x
(ϕ(k))
i

∣∣2
)

≥ E

(
lim inf
k→∞

min
1≤i≤N

∣∣x− x
(ϕ(k))
i

∣∣2
)

= E

(
lim inf
k→∞

min
j∈Ic

∣∣x− x
(ϕ(k))
i

∣∣2
)

= E

(
min
j∈Ic

∣∣x− x∞j
∣∣2
)

≥ e|Ic|(X)2.
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Finally e|Ic|(X)2 ≥ eN−1(X)2 since I contains at least i0. On the other hand, we know from (a) that

G(Γ(ϕ(k))) ≤ G(Γ(0)), so that we get the following contradictory inequality

eN−1(X)2 ≤ lim inf
k→∞

G(Γ(ϕ(k))) ≤ G(Γ(0)) < eN−1(X)2.

Consequently I is empty which completes the proof.

(c) The proof is similar to that of the above item (b). Assume x(ϕ(k)) → x(∞). If there exists two

components x
(ϕ(k))
i and x

(ϕ(k))
j converging to x∞i = x∞j . Then, owing to Fatou’s Lemma

e(Γ(∞), X)2 = E

(
min

1≤i≤N
|X − x∞i |22

)
≤ lim inf

k
E

(
min

1≤i≤N
|X − x

(ϕ(k))
i |22

)
≤ e(Γ(ϕ(0)), X) < eN−1(X)

which yields a contradiction. �

2.3 Convergence of the Lloyd procedure under a boundedness assumption

From now on, our aim is to investigate the structure of the set Υ∞ of limiting grids of the se-
quence (Γ(k))k≥0 i.e. the set of grids Γ(∞) such that there exists a subsequence (ϕ(k))k≥0 for which

lim
k→+∞

Γ(ϕ(k)) = Γ(∞).

The two lemmas and the proposition below establish several properties of the iterated grids
(Γ(k))k≥0 which are the basic “bricks” of the proof of Claim (a) of Theorem 2.1.

Lemma 2.2. Let C be a closed convex set of Rd with non-empty interior and let ν be a Borel probability
distribution such that

∫
Rd |ξ|2ν(dξ) < +∞ and ν(C) > 0. Furthermore assume that, either ν satisfies

ν(
◦
C) > 0, or ν assigns no mass to hyperplanes. Then the function defined on C by

IC : y 7−→
∫

C

|y − ξ|2ν(dξ)

is continuous, strictly convex and atteins its unique minimum at y∗
C
=

∫
C
ξν(dξ)

ν(C)
∈

◦
C.

Proof. Elementary computations show that

IC(y) = ν(C)|y|2 +
∫

C

|ξ|2ν(dξ)− 2

(
y|
∫

C

ξν(dξ)

)

= ν(C)

(
|y − y∗

C
|2 +

∫

C

|ξ − y∗
C
|2 ν(dξ)
ν(C)

)

so that y∗
C
= argminCIC .

Now assume y∗
C
∈ ∂C. There exists a supporting hyperplane H∗ to C at y∗

C
defined by H∗ =

y∗
C
+ ~u⊥, |~u| = 1. For every ξ∈ C, (ξ − y∗

C
|~u) ≥ 0 so that

0 = (0|~u) = 1

ν(C)

∫

C

(ξ − y∗
C
|~u)

︸ ︷︷ ︸
≥0

ν(dξ)

so that (ξ − y∗
C
|~u) = 0 ν(dξ)-a.s. i.e. ξ ∈ H∗ ν(dξ)-a.s.. This leads to a contradiction with the

assumptions made on ν. �
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Lemma 2.3. Assume that a subsequence Γ(ϕ(k)) → Γ(∞) as k → +∞ and that the boundary of the
Voronoi tessellation of Γ(∞) are P-negligible. Let Y ∈ L1(Ω,A,P). Then

E(Y |X̂Γ(ϕ(k))
)→ E(Y |X̂Γ(∞)

) a. s. as k → +∞.

Proof of Lemma 2.3: By definition,

E(Y |X̂Γ(ϕ(k))
) =

N∑

i=1

EY 1X∈Ci(Γ(ϕ(k)))

P(X ∈ Ci(Γ(ϕ(k))))
1{X∈Ci(Γ(k))}.

We know from what precedes that, since Γ(ϕ(k)) → Γ(∞), if X(ω) ∈ R
d \ ⋃N

i=1
∂Ci(Γ

(∞)), the
functions

1X∈Ci(Γ(ϕ(k)))(ω)Y (ω)→ 1X∈Ci(Γ(∞))(ω)Y (ω) as k → +∞, i = 1, . . . , N,

Our assumption on Γ(∞) implies that these convergences hold P-a.s.. We conclude by Lebesgue’s
dominated convergence theorem that for every i∈ {1, . . . , N}

E
(
Y (ξ)a1X∈Ci(Γ(ϕ(k)))

)
−→ E

(
Y (ξ)a1X∈Ci(Γ(∞))

)

Therefore, with our convention for the index i such that P(X ∈ Ci(Γ
(∞))) = 0 (if any), we get by

applying the above convergence to Y and 1

E(Y |X̂Γ(ϕ(k))
) =

N∑

i=1

E
(
Y 1X∈Ci(Γ(ϕ(k)))

)

P(X ∈ Ci(Γ(ϕ(k))))
1{X∈Ci(Γ(k))}

−−−→
k→∞

N∑

i=1

E
(
Y 1X∈Ci(Γ(∞))

)

P(X ∈ Ci(Γ(∞))
1{X∈Ci(Γ(∞))} = E(Y |X̂Γ(∞)

) P-a.s. �

Proposition 2.2 (Grid convergence I). Assume that Γ(0) is a U-valued grid and that the iterates
(Γ(k))k≥0 of the Lloyd algorithm are bounded.

(a) Assume that µ assigns no mass to hyperplanes and supp(µ) = U (i.e. is convex). If the sequence
(Γ(k))k≥0 of iterations of the Lloyd procedure is bounded (e.g. because U is itself bounded) then

lim inf
k

min
i 6=j
|x(k)i − x

(k)
j | > 0

i.e. no components of the grids get asymptotically stuck as k goes to infinity.

(b) Assume X ∈ L2(P). Let Γ(∞) be a limiting grid of (Γ(k))k≥0. If the boundary of the Voronoi cells
of Γ(∞) are P

X
-negligible i.e. P

(
X ∈ ∪i∂Ci(Γ

(∞))
)
= 0, then the grid Γ(∞) is stationary i.e. it is a

fixed point of the Lloyd map T
N

or equivalently that (any of) its induced Voronoi tessellation(s) is a
CVT. Moreover if Γ(ϕ(k)) → Γ(∞), then

X̂Γ(ϕ(k)) a.s.&L2

−→ X̂∞ as k → +∞.

(c) If the distribution of X assigns no mass to hyperplanes, then ∇G(Γ(k))→ 0 as k → +∞.

(d) If the distribution of X has a convex support U = supp(µ), then the consistent representations of
(Γ(k))k≥0 satisfy ∑

k≥0

|x(k+1) − x(k)|2(Rd)N < +∞.

In particular, x(k+1) − x(k) → 0 as k → +∞. Hence, the set X∞ of (consistent representations of)
limiting grids of (Γ(k))k≥0 is a (compact) connected subset of UN .
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Remarks. • In the literature the convergence of the gradient of the iterated grids as established in
(c) is sometimes known as “weak convergence” of the Lloyd procedure.

• Lemma 2.2 improves a result obtained in [5] which show that component do not asymptotically merge
in Lloyd’s procedure even when the Splitting Assumption is not satisfied. In [5], the distribution µ is
supposed to be absolutely continuous with a density a continuous ρ, everywhere strictly positive on
its support. Our method of proof allows for relaxing this absolute continuity assumption.

Proof of Proposition 2.2: (a) For every i, j∈ {1, . . . , N}, i 6= j, we define the median hyperplane

of x
(k)
i and x

(k)
j by

~u
(k)
ij =

x
(k)
i − x

(k)
j

|x(k)i − x
(k)
j |

, H
(k)
ij =

x
(k)
i + x

(k)
j

2
+ ~u⊥ij and

We define together the affine form

ϕij(ξ) =
(
ξ −

x
(k)
i + x

(k)
j

2

∣∣∣~uij
)
, ξ∈ R

d

which satisfies ϕ
(k)
ij ≥ 0 on Ci(Γ

(k)) and ϕ
(k)
ij (x

(k)
i ) = 1

2 |x
(k)
i − x

(k)
j | > 0. Moreover, note that ϕ

(k)
ji =

−ϕ(k)
ij and that

⋂

j 6=i

{
ϕ∞
ij > 0

}
=

◦
Ci (Γ

(k)) ⊂ Ci(Γ
(k)) ⊂ Ci(Γ

(k)) ⊂
⋂

j 6=i

{ϕ∞
ij ≥ 0}.

The sequence of iterated grids (Γ(k))k≥0 being bounded by assumption, we may assume without loss
of generality, up to an extraction (ϕ(k))k≥0,

x
(ϕ(k))
i → x∞i , i∈ {1, . . . , N}, ~u

(ϕ(k))
ij → u∞ij , i, j∈ {1, . . . , N}

and
x
(ϕ(k)+1)
i → x̃∞i , i∈ {1, . . . , N} as k → +∞.

Set for every i, j∈ {1, . . . , N}

ϕ∞
ij = lim

ϕ(k)→∞
ϕ
(ϕ(k))
ij and C∞

i =
⋂

j 6=i

{ϕ∞
ij ≥ 0}.

Hence, for every i∈ {1, . . . , N}, C∞
i is a closed polyhedral convex set containing xi. It also contains

x̃i since x
(ϕ(k)+1)
i ∈ Ci(Γ

(ϕ(k))) owing to the stationarity property. Then, for every j∈ {1, . . . , N},

ϕ∞
ij (x̃

∞
i ) = lim

ϕ(k)→∞
ϕ
(ϕ(k))
ij (x

(ϕ(k)+1)
i ) ≥ 0

since ϕ
(ϕ(k))
ij uniformly on compact sets toward ϕ∞

i (simple convergence of affine forms in finite di-
mension implies locally uniform convergence).

Assume there exists i0 ∈ {1, . . . , N} such that I0 = {i |x∞i = x∞i0 } is not reduces to {i0} i.e.
contains at least two indices.

It is clear that
∅ 6=

{
ξ∈ R

d | |ξ − x∞i0 | < d
(
ξ,Γ(∞) \ {xi0}

)}
⊂

⋃

i∈I0

C∞
i .
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The above nonempty open set has non zero µ-mass since xi0 ∈ U. Hence, there exists two indices
i1, i2 ∈ I0 such that µ(C∞

i1
) and µ(C∞

i2
) > 0. First note that ϕ∞

i1i2
(x∞i1 ) ≥ 0 and ϕi2i1(x

∞
i2
) ≥ 0 but

both quantities being opposite since x∞i1 = x∞i2 they are equal to 0 which means that

x∞i0 = x∞i1 = x∞i2 ∈ ∂C∞
i1
∩ ∂C∞

i2
.

Since these sets are polyhedral and µ assigns no mass to hyperplanes, µ(
◦
Ci1) and µ(

◦
Ci2) > 0.

Then one checks that
1 ◦
C∞

iℓ

= lim
k

1◦

C
(ϕ(k))
iℓ

, ℓ = 1, 2

so that, still using that µ assigns no mass to the boundaries of these polyhedral convex sets, we get

0 < µ(
◦

C∞
iℓ
) = lim

k→+∞
µ
( ◦

C
(ϕ(k))
iℓ

)
, ℓ = 1, 2.

Set ε0 = minℓ=1,2 µ(
◦
C∞
iℓ
) > 0. It follows form (2.7) that

‖X−X̂Γ(ϕ(k))‖22−‖X−X̂Γ(ϕ(k)+1)‖22 ≥ min
ℓ=1,2

µ
( ◦
Ciℓ

(ϕ(k)) )(∣∣x(ϕ(k)+1)
i1

−x
(ϕ(k))
i1

∣∣2+
∣∣x(ϕ(k)+1)

i2
−x

(ϕ(k))
i2

∣∣2).

Letting ϕ(k) go to infinity implies that

ε0
(∣∣x̃∞i1 − x∞i1

∣∣2 +
∣∣x̃∞i2 − x∞i2

∣∣2) ≤ 0

since ‖X − X̂Γ(k)‖2 is a converging sequence. Hence x̃∞iℓ = x∞iℓ , ℓ = 1, 2, which in turn implies that
x̃∞i1 = x̃∞i1 = xi0 .

One shows likewise, still taking advantage of the µ-negligibility of the boundaries of the polyhedral
sets C∞

i , that

lim
k→+∞

∫

Ciℓ
(Γ(ϕ(k)))

ξµ(dξ) =

∫

C∞
iℓ

ξµ(dξ), ℓ = 1, 2.

Passing to the limit in the stationary equation satisfies by x(ϕ(k))
ℓ

, ℓ = 1, 2, finally implies that

x̃∞iℓ =

∫
C∞

iℓ

ξµ(dξ)

µ(C∞
iℓ
)
∈

◦

C∞
iℓ
, ℓ = 1, 2.

But, owing to Lemma 2.2 (see also [7], p.22), this implies that x̃∞iℓ ∈
◦
C∞
iℓ
, ℓ = 1, 2. This yields a

contradiction to the fact that both xℓ are equal xi0 .

(b) Let ξ ∈ R
d \ ⋃N

i=1
∂Ci(Γ

(∞)). Then ξ belong to the interior of one of the tessels Ci(Γ
(∞)), say

C̊i0(Γ
(∞)). Hence, |ξ − x∞i0 | is strictly smaller than mini 6=i0 |ξ − x∞i |. Consequently, there exists an

n(ξ) ∈ N
∗ such that for all n ≥ n(ξ),

|ξ − x
(ϕ(k))
i0

| < min
i 6=i0
|ξ − x

(ϕ(k))
i |

or equivalently ξ∈ C̊i0(Γ
(ϕ(k))). Thus, for every ξ∈ R

d \⋃N
i=1

∂Ci(Γ
(∞)),

ProjΓ(ϕ(k))(ξ) =

N∑

i=1

x
(ϕ(k))
i 1Ci(Γ(ϕ(k)))(ξ) −−−→

k→∞

N∑

i=1

x∞i 1Ci(Γ(∞))(ξ) = ProjΓ(∞)(ξ).
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This clearly implies that P(dω)-a.s., X̂Γ(ϕ(k))
(ω)→ X̂Γ(∞)

(ω) as k → +∞ since P(X∈ ⋃N
i=1

∂Ci(Γ
(∞))) =

0. To carry on the proof, we need the following lemma.
If we set Y = X in Lemma 2.3, then

E(X|X̂Γ(ϕ(k))
) −→ E(X|X̂Γ(∞)

) a.s.

Moreover, the sequence
(
E(X | X̂Γ(k)

)
)
k≥0

being L2-uniformly integrable since X ∈ L2(P), the above

convergence also holds in L2(P).

Now, since ϕ(k+1) ≥ ϕ(k)+1 and X̃Γ(ϕ(k)+1)
= E

(
X | X̂Γ(ϕ(k)))

is Γ(ϕ(k)+1)-valued, we derive from
Lemma 2.1 that

∀k ∈ N
∗, ‖X − X̂Γ(ϕ(k+1))‖2 ≤ ‖X − X̂Γ(ϕ(k)+1)‖2 ≤ ‖X − X̃Γ(ϕ(k)+1)‖2 = ‖X − E

(
X | X̂Γ(ϕ(k)))‖2.

Since we know that X̂Γ(ϕ(k)) −→ X̂Γ(∞)
P-a.s., it follows from from Fatou’s Lemma that

‖X − X̂Γ(∞)‖2 ≤ lim inf
k→∞

‖X − X̂Γ(ϕ(k+1))‖2.

On the other hand, we derive from the convergence E(X|X̂Γ(ϕ(k))
) −→ E(X|X̂Γ(∞)

) in L2(P) that

lim
k→∞

‖X − E
(
X | X̂Γ(ϕ(k)))‖2 = ‖X − E(X|X̂Γ(∞)

)‖2.

so that
‖X − X̂Γ(∞)‖2 ≤ ‖X − E(X|X̂Γ(∞)

)‖2
which in turn implies by the very definition of conditional expectation as an orthogonal projection on
L2(X̂Γ(∞)

) that

X̂Γ(∞)
= E(X|X̂Γ(∞)

) P-a.s.

(c) First we note that, for any grid Γ = {x1, . . . , xN
}, Schwarz’s Inequality implies

|∇G(Γ)|22 =
N∑

i=1

∣∣∣∣
∂G
∂xi

(Γ)

∣∣∣∣
2

= 4

N∑

i=1

∣∣∣∣∣

∫

Ci(Γ
(xi − ξ)P(dξ)

∣∣∣∣∣

2

≤ 4

N∑

i=1

∫

Ci(Γ
|xi − ξ|2 P(dξ) = 4G(Γ)

so that the sequence
(
∇G(Γ(k))

)
k≥0

is bounded. Now, as PX assigns no mass to the boundary of any

Voronoi tessellations, we derive from what precedes that any limiting grid of (Γ(k))k≥0 is stationary
i.e. ∇G(Γ(∞)) = 0. It is clear by an extraction procedure that 0 is the only limiting value for the
bounded sequence

(
∇G(Γ(k))

)
k≥0

which consequently converges toward 0.

(d) The set of limiting grids of the sequence (Γ(k))k≥0 is compact by construction. Its connectedness
will classically follow from

|Γ(k+1) − Γ(k)| k→∞−−−→ 0

(see e.g. [15]).
It is clear from item (a) that KΓ = {Γ(k), k ≥ 0} ∪ Υ∞ is a compact whose intersection with the

closed set {(x1, . . . , xN
)∈ (Rd)N , xi 6= xj , i 6= j}c. Hence, KΓ stands at a positive distance of this set

or, equivalently, there exists δ > 0, such that

∀ k ≥ 0, ∀ i, j ∈ {1, . . . , N}, i 6= j, |x(k)i − x
(k)
j | ≥ δ.
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As a consequence, every Voronoi cell satisfies

B
◦

(x
(k)
i , δ/2) ⊂ Ci(Γ

(k))

where B
◦

(ξ, r) denotes the open ball with center ξ and radius r. Since U = supp(µ) is a (closed)
convex set and Γ(0) ⊂ supp(µ), then Γ(k) ⊂ U for every k∈ N. As a consequence, KΓ ⊂ U which in

turn implies that the function ξ 7→ P
(
X ∈ B

◦

(ξ, δ/2)
)
is (strictly) positive on the compact set KΓ, so

that we can define
m∗ := inf

ξ∈KΓ

P
(
X∈ B

◦

(ξ, δ/2)
)
> 0 (2.6)

which implies in particular that

M
(k)
i = P(X∈ Ci(Γ

(k))) > m∗, 1 ≤ i ≤ N, k ≥ 0.

Now we introduce the energy gap

∆(k) =
∥∥X − X̂Γ(k)∥∥2

2
−
∥∥X − X̃Γ(k+1)∥∥2

2

known to be non-negative by (2.4) in Lemma 2.1. Then

∆(k) =
N∑

j=1

∫

Cj(Γ(k))
|ξ − x

(k)
j |2PX

(dξ)−
N∑

j=1

∫

Cj(Γ(k))
|ξ − x

(k+1)
j |2P

X
(dξ).

=
N∑

j=1

∫

Cj(Γ(k))
(|x(k)j |2 − |x

(k+1)
j |2) + 2

(
x
(k+1)
j − x

(k)
j |ξ

)
P

X
(dξ)

=
N∑

j=1

M
(k)
j (|x(k)j |2 − |x

(k+1)
j |2) + 2

(
x
(k+1)
j − x

(k)
j |

∫

Cj(Γ(k))
ξ P

X
(dξ)

)

=

N∑

j=1

M
(k)
j (|x(k)j |2 − |x

(k+1)
j |2) + 2M

(k)
j

(
x
(k+1)
j − x

(k)
j |x

(k+1)
j

)

=
N∑

j=1

M
(k)
j |x

(k)
j − x

(k+1)
j |2

≥ m∗|Γ(k+1) − Γ(k)|2(Rd)N . (2.7)

On the other hand ∆(k) ≤
∥∥X − X̂Γ(k)∥∥2

2
−
∥∥X − X̂Γ(k+1)∥∥2

2
so that, finally,

∑

k≥0

|Γ(k+1) − Γ(k)|2(Rd)N ≤
1

m∗

∥∥X − X̂Γ(0)∥∥2
2
< +∞. �

Comments. • The restrictions on the possible limiting grids in Theorem 2.1 do not imply uniqueness
in general in higher dimensions: the symmetry properties shared by the distribution itself already
induces multiple limiting grids as emphasized by the case of the multivariate normal distribution
N (0, Id). In fact, for an orthogonal matrix P ∈ Od that is PP ∗ = Id (P ∗ stands for the transpose of
P ) and any optimal grid Γ = {x1, . . . , xN

},

‖X − X̂PΓ‖22 = E min
1≤i≤N

|X − Pxi|2 = E min
1≤i≤N

|P ∗X − xi|2 = E min
1≤i≤N

|X − xi|2 = ‖X − X̂Γ‖22.
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• For distribution with less symmetries like X ∼ N (0,Σd) with Σ = diag(λ1, λ2, · · · , λd), 0 < λ1 <
λ2, · · · < λd, one can reasonably hope that at least local uniqueness of stationary grids (CVT) holds
true. One way to check that is to establish that the Hessian D2G(Γ) is invertible at each stationary
grid Γ. A closed form is available for this Hessian (see e.g. [6]).

Proof of Theorem 2.1: The preliminary claim follows by induction from the structural stationary
properties of the iterates and Lemma 2.2.

(a) Combining the results obtained in the above proposition and the convergence
∥∥X−X̂Γ(k)∥∥

2
toward

a non-negative real number ℓ∞ completes the proof.

(b) follows from Proposition 2.1 in Section 2.2 which implies that the sequence (Γ(k))k≥0 is bounded.
Then one concludes by (a). �

3 A bounded variant of Lloyd’s procedure based on spatial estima-

tion of the optimal quantizers

So far our results are based on the hypothesis that we initialize the Lloyd algorithm using a grid of size
N whose induced quadratic quantization error is lower than the minimal quantization error achievable
with a grid of size at most N − 1. This is clearly the key point to ensure that the iterates of the
procedure remain bounded. From a practical point of view, this choice for the initial grid is not very
realistic, in particular if we are processing a “splitting method”: nothing ensures, even if the Lloyd
procedure converges at a level N − 1, that the limiting grid will be optimal with the consequence that
the initialization at level N “below” eN−1(X) becomes impossible.

However, we know from theoretical results on optimal vector quantization where the optimal
quantizers are located a priori.

3.1 A priori bounds for optimal quantizers

The following proposition can be found in [7].

Proposition 3.1. Let LN,X(c) = {Γ : |Γ| = N and e(Γ, X) 6 c}. Let c∈ (0, eN−1(X)]. There exists
R∈ (0,+∞) such that

LN,X(c) ⊂ B(m
X
, R) with m

X
= EX.

An upper bound S satisfies the following conditions:

(i) ∃ r > 0 such that P
(
X∈ B(m

X
, r)

)
> 0 and (R5 − r)2P

(
X∈ B(m

X
, r)

)
> c,

(ii) 4

∫

B(0, 2R
5
)c
|ξ −m

X
|22PX(dξ) < eN−1(X)− c.

If we specify c = eN (X), then the set LN,X(c) will be the set of grids corresponding to optimal
N -quantizers, and R will be an upper bound of the optimal N -quantizers.

Consequently, in order to given a numerical estimation of R, we have to estimate the asymptotic
behaviour of eN−1(X)− eN (X). We know from ([14], see also [10]) that

eN−1(X)− eN (X) ∝ N− d+2
d

If X has a standard Gaussian distribution N (m; Id), then
∫

B(m
X
, 2R

5
)c
|ξ −m

X
|2PX(dξ)

∫

B(0, 2R
5
)c
|ξ|2P

X
(dξ) ∝ Rde−

R2

2 .
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Thus
R ∝

√
ln(N).

More precise results can be found in [14] and [8] for various families of distributions with exponential
or polynomial tails at infinity. Under certain condition on X, the asymptotic behaviour of R = R(N)
can be analyzed sharply as N goes to infinity. Typically if X ∼ N (m; Id),

lim
N

R(N)√
log(N)

=
1√
2

(
1 +

2

d

) 1
2
.

3.2 A variant of Lloyd’s algorithm

Since we know that all optimal N -quantizers are constrained in a bounded domain (depending on N
in a more or less controlled way), a natural idea is to constrain the exploration of the Lloyd iterates
inside it to take advantage of this information.

We can fix an area that we are sure that the optimal quantizer have its grids in it. Once an
iteration of the algorithm includes some points that go beyond the area, we will be sure that it is not
the optimal grid. So we can do something to pull the points back into the area while keeping the error
non-increasing.

To this end, we now compute the difference made on the second phase of the Lloyd iteration in

condition that we pick a point other than the mass center point. If we take x′j instead of x
(k+1)
j for a

certain j, the resulting difference in the jth Voronoi region created by the second phase will be:

∆′
j(k) := E|X − x

(k+1)
j |21{X∈Cj(Γ(k))} − E|X − x′j |21{X∈Cj(Γ(k))}

=

∫

Cj(Γ(k))
|ξ − x

(k)
j |2P(dξ)−

∫

Cj(Γ(k))
|ξ − x′j |2P(dξ)

=

∫

Cj(Γ(k))
|ξ − x

(k)
j |2P(dξ)−

∫

Cj(Γ(k))
|ξ − x

(k+1)
j |2P(dξ)

+

∫

Cj(Γ(k))
|ξ − x

(k+1)
j |2P(dξ)−

∫

Cj(Γ(k))
|ξ − x′j |2P(dξ)

= Mj(k)
(
|x(k)j − x

(k+1)
j |2 − |x′j − x

(k+1)
j |2

)
.

This shows that if we pick a point which lies at the same distance to x
(k+1)
j as x

(k)
j , then the above

difference becomes zero. The idea is then to choose the point inside the prescribed domain if x
(k+1)
j

is outside. It is always possible, e.g. by keeping x
(k)
j still (although this is probably not the optimal

way to proceed).
With this idea we present a modified version of Lloyd’s algorithm, which does not need the Splitting

Assumption, to be run successfully. We set a R > 0 that all optimal quantizers are in the ball B(0, R).
The algorithm is as follows (assuming that X is centered for convenience):

Algorithm 2 (Modified Lloyd’s algorithm):

Inputs:

• B(0, R), the domain of interest (with R close to R(N)) hopefully.
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• µ = P
X
a simulatable probability distribution (with a convex support U) and assigning no mass

to hyperplanes.

• Γ(0) = {x(0)i , i = 1, . . . , N}, the initial set of N generators (starting grid).

Pseudo-script:

⊲ At the kth iteration:

1. Compute the position of Γ(k+1) = {x(k)+1
i , i = 1, . . . , N}, the mass centroid of {C(k)

i , i =

1, . . . , N}. If there is an index j such that x
(k+1)
j lies outside B(0, R) (and for every such point),

replace the current value x
(k+1)
j by a point x

(k+1)′
j defined e.g. by x

(k+1)′
j = ∂B(x

(k+1)
j , |x(k)j −

x
(k+1)
j |)∩ [x(k)j , x

(k+1)
j ] (other choices are possible like choosing it randomly on ∂B(x

(k+1)
j , |x(k)j −

x
(k+1)
j |) ∩B(0, R).

2. If every point lies in the ball B(0, R), then take these mass centroids of {C(k)
i , i = 1, . . . , N} as

the new set of generators Γ(k+1) = {x(k+1)
i , i = 1, . . . , N},

3. Construct the Voronoi tessellation C(Γ(k+1)) = {C(k+1)
i , i = 1, . . . , N} of U with the grid of

generators {x(k+)
i , i = 1, . . . , N}.

⊲ Repeat the above iteration until a stopping criterion is met. And the output is the CVT {C(n)
i , i =

1, . . . , N} with generators {x(n)i , i = 1, . . . , N} in U.

⊲ end.

In this new version we modify Phase I (2.4) of the Lloyd procedure in such a way that the

quadratic approximation error ‖X − X̃Γ(k+1)‖2 still decreases. The second phase being unchanged, so
this modified Lloyd algorithm is still energy descending and furthermore it lives in the ball B(0, R).
The trade-off is that with the R fixed at the beginning of the algorithm, we loose the (theoretical)
possibility that the iterated sequence cruises very far during the iterations to finally come back with a
lower energy. Therefore the energy level of the new limit points will be higher than setting R = +∞.
We also see that the larger the radius R we take, the lower limit energy level we can get.

Another trade-off of the modified procedure is that it does not guarantee Lemma 3 because we
do not use the Splitting Assumption. In this case we cannot prove the non-degeneracy of the limit
grid by this global energy reasoning. However, we can now rely on Proposition 2.2 to ensure that no
merging occurs.

Provisional remarks. One verifies on numerical implementation of Lloyd algorithm, that the main
default that slows down the procedure is more the freezing of one component of the grid which is“ too
far from the core” of the support of the distribution µ than the explosion of the grid with components
going to infinity. but in some sense these seeming radically different behavior are the two sides of
the same coin and the above procedure is an efficient way to prevent these parasitic effects. Though,
in practice we proceed in a less formal way: using the theoretical estimates on the radius of the
distribution allows for an adequate choice of the initial grid Γ(0) as confirmed by various numerical
experiments carried e.g. in [18].
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4 Appendix: Numerical detection of the nature of a limiting grid

We provide here a formula for the Hessian of the distortion value function G when the distribution µ of X is
absolutely continuous with density function ρ. From such a formula it is possible, at least numerically in low
dimensions, to detect the status of a stationary grid/quantizer in terms of stability: local minimum, saddle
point, etc.

As a first step we need a Lemma which provides a formula for the differentiation of integrals overs teasels
of the Voronoi partition of an N -tuple x = (x1, . . . , xN

).

Lemma 4.1. Let ϕ∈ C(Rd,R). Set for every x∈ R
d with pairwise distinct components,

Φi(x) =

∫

Ci(x)

ϕ(ξ)λd(dξ), i = 1, . . . , N,

where λd denotes the Lebesque measure on (Rd,Bor(Rd)). Then Φi is continuously differentiable on the open
set of N -tuples with pairwise distinct components and

∀ j∈ {1, . . . , N}, j 6= i,
∂Φi

∂xj

(x) =

∫

Ci(x)∩Cj(x)

ϕ(ξ)

(
1

2
nij
x +

1

|xi − xj |

(
xi + xj

2
− ξ

))
λij
x (dξ)

where λij
x (dξ) denotes the Lebesque measure on the median hyperplane Hx

ij of xi and xj and nij
x =

xj−xi

|xj−xi|
.

Furthermore,
∂Φi

∂xi

(x) = −
∑

j 6=i

∂Φj

∂xi

(x).

We refer to [6] or [17] for a proof. This leads to the announced general result concerning the Hessian of
the distortion function G. We set for every u = (u1, . . . , ud), v = (v1, . . . , vd)∈ R

d, u ⊗ v = [uivj ]1≤i,j≤d and
Id = [δij ]1≤i,j≤d (δij denotes the Kronecker symbol).
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Proposition 4.1. Let µ = P
X
= ρ.λd with ρ continuous. Then, for every i, j∈ {1, . . . , N}, i 6= j,

∂2G
∂xi∂xj

(x) =

∫

Ci(x)∩Cj(x)

(xi − ξ)⊗
(
1

2
nij
x +

1

|xi − xj |
(xi + xj

2
− ξ

))
ρ(ξ)λij

x (dξ) if i 6= j

and

∂2Gℓ
∂xi∂xj

(x) = µ(Ci(x))Id +
∑

j 6=i

∫

Ci(x)∩Cj(x)

(xj − ξ)⊗
(
1

2
nij
x −

1

|xi − xj |
(xi + xj

2
− ξ

))
ρ(ξ)λij

x (dξ) if i = j.

This formula is used e.g. in [6] to show the instability of “square”, ”hyper”-rectangular stationary grids
for the uniform distribution over the unit hypercube for Kohonen’s Self-Organizing Maps (SOM). When the
neighborhood function of the SOM is degenerated (no true neighbor) the SOM amounts to the CLV Q and its
equilibrium points are those of the Lloyd procedure, with the same (un-)stability properties. These quantities
also appear in the asymptotic variance of the CLT established in [17].
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